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The Pigeonhole Principle

(aka Dirichlet’s principle)

If a set of size at least r Is partitioned into s sets,
then some class receives at least [r/s] elements.




Proposition 1.

In any graph, there exist two vertices with the same degree.

m Let G = (V,E) be a graph with |[V| = n.

m The degree of any vertex is between 0 and n — 1.

- If there is a vertex with degree 0, then there exists no vertex with
degree n — 1, and vice versa.

- Hence, there are at most n — 1 different values for the vertex
degrees, while there are n vertices.

- By the pigeonhole principle,
at least two vertices have the same degree.




Independent Set & Chromatic Number

m LetG = (V,E) be a graph.

m Let

- a(G) be the maximum size of any independent set for G.

- x(G) be the chromatic number of G,

l.e., the minimum number of colors required to color V
such that,

no adjacent vertices are colored the same.




Independent Set & Chromatic Number

m LetG = (V,E) be a graph.
- Let a(G) denote the size of maximum independent set for G.

- Let y(G) denote the chromatic number of G.

m Consider a coloring of VV that uses y(G) colors.

- Letly, Vs, ..., V() be the partition of the vertices by their colors.

m Forany 1 <i < y(G),

the set I/; is an independent set for G.




Proposition 2.

In any graph G with n vertices, n < a(G) - x(G).

m Proof 1.

- Consider a coloring of V that uses y(G) colors and
Vi, V2, ..., Vi) b€ the partition of the vertices by their colors.

- Since V; is an independent set, |V;| < a(G).

- Hence,
n= ) Il < a®- 6.

1<i<y(G)




Proposition 2.

In any graph G with n vertices, n < a(G) - x(G).

m Proof 2.

- Consider a coloring of V that uses y(G) colors and
letV,,V;, ..., Vy () be the partition of the vertices by their colors.

n

- By the pigeonhole principle, there exists some i with |V;| > s

- Since V; is an independent set, a(G) = |V].

- By the above two inequalities, n < a(G) - x(G).




Proposition 3.

Let G be a graph with n vertices. If every vertex has a degree of
at least (n — 1)/2, then G Is connected.

X y
m Proof.
- ANZA
- We prove that, for any pair of vertices, say, x and vy, w

either x and y are adjacent or have a common neighbor.

- If x and y are not adjacent, then there are at least n — 1
edges connecting them to the remaining vertices.

- Since there are only n — 2 other vertices, at least two of
these n — 1 edges connect to the same vertex.




Some Remark.

m The statement from Proposition 3 is the best possible.

- To see that, consider the graph that consists of two disjoint
complete graphs, each having n/2 vertices.

x
Then every vertex has degree n/2 — 1, and A\/A
the graph is disconnected.

m Also note that, we also proved that, if every vertex has degree
at least (n — 1)/2, then the diameter of the graph is at most two.




The Erdos-Szekeres Theorem




Increasing / Decreasing Sequences

m Letd = (aq,a,,...,a,) be a sequence of n distinct numbers.

- A sequence of B with length k Is called a subsequence of 4,

If the elements of B appear in the same order in which they
appearin A, i.e.,

B = (ail,aiz, ...,aik), where il < i2 < e < ik'

m Asequence is said to be increasing if a; < a, < - < ay
and decreasing if a; > a, > - > a,,.




Theorem 5 (Erdos-Szekeres 1935).

Let A = (aq,a,,...,a,) be a sequence of n distinct numbers.
If n > sr 4+ 1, then A has either an increasing subsequence of
length s 4+ 1 or a decreasing subsequence of length r + 1.

m Proof. (due to Seidenberg 1959).
Forany 1 <i < n, associate a; with a pair (x;, y;), where

- x; IS the length of the longest increasing subsequence ending at a;.

- y; Is the length of the longest decreasing subsequence starting at a;.

a;
I

x; : longest LIS ending at a; y; . longest LDS starting at q;




Forany 1 <i < n, associate a; with a pair (x;, y;), where

- x; IS the length of the longest increasing subseguence ending at a;.

- y; Is the length of the longest decreasing subsequence starting at a;.

x; . longest LIS ending at qa; ‘ y; . longest LDS starting at a;
a;
i

m Forl<i<j<n,wehave (x;,y;) # (xj,y;).

— Ifal- < aj,then Xj le' + 1.

- Ifa; > a;,theny; > vy; + 1.
L J Yi=Jj One of the two conditions must hold,

since the elements are distinct.




m Forany 1 <i<j<mn,wehave (x;,y;) # (xj,¥)).

- Ifa; <aj, thenx; = x; + 1.

- |fCll' > aj,then Vi Zyj + 1.

m Consider the n X n grids.

- By the above observation, 1
all the elements a; correspond to a distinct grid.
m Consider the s x r submatrix.

- Sincen > s - r, for some i, the element a; corresponds to some
grid outside the s X r submatrix.

- Hence, either x; > sory; >r.




The Dilworth Lemma

for Partially Ordered Sets (Posets)




Partial Order.

m A partial order on a set P is a binary relation <
that is

- (reflexive). a < a,foralla €eP,

- (antisymmetric). Ifa < b and b < a, then a = b.

- (transitive). Ifa<bandb<c,thena<c

m Two elements a,b € P are said to be comparable

If ethera<borb =<



Chain and Antichain.

m Let P be a set with partial order <.

- Asubset C < P is called a chain,

If every pair of elements in C is comparable.

- Dually, a subset C < P is called an antichain,

If none of the pairs in C Is comparable.




Chain and Antichain.

m For example,
letP ={1,2,3,4,5a,b,c,d} and define the partial order < as
1<2<3<4<5,and
a < b <c <d.
- Then, {4,2,3} and {c, d} are two chains,

and {2, c} is an antichain.




Lemma 6 (Dilworth 1950).

Let P be a set with a partial order <.
If |P| = sr + 1, then there exists either a chain of size s + 1 or
an antichain of size r + 1.

m Proof.

- Foranya € P,
let £(a) denote the length of the longest chain ending at a.

- Suppose that there exists no chain of size s + 1.
m Thenf(a) <sforallae€P.

m We will show that, there exists an antichain of size r + 1.




- Foranya € P,
let £(a) denote the length of the longest chain ending at a.

- For1<i<s,letA; be the set of elements a with £(a) = i.

m Then, A; must be an antichain, forall1<i <s.
- Consider any a,b € A; with a # b.
By assumption, we have ¢(a) = (b).
- If a and b are comparable, say, a < b,

then, we add b to the longest chain ending at a.

This gives a chain ending at b with length ¢(b) + 1,
a contradiction.




- Suppose that there exists no chain of size s + 1.

m Then ¢(a) <sforallaeP.

- For1 <i<s,let A; be the set of elements a with £(a) = i.

m| Then, A; is an antichain, forall 1 <i <.

| AlﬂA]=(Z) fora”l:/:]

m A, A, .., A forms a partition of P.

- Since |P| = sr + 1,

by the pigeonhole principle, |A;| = r + 1 for some i.




Some Note.

m The proof given in the textbook is wrong.

- The greatest elements chosen in different maximal chains can be
identical, and hence, comparable.

C
For example,
the two maximal chains, {a, c,d} and {b, c, d},

d share the same greatest element d.




The Mantel's Theorem

How many edges can a triangle-free graph have?

Alternatively,
how many edges can we add to a graph without creating a triangle?




The Maximum Number of Edges In a Triangle-free Graph.

m Atriangle is a complete graph of 3 vertices.

/\

m We know that, bipartite graphs do not contain any triangle.

- So, n?/4 edges are possible,

achieved by complete bipartite graphs with two n/2 partite sets.

- It turns out that, n“/4 is also the best possible.




Theorem 7 (Mantel 1907).

If an n-vertex graph has more than n?/4 edges,
then it contains a triangle.

m Proof 1.

V| =n.Ifd(x) + d(y) > n,
x and y must share

a common neighbor and
they form a triangle.

- LetG = (V,E) with |[V| =n and |E| = m.

- Assume that ¢ has no triangles.

m Consideranye = (x,y) €E.

The pigeonhole principle guarantees that

d(x) +d(y) <n.




m Proof 1.

d(y)

d(x)

- Let G = (V,E) with [V] =n and |E| = m > n?/4.
- Assume that ¢ has no triangles. Consider any e = (x,y) € E.

The pigeonhole principle guarantees that

d(x) +d(y) <n.

m Summing over all the edges, we obtain

z:d(x)2 = z (d(x) +d(¥)) < mn.

XEV (x,y)EE

By the double counting principle.



——,————

. . For any vector u,v € R",
- We obtain Z AP = . |

Ju-v| < lull-llvil.

_______________________________________

-
- —_
-
=

(u=(11, ..,1)
Define two vectors -

v = (d(v1)»d(vz)» ---:d(vn)) |

vI-y de? = [ ) dw

XeV xXeV

We have

dm*~ .

Hence, m < n?/4.
Y.xev d(x) = 2m by the double counting principle.




Theorem 7 (Mantel 1907).

If an n-vertex graph has more than n?/4 edges,
then it contains a triangle.

m Proof 2.

- In the second proof, we count the number of edges using the
property of the maximum independent sets.

- Let G = (V,E) with |[V| = n.
Assume that ¢ has no triangles.

m We will show that |E| < n?/4.




- Assume that ¢ has no triangles. (+) I not, we get a triangle. }

- Forany v € V,| the neighbors of v form an independent set.

- Let A € V be a maximum independent set (MIS) in G.

m None of vertex pairs in A4 is connected by an edge.
m Hence, every edge in G connects some vertexin B := V1 \ A.

m \We obtain

Al + |BI\°
E| < Ed(x)SEIAI = |A|-|BIS<| l;' l) =n2/4

{ By (*) and A being an MIS for G. } [ Arithmetic and geometric mean inequality. }




Turan’s Theorem

How many edges can a K,-free graph have?

Alternatively,
how many edges can we add to a graph without creating a cligue of size ¢ ?




The Maximum Number of Edges in a K,-free Graph.

m A /-clique, denoted K,, is a complete graph on £ vertices.

m [he Mantel's theorem states that,

any K;-free graph has at most n?/4 edges.

- What about k-cliques with k > 3 ?




Theorem 8 (Turan 1941).

If a graph G = (V, E) with n vertices contains no (k + 1)-cliques,

where k = 2, then 5
1\ n
|E| < (1 ——) :

k] 2

m Proof.

- The case k = 2 is proved by the Mantel’s theorem.
Suppose that k > 3.

- Let’s prove by induction on n.
The case with n = 1 is trivial. Suppose that the inequality holds for
graphs with at most n — 1 vertices.




- The case with n = 1 is trivial. Suppose that the inequality holds for
graphs with at most n — 1 vertices.

- Let G = (V,E) be an n-vertex graph that has no (k + 1)-cliques
and a maximal number of edges.

Hence,

m Adding any new edge to ¢ will create a (k + 1)-clique.

m ( contains at least one k-clique.

Let A be a k-cligue in G, and let B := 1\ A.

m Letey, ep, e, denote the number of edges in 4, in B, and
that between A and B, respectively.




- Let G = (V,E) be an n-vertex graph with no (k + 1)-cliques and
with a maximal number of edges.

m LetAbeak-cligueinG,andletB =V \ A.

m Letey, ep, e, denote the number of edges in 4, in B, and
that between A and B, respectively.

m We have | ¢, = (§) = k(k—1)/2.

By the induction hypothesis, | ez < (1 — %) : ("_zk)z .

Each v € B is adjacent to at most k — 1 vertices In A.

< —_ o —
Hence, | e p < (k—1) - (n—k). mk+1)-cliques }




m We have | g, = (§) = k(k — 1)/2.

—k)?
ep < (1-7)- =L | ep < (k-1 (n—k).

m \We obtain that

|E| = eA‘l‘eB"‘eA’B

k(k —1) 1\ (n—k)?
< 5 +(1_E>' 5 + (k=1 -k

_11n2
- k] 2 °




