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The Scenario

■ To prove that  Pr 𝑖𝐴𝑖ځ > 0 for a collection of bad events 𝐴𝑖,

where

– 𝐴1 : undesirable event #1

– 𝐴2 : undesirable event #2

…

– 𝑖𝐴𝑖ځ :  the event that none of the bad events happen

𝐴1

𝐴2

𝐴3



The Scenario

■ To prove that  Pr 𝑖𝐴𝑖ځ > 0 for a collection of bad events 𝐴𝑖

■ When 𝐴𝑖 are mutually independent and 

Pr 𝐴𝑖 < 1 for all 𝑖, then

Pr ሩ
𝑖
𝐴𝑖 = ෑ

𝑖

Pr 𝐴𝑖 = ෑ

𝑖

1 − Pr 𝐴𝑖 > 0 .

– This argument works only when 

𝐴𝑖 satisfy strong independent requirement.

𝐴1

𝐴2

𝐴3



𝐴1

𝐴2

𝐴3

■ When 𝐴𝑖 are not independent, but σ𝑖 Pr 𝐴𝑖 < 1 ,

we can apply union bound on 𝐴𝑖 .

Pr ራ

𝑖

𝐴𝑖 ≤ ෍

𝑖

Pr 𝐴𝑖 , and

Pr ሩ
𝑖
𝐴𝑖 = Pr ራ

𝑖

𝐴𝑖 = 1 − Pr ራ

𝑖

𝐴𝑖

≥ 1 −෍

𝑖

Pr 𝐴𝑖 > 0 .

However, when  σ𝑖 Pr 𝐴𝑖 ≥ 1, the approach is inconclusive.



The Pros and the Cons

■ Method 1 has the exact probability on Pr 𝑖ځ 𝐴𝑖 .

However, it works only when 𝐴𝑖 are independent.

■ Method 2 can be used with dependency. 

However, union bound is loose and often it becomes inconclusive.

𝐴1

𝐴2
𝐴3

𝐴4

The shared area is counted a number of times

in the union bound.



The Lovász Local Lemma (LLL)

■ The Lovász Local Lemma provides a possible solution to 

the above scenario.

– Roughly speaking, it says that, 

when the events are “mostly independent” and 

individually “not too likely to happen”,

then there is a positive probability that none of the events will occur.

A revised union bound that takes the dependency of the events into considerations.

We need to define 

what they mean.



Some Definitions



Mutual Independence

■ An event 𝐴 is mutually independent of the events 𝐵1, 𝐵2, … , 𝐵𝑘, 

if for any Boolean combination 𝐶 = 𝐶1, 𝐶2, … , 𝐶𝑘 of 𝐵1, 𝐵2, … , 𝐵𝑘, 

where 𝐶𝑖 ∈ 𝐵𝑖 , ഥ𝐵𝑖 for all 1 ≤ 𝑖 ≤ 𝑘, 

we always have

Pr 𝐴|𝐶 = Pr 𝐴 .



Mutual Independence

■ Note that, by the definition, 

if 𝐴 is mutually independent of the events 𝐵1, 𝐵2, … , 𝐵𝑘, 

then 𝐴 is mutually independent of any subsets of 𝐵1, 𝐵2, … , 𝐵𝑘.

Why do we need this definition?

Refer to the jamboard for a sketch of the proof.



■ Note that, it is possible that

An event 𝐴 is individually independent of the events 𝐵1, 𝐵2, … , 𝐵𝑘, 

but depends on some combination of them.

– For example, suppose that a fair coin is flipped twice, and let

𝐴 :  both flips are the same.

𝐵𝑖 :  the 𝑖𝑡ℎ-flip is a head.

Then 𝐴 is independent of 𝐵1 and 𝐵2 separately, but

Pr 𝐴 | 𝐵1𝐵2 = 1 ≠ Pr 𝐴 .

Pr 𝐴 | 𝐵𝑖 = 1/2 = Pr 𝐴 . 



Dependency Graph of the Events

■ Let 𝐴1, 𝐴2, … , 𝐴𝑛 be events.

– A graph 𝐺 = (𝑉, 𝐸) with 𝑉 = {1,2,… , 𝑛}

is said to be 

a dependency graph for 𝐴1, 𝐴2, … , 𝐴𝑛

if  for all 1 ≤ 𝑖 ≤ 𝑛, 

𝐴𝑖 is mutually independent to 𝐴𝑗 ∶ 𝑖, 𝑗 ∉ 𝐸 .

𝑖

𝑁(𝑖)

𝑉\𝑁(𝑖)

mutually 

independent to

𝑉\N 𝑖

𝐴𝑗 ∶ 𝑖, 𝑗 ∉ 𝐸

Note that, by the definition, dependency graph is not unique.



The Lovász Local Lemma

(Symmetric version) 



The Lovász Local Lemma

Theorem 19.1 (Erdös-Lovász 1975).

Let 𝐴1, 𝐴2, … , 𝐴𝑛 be events with 𝐏𝐫 𝑨𝒊 ≤ 𝒑 for all 𝑖, and 

𝒅 be the maximum degree of a dependency graph for the events. 

If 𝒆𝒑 𝒅 + 𝟏 ≤ 𝟏, then 

Pr 𝐴1 𝐴2⋯𝐴𝑛 > 0 .



A slightly weaker version

■ The following (weaker) version is sometimes more handy to apply.

Theorem (Erdös-Lovász 1975).

Let 𝐴1, 𝐴2, … , 𝐴𝑛 be events with Pr 𝐴𝑖 ≤ 𝑝 for all 𝑖, and 

let 𝑑 be the maximum degree of a dependency graph. 

If 𝟒𝒑𝒅 ≤ 𝟏,  then Pr 𝐴1 𝐴2⋯𝐴𝑛 > 0.

In fact, this was the original version of LLL when it first appeared.



Ex1. 

Disjoint Cycles



■ A directed graph is said to be 𝒌-regular, 

if the in-degree and the out-degree of every vertex are both 𝑘.

Theorem 19.4 (Erdös 1963a).

Every finite 𝑘-regular directed graph has a collection of 𝑘/(3 ln 𝑘)

vertex disjoint cycles.

𝑣

𝑘 incoming 

neighbors
𝑘 outgoing 

neighbors
𝐺



■ Consider a uniform random coloring of the vertices using 

𝑟 ≔ 𝑘/(3 ln 𝑘) colors.

To prove the lemma, we will show that, 

there exists a coloring such that,

every vertex has all the 𝑟 colors in its out-neighbors.

Theorem 19.4 (Erdös 1963a).

Every finite 𝑘-regular directed graph has a collection of 𝑘/(3 ln 𝑘)

vertex disjoint cycles.

𝑣

Why does this suffice?



■ Consider a random coloring of the vertices using 𝑟 ≔ 𝑘/(3 ln 𝑘) colors.

We will show that, there exists a coloring such that,

every vertex has all the 𝑟 colors in its out-neighbors.

Theorem 19.4 (Erdös 1963a).

Every finite 𝑘-regular directed graph has a collection of 𝑘/(3 ln 𝑘)

vertex disjoint cycles.

All the 𝑟 colors appear at least once

in the out-neighbor set of 𝑣

𝑣

Continue to follow 

the same color.
… …

We will eventually 

obtain a cycle.



■ Consider a random coloring of the vertices using 𝑟 ≔ 𝑘/(3 ln 𝑘) colors.

We will show that, there exists a coloring such that,

every vertex has all the 𝑟 colors in its out-neighbors.

Theorem 19.4 (Erdös 1963a).

Every finite 𝑘-regular directed graph has a collection of 𝑘/(3 ln 𝑘)

vertex disjoint cycles.

𝑣

This will imply the conclusion 

of the theorem.

Apply the same argument for all colors.



■ Consider a random coloring of the vertices using 𝑟 ≔ 𝑘/(3 ln 𝑘) colors.

■ For any 𝑣 ∈ 𝑉, let 𝐴𝑣 denote the event that 

not every color is used in the out-neighbors of 𝑣.

– For any 1 ≤ 𝑖 ≤ 𝑟, let 𝐴𝑖,𝑣 denote the event that 

the 𝑖𝑡ℎ color is not used in the out-neighbors of 𝑣.

– Then we obtain

Pr 𝐴𝑣 = Pr ራ

1≤𝑖≤𝑟

𝐴𝑖,𝑣 ≤ 𝑟 ⋅ 1 −
1

𝑟

𝑘

≤ 𝑟 ⋅ 𝑒−
𝑘
𝑟 ≤

1

3𝑘2 ln 𝑘
.



■ Consider a random coloring of the vertices using 𝑟 ≔ 𝑘/(3 ln 𝑘) colors.

■ For any 𝑣 ∈ 𝑉, let 𝐴𝑣 denote the event that 

not every color is used in the out-neighbors of 𝑣.

– Then we obtain

Pr 𝐴𝑣 ≤ 𝑟 ⋅ 1 −
1

𝑟

𝑘

≤ 𝑟 ⋅ 𝑒−
𝑘
𝑟 ≤

1

3𝑘2 ln 𝑘
.

– Let 𝑁 𝑣 denote the out-neighbors of 𝑣.

Then, 𝐴𝑣 is mutually independent to

𝐴𝑢 ∶ 𝑁 𝑢 ∩ 𝑁 𝑣 = ∅ .

So, 𝐴𝑣 shares dependency with at most 𝑘2 events.

𝐴𝑣 : not every color is used

𝑣

The events of the

𝑘 in-neighbors of 

this vertex will share 

dependency with 𝐴𝑣



■ Consider a random coloring of the vertices using 𝑟 ≔ 𝑘/(3 ln 𝑘)
colors.

■ For any 𝑣 ∈ 𝑉, let 𝐴𝑣 denote the event that 

not every color is used in the out-neighbors of 𝑣.

– Then Pr 𝐴𝑣 ≤ 𝑟 ⋅ 1 −
1

𝑟

𝑘
≤ 𝑟 ⋅ 𝑒−

𝑘

𝑟 ≤
1

3𝑘2 ln 𝑘
.

– The maximum degree of dependency 𝑑 ≤ 𝑘2.

– Since 
𝑒 ⋅

1

3𝑘2 ln 𝑘
⋅ 𝑘2 + 1 ≤ 1, ∀ 𝑘 ≥ 3,

Pr ∩ 𝐴𝑣 > 0 by the Lovász Local Lemma.

– Hence, there must exist such a good coloring for 𝑘 ≥ 3.

– For 𝑘 ≤ 2, 𝑟 = 0 and the statement of the lemma holds trivially.



Some remarks

■ If you have read the textbook, 

the proof of the Theorem 19.4 in the textbook is incorrect.

– The reason is that, it sets the event 𝐴𝑣 as 

“the color of 𝑣 does not appear in the out-neighbors of 𝑣.”

– As a result, it didn’t consider the event that not all the 𝑟 colors are used.

– When this happens, we don’t get 𝑟 disjoint cycles, and 

what it has truly proved is that, 

“there exists a cycle in the graph.”



The Lovász Local Lemma

--- The Asymmetric Version

When the universal bounds of the events are not good enough.



Theorem 19.2.

Let 𝐺 = (𝑉, 𝐸) be a dependency graph of events 𝐴1, 𝐴2, … , 𝐴𝑛. 

Suppose that there exists real numbers 𝑥1, 𝑥2, … , 𝑥𝑛 with 0 ≤ 𝑥𝑖 < 1

such that, for all 𝑖, 

Pr 𝐴𝑖 ≤ 𝑥𝑖 ⋅ ෑ

𝑗: 𝑖,𝑗 ∈𝐸

1 − 𝑥𝑗 .

Then 

Pr 𝐴1 𝐴2⋯𝐴𝑛 ≥ ෑ

1≤𝑖≤𝑛

1 − 𝑥𝑖 .

In particular, with positive probability, no 𝐴𝑖 occurs.



Ex2. 

2-Colorable Families



2-Colorable Families

■ In Lecture 2, we use simple union bound to show that

when the size of a 𝑘-uniform family is no more than 2𝑘−1, it is 2-colorable.

■ We use the Lovász Local Lemma to prove a stronger statement, which 

takes the structure of the family into consideration.

It says that, when the dependency of the members is bounded within 2𝑘−3, 

the family is 2-colorable.

Theorem 19.5 (Erdös-Lovász 1975).

If every member of a 𝑘-uniform family intersects at most 2𝑘−3 other members, 

then the family is 2-colorable.



Proof.

■ Let 𝑋 be the ground set.  Consider a random 2-coloring on 𝑋 and let 𝐴𝑖 be 

the event that 𝑆𝑖 is monochromatic.

– We have  Pr 𝐴𝑖 = 2 ⋅ 2− 𝑆𝑖 = 21−𝑘 .

– Any 𝐴𝑖 is mutually independent to 𝐴𝑗 ∶ 𝑆𝑖 ∩ 𝑆𝑗 = ∅ . 

So the maximum degree of dependency 𝑑 ≤ 2𝑘−3.

■ Since 4𝑝𝑑 = 20 ≤ 1, the LLL guarantees that  Pr 𝐴1 𝐴2⋯𝐴𝑛 > 0.

Theorem 19.5 (Erdös-Lovász 1975).

If every member of a 𝑘-uniform family 𝐹 = 𝑆1, 𝑆2, … , 𝑆𝑚 intersects at most

2𝑘−3 other members, then the family is 2-colorable.



■ For non-uniform families, we have the following theorem.

Theorem 19.6 (Beck 1980).

Let 𝐹 = 𝑆1, 𝑆2, … , 𝑆𝑚 be a family of sets, each of which has at least 𝑘 ≥ 2 elements. 

Suppose that for each element 𝑣 in the ground set, 

෍

𝑆∈𝐹:𝑣∈𝑆

1 −
1

𝑘

−|𝑆|

⋅ 2− 𝑆 +1 ≤
1

𝑘
.

Then 𝐹 is 2-colorable.

■ Consider a random coloring, and 

let 𝐴𝑖 be the event that 𝑆𝑖 is monochromatic.

Include an edge for 𝐴𝑖 , 𝐴𝑗 in the dependency graph if and only if  𝑆𝑖 ∩ 𝑆𝑗 ≠ ∅,

and define  𝑥𝑖 ≔ 1−
1

𝑘

− 𝑆𝑖
⋅ 2− 𝑆𝑖 +1 for all 𝑖.



Theorem 19.6 (Beck 1980).

Let 𝐹 = 𝑆1, 𝑆2, … , 𝑆𝑚 be a family of sets, each of which has at least 𝑘 ≥ 2 elements. 

Suppose that for each element 𝑣,  σ𝑆∈𝐹:𝑣∈𝑆 1 −
1

𝑘

−|𝑆|
⋅ 2− 𝑆 +1 ≤

1

𝑘
.

Then 𝐹 is 2-colorable.

■ Consider a random coloring, and let 𝐴𝑖 be the event that 𝑆𝑖 is monochromatic.

Include an edge for 𝐴𝑖 , 𝐴𝑗 in the dependency graph if and only if  𝑆𝑖 ∩ 𝑆𝑗 ≠ ∅,

and define  𝑥𝑖 ≔ 1−
1

𝑘

− 𝑆𝑖
⋅ 2− 𝑆𝑖 +1 for all 𝑖.

■ To apply the local lemma, we need to show that

𝑥𝑖 ⋅ ෑ

𝑗: 𝑖,𝑗 ∈𝐸

1 − 𝑥𝑗 ≥ Pr 𝐴𝑖 , ∀1 ≤ 𝑖 ≤ 𝑚 .



Theorem 19.6 (Beck 1980).

Let 𝐹 = 𝑆1, 𝑆2, … , 𝑆𝑚 be a family of sets, each of which has at least 𝑘 ≥ 2 points. 

Suppose that for each point 𝑣,  σ𝑆∈𝐹:𝑣∈𝑆 1 −
1

𝑘

−|𝑆|
⋅ 2− 𝑆 +1 ≤

1

𝑘
.

Then 𝐹 is 2-colorable.

■ We have

𝑥𝑖 ⋅ ෑ

𝑗: 𝑖,𝑗 ∈𝐸

1 − 𝑥𝑗 ≥ 𝑥𝑖 ⋅ෑ

𝑣∈𝑆𝑖

ෑ

𝑗:𝑣∈𝑆𝑗

1 − 𝑥𝑗

≥ 𝑥𝑖 ⋅ෑ

𝑣∈𝑆𝑖

1 − ෍

𝑗:𝑣∈𝑆𝑗

𝑥𝑗 ≥ 𝑥𝑖 ⋅ 1 −
1

𝑘

𝑆𝑖

= 2− 𝑆𝑖 +1 = Pr 𝐴𝑖 .

Define  𝑥𝑖 ≔ 1−
1

𝑘

− 𝑆𝑖
⋅ 2− 𝑆𝑖 +1 for all 𝑖 .

by the definition of 𝑥𝑖

Interprete 𝑥𝑖 as probabilities of

some other independent events.

Refer to jamboard for details.

by the assumption of the theorem

0 ≤ 𝑥𝑖 < 1



Can we actually construct the object ?



Some remark

■ The Lovász Local Lemma, and the probabilistic method we introduced, 

aims to prove the existence of an object satisfying a set of constraints.

– A natural question is that,

can we actually compute such an object efficiently?

– When the conditions in the Lovász Local Lemma are met,

the answer is yes!

Such an object can be constructed in expected  𝑂 σ𝐴
𝑥 𝐴

1−𝑥 𝐴
time.

We will talk about this in lecture #15 (as supplementary content).



Proof of Theorem 19.1 

(Symmetric LLL, weaker version)



Proof of the LLL (weaker version)

■ We will prove the theorem under a slightly stronger condition, i.e., 4𝑝𝑑 ≤ 1.

■ In HW3, you will use asymmetric LLL to prove the stronger version of 

symmetric LLL with 𝑒𝑝 𝑑 + 1 ≤ 1.

Theorem (Erdös-Lovász 1975).

Let 𝐴1, 𝐴2, … , 𝐴𝑛 be events with Pr 𝐴𝑖 ≤ 𝑝 for all 𝑖, and 

let 𝑑 be the maximum degree of their dependence. 

If 4𝑝𝑑 ≤ 1, then Pr 𝐴1 𝐴2⋯𝐴𝑛 > 0.



Tools to Use

They follow directly from the definition of conditional probability.

■ We will use the following two identities for conditional probability.

– Pr 𝐴 𝐵𝐶 =
Pr 𝐴𝐵 𝐶
Pr 𝐵 𝐶

.

– Pr 𝐴𝐵𝐶 = Pr 𝐴 𝐵𝐶 ⋅ Pr 𝐵 𝐶 ⋅ Pr 𝐶 .



Tools to Use

Refer to the jamboard for the details.

■ In general,

Pr 𝐴 𝐵1𝐵2⋯𝐵𝑚 =
Pr 𝐴𝐵1𝐵2⋯𝐵𝑗 𝐵𝑗+1𝐵𝑗+2⋯𝐵𝑚

Pr 𝐵1𝐵2⋯𝐵𝑗 𝐵𝑗+1𝐵𝑗+2⋯𝐵𝑚
∀1 ≤ 𝑗 ≤ 𝑚,

and

Pr 𝐴1𝐴2⋯𝐴𝑚 = ෑ

1≤𝑗≤𝑚

Pr 𝐴𝑗 𝐴𝑗+1𝐴𝑗+2⋯𝐴𝑚

(∗)

(∗∗)



Theorem (Erdös-Lovász 1975).

Let 𝐴1, 𝐴2, … , 𝐴𝑛 be events with Pr 𝐴𝑖 ≤ 𝑝 for all 𝑖, and let 𝑑 be the maximum 

degree of their dependence. If 𝟒𝒑𝒅 ≤ 1, then Pr 𝐴1 𝐴2⋯𝐴𝑛 > 0.

Proof.

■ Fix a dependency graph with maximum degree 𝑑. 

■ We will prove that, for any subset of events of 𝐴1, 𝐴2, … , 𝐴𝑛, 

denoted 𝐵1, 𝐵2, … , 𝐵𝑚 for convenience, 

we always have 

Pr 𝐵1 𝐵2 𝐵3⋯𝐵𝑚 ≤ 2𝑝.



■ We will prove that, for any subset of 𝒎 events of 𝐴1, 𝐴2, … , 𝐴𝑛, 

denoted 𝐵1, 𝐵2, … , 𝐵𝑚 for convenience, 

we always have 

Pr 𝐵1 𝐵2 𝐵3⋯𝐵𝑚 ≤ 2𝑝.

■ If this holds, then by (∗∗), we have 

Pr 𝐴1 𝐴2⋯𝐴𝑛 = ෑ

1≤𝑗≤𝑛

Pr 𝐴𝑗 | 𝐴𝑗+1 𝐴𝑗+2⋯𝐴𝑛

= ෑ

1≤𝑗≤𝑛

1 − Pr 𝐴𝑗 | 𝐴𝑗+1 𝐴𝑗+2⋯𝐴𝑛 ≥ 1 − 2𝑝 𝑛 > 0 .



■ Prove by induction on 𝑚. 

– The base case 𝑚 = 1 is trivial.

– For 𝑚 ≥ 2, assume without loss of generality that, 

𝐵1 and 𝐵𝑘+1, … , 𝐵𝑚 are mutually independent.

■ i.e., 𝐵1 share dependency only with 𝐵2, 𝐵3, … , 𝐵𝑘.

It suffices to show that, for any subset of 𝑚 events of 𝐴1, 𝐴2, … , 𝐴𝑛, 

denoted 𝐵1, 𝐵2, … , 𝐵𝑚, we always have

Pr 𝐵1 𝐵2 𝐵3⋯𝐵𝑚 ≤ 2𝑝.

Hence, 𝑘 − 1 ≤ 𝑑 .



– For 𝑚 ≥ 2, assume without loss of generality that, 

𝐵1 and 𝐵𝑘+1, … , 𝐵𝑚 are mutually independent.

■ i.e., 𝐵1 share dependency only with 𝐵2, 𝐵3, … , 𝐵𝑘.

– By (∗), we have 

Pr 𝐵1 𝐵2 𝐵3⋯𝐵𝑚 =
Pr 𝐵1𝐵2 𝐵3⋯𝐵𝑘 𝐵𝑘+1 ⋯𝐵𝑚

Pr 𝐵2 𝐵3⋯𝐵𝑘 𝐵𝑘+1 ⋯𝐵𝑚

It suffices to show that, for any subset of 𝑚 events of 𝐴1, 𝐴2, … , 𝐴𝑛, 

denoted 𝐵1, 𝐵2, … , 𝐵𝑚, we always have

Pr 𝐵1 𝐵2 𝐵3⋯𝐵𝑚 ≤ 2𝑝.

Hence, 𝑘 − 1 ≤ 𝑑 .

Consider the numerator and the denominator separately.



■ Assume that 𝐵1 is mutually independent to 𝐵𝑘+1, … , 𝐵𝑚.

By (∗), we have 

Pr 𝐵1 𝐵2 𝐵3⋯𝐵𝑚 =
Pr 𝐵1𝐵2 𝐵3⋯𝐵𝑘 𝐵𝑘+1 ⋯𝐵𝑚

Pr 𝐵2 𝐵3⋯𝐵𝑘 𝐵𝑘+1 ⋯𝐵𝑚
.

■ For the numerator, we have

Pr 𝐵1𝐵2 𝐵3⋯𝐵𝑘 𝐵𝑘+1 ⋯𝐵𝑚 ≤ Pr 𝐵1 | 𝐵𝑘+1 ⋯𝐵𝑚

= Pr 𝐵1 ≤ 𝑝 .

Since 𝐵1 is mutually independent of 𝐵𝑘+1, … , 𝐵𝑚



■ For the denominator, 

Pr 𝐵2 𝐵3⋯𝐵𝑘 𝐵𝑘+1 ⋯𝐵𝑚 = 1 − Pr 𝐵2 ∪⋯∪ 𝐵𝑘 𝐵𝑘+1 ⋯𝐵𝑚

≥ 1 − ෍

2≤𝑖≤𝑘

Pr 𝐵𝑖 | 𝐵𝑘+1 ⋯𝐵𝑚

≥ 1 − 2𝑝 𝑘 − 1 ≥
1

2
,

since  2𝑝 𝑘 − 1 ≤ 2𝑝𝑑 ≤ 1/2 .

Union bound

Induction hypothesis

Instead of applying union bound directly, 

this lemma applies 

when the events are properly conditioned.

It suffices to show that, for any subset of 𝑚 events of 𝐴1, 𝐴2, … , 𝐴𝑛, 

denoted 𝐵1, 𝐵2, … , 𝐵𝑚, we always have

Pr 𝐵1 𝐵2 𝐵3⋯𝐵𝑚 ≤ 2𝑝.



■ Then, we obtain

Pr 𝐵1 𝐵2 𝐵3⋯𝐵𝑚 =
Pr 𝐵1𝐵2 𝐵3⋯𝐵𝑘 𝐵𝑘+1 ⋯𝐵𝑚

Pr 𝐵2 𝐵3⋯𝐵𝑘 𝐵𝑘+1 ⋯𝐵𝑚
.

≤
𝑝

1/2
= 2𝑝 .

It suffices to show that, for any subset of 𝑚 events of 𝐴1, 𝐴2, … , 𝐴𝑛, 

denoted 𝐵1, 𝐵2, … , 𝐵𝑚, we always have

Pr 𝐵1 𝐵2 𝐵3⋯𝐵𝑚 ≤ 2𝑝.



Proof of the Asymmetric LLL



Theorem 19.2.

Let 𝐺 = (𝑉, 𝐸) be a dependency graph of events 𝐴1, 𝐴2, … , 𝐴𝑛. 

Suppose that there exists real numbers 𝑥1, 𝑥2, … , 𝑥𝑛 with 0 ≤ 𝑥𝑖 < 1

such that, for all 𝑖, 

Pr 𝐴𝑖 ≤ 𝑥𝑖 ⋅ ෑ

𝑗: 𝑖,𝑗 ∈𝐸

1 − 𝑥𝑗 .

Then 

Pr 𝐴1 𝐴2⋯𝐴𝑛 ≥ ෑ

1≤𝑖≤𝑛

1 − 𝑥𝑖 .

In particular, with positive probability, no event 𝐴𝑖 holds.



■ The proof is analogous to the symmetric version of the lemma.

■ We will use induction to prove that, 

for any subset of events of 𝑨𝟏, 𝑨𝟐, … , 𝑨𝒏, say, 𝑩𝟏, 𝑩𝟐, … , 𝑩𝒎, for convenience, 

we always have

𝑷𝒓 𝑩𝟏 𝑩𝟐 𝑩𝟑⋯𝑩𝒎 ≤ 𝒙𝟏 .

Then by (∗∗) we have  

Pr 𝐴1 𝐴2⋯𝐴𝑛 = ෑ
1≤𝑗≤𝑛

1 − Pr 𝐴𝑗 | 𝐴𝑗+1 𝐴𝑗+2⋯𝐴𝑛 ≥ ෑ

1≤𝑖≤𝑛

1 − 𝑥𝑖 .

■ The induction base 𝑚 = 1 follows from the assumption of the lemma.

For 𝑚 ≥ 2, we consider an arbitrary combination of 𝑚 events.



It suffices to show that, 

for any subset of 𝑚 events of 𝐴1, 𝐴2, … , 𝐴𝑛, say, 𝐵1, 𝐵2, … , 𝐵𝑚, we always have

Pr 𝐵1 𝐵2 𝐵3⋯𝐵𝑚 ≤ 𝑥1.

■ W.L.O.G., let 𝐵2, 𝐵3, … , 𝐵𝑘 be events that share dependency with 𝐵1, 

while 𝐵𝑘+1, … , 𝐵𝑚 are mutually independent to 𝐵1.

■ By (∗), we have Pr 𝐵1 𝐵2 𝐵3⋯𝐵𝑚 =
Pr 𝐵1𝐵2 𝐵3⋯𝐵𝑘 𝐵𝑘+1 ⋯𝐵𝑚
Pr 𝐵2 𝐵3⋯𝐵𝑘 𝐵𝑘+1 ⋯𝐵𝑚

.

■ For the numerator, 

Pr 𝐵1𝐵2 𝐵3⋯𝐵𝑘 𝐵𝑘+1 ⋯𝐵𝑚 ≤ Pr 𝐵1 𝐵𝑘+1 ⋯𝐵𝑚 = Pr 𝐵1

≤ 𝑥1 ⋅ ෑ

𝑗: 𝑖,𝑗 ∈𝐸

1 − 𝑥𝑗 ≤ 𝑥1 ⋅ ෑ

2≤𝑗≤𝑘

1 − 𝑥𝑗 .



It suffices to show that, 

for any subset of 𝑚 events of 𝐴1, 𝐴2, … , 𝐴𝑛, say, 𝐵1, 𝐵2, … , 𝐵𝑚, we always have

Pr 𝐵1 𝐵2 𝐵3⋯𝐵𝑚 ≤ 𝑥1.

■ W.L.O.G., let 𝐵2, 𝐵3, … , 𝐵𝑘 be events that share dependency with 𝐵1, 

while 𝐵𝑘+1, … , 𝐵𝑚 are mutually independent to 𝐵1.

■ By (∗), we have Pr 𝐵1 𝐵2 𝐵3⋯𝐵𝑚 =
Pr 𝐵1𝐵2 𝐵3⋯𝐵𝑘 𝐵𝑘+1 ⋯𝐵𝑚
Pr 𝐵2 𝐵3⋯𝐵𝑘 𝐵𝑘+1 ⋯𝐵𝑚

.

■ For the denominator, apply (∗∗) and the induction hypothesis, we obtain

Pr 𝐵2 𝐵3⋯𝐵𝑘 𝐵𝑘+1 ⋯𝐵𝑚 = ෑ

2≤𝑗≤𝑘

Pr ഥ𝐵𝑗 | 𝐵𝑗+1⋯𝐵𝑚 ≥ ෑ

2≤𝑗≤𝑘

1 − 𝑥𝑗 .



It suffices to show that, 

for any subset of 𝑚 events of 𝐴1, 𝐴2, … , 𝐴𝑛, say, 𝐵1, 𝐵2, … , 𝐵𝑚, we always have

Pr 𝐵1 𝐵2 𝐵3⋯𝐵𝑚 ≤ 𝑥1.

■ W.L.O.G., let 𝐵2, 𝐵3, … , 𝐵𝑘 be events that share dependency with 𝐵1, 

while 𝐵𝑘+1, … , 𝐵𝑚 are mutually independent to 𝐵1.

■ By (∗), we have Pr 𝐵1 𝐵2 𝐵3⋯𝐵𝑚 =
Pr 𝐵1𝐵2 𝐵3⋯𝐵𝑘 𝐵𝑘+1 ⋯𝐵𝑚
Pr 𝐵2 𝐵3⋯𝐵𝑘 𝐵𝑘+1 ⋯𝐵𝑚

.

■ Combine the two inequalities. We obtain

Pr 𝐵1 𝐵2 𝐵3⋯𝐵𝑚 =
Pr 𝐵1𝐵2 𝐵3⋯𝐵𝑘 𝐵𝑘+1 ⋯𝐵𝑚

Pr 𝐵2 𝐵3⋯𝐵𝑘 𝐵𝑘+1 ⋯𝐵𝑚
≤

𝑥1 ⋅ ς2≤𝑗≤𝑘 1 − 𝑥𝑗

ς2≤𝑗≤𝑘 1 − 𝑥𝑗
= 𝑥1 .



Some remark

■ In HW3, you will prove that Theorem 19.2 leads to Theorem 19.1.

– This is done as follows.

Set 𝑥𝑖 =
1

𝑑+1
for each event 𝐴𝑖, and apply the inequality that

1

𝑒
≤ 1 −

1

𝑑 + 1

𝑑

.

This can be obtained from the limit formula 𝑒 = lim
𝑑→∞

1 +
1

𝑑

𝑑

and the fact that it converges from the above.


