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The Scenario

m To prove that Pr|N;4;] > 0 for a collection of bad events 4;,

where

- A, . undesirable event #1 0
- A, : undesirable event #2 6’

- ; A; : the event that none of the bad events happen




The Scenario

m To prove that Pr[Nn;A;| > 0 for a collection of bad events 4;

m When A; are mutually independent and
Pr[A;] < 1 for all i, then

Pr[ﬂ_/l—i = HPr[A_l] = H(l—Pr[Ai]) > 0.

- This argument works only when a'
A; satisfy strong independent requirement. 6




m When 4; are not independent, but ); Pr[4;] <1,

we can apply union bound on 4;.
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1—ZPr[Ai] > 0.

However, when );; Pr[4;] = 1, the approach is inconclusive.



The Pros and the Cons

m Method 1 has the exact probability on Pr|N; 4;].
However, it works only when A; are independent.

m Method 2 can be used with dependency.
However, union bound iIs loose and often it becomes inconclusive.

The shared area is counted a number of times
in the union bound.




The Lovasz Local Lemma (LLL)

m The Lovasz Local Lemma provides a possible solution to
the above scenario.

- Roughly speaking, it says that, We need to define
what they mean.

when the events are “mostly independent” and

iIndividually “not too likely to happen”,

then there is a positive probability that none of the events will occur.

A revised union bound that takes the dependency of the events into considerations.



Some Definitions




Mutual Independence

m An event 4 is mutually independent of the events B4, B,, ..., By,

If for any Boolean combination C = {Cy, C5, ..., Ci} Of B{, B,, ..., By,

where C; € {B;,B;} forall 1 <i <k,

we always have
Pr|A|C] = Pr[A] .




Mutual Independence

m Note that, by the definition,
If A i1s mutually independent of the events By, B, ..., B,

then A is mutually independent of any subsets of B;, B, ..., By.

Refer to the jamboard for a sketch of the proof.

Why do we need this definition?




m Note that, it is possible that

An event A is individually independent of the events B¢, B,, ..., By,
but depends on some combination of them.

- For example, suppose that a fair coin is flipped twice, and let
A . both flips are the same.

B; : the i"-flip is a head. Pr[A|B;] = 1/2 = Pr[4].

Then A Is independent of B, and B, separately, but




Dependency Graph of the Events

N (@)
m LetA, A, ..., A, be events. |
‘ 7
- Agra}gh Gb= (V,E)withV = {1,2, ...,n} N
IS Sald to be independent to :
PANG) VAN(1)

a dependency graph for A4, A4,, ..., A,

{4;: () EE}
If foralll<i<n,

A; is mutually independent to { 4; : (i,j) ¢ E }.

Note that, by the definition, dependency graph is not unique.



The Lovasz Local Lemma

(Symmetric version)




The Lovasz Local Lemma

Theorem 19.1 (Erdds-Lovasz 1975).

Let A4, A,, ..., A, be events with Pr[A4;] < p for all i, and
d be the maximum degree of a dependency graph for the events.

If ep(d + 1) < 1, then

Pr[4, 4, A4,]|>0.




A slightly weaker version

m The following (weaker) version is sometimes more handy to apply.

Theorem (Erdds-Lovasz 1975).

Let A, A,, ..., A,, be events with Pr[4;] < p for all i, and
let d be the maximum degree of a dependency graph.

If 4pd < 1, then Pr[4; 4, ---4,] > 0.

In fact, this was the original version of LLL when it first appeared.




Ex].

Disjoint Cycles




m Adirected graph is said to be k-regular,
If the in-deqgree and the out-degree of every vertex are both k.

Theorem 19.4 (Erdds 1963a).

Every finite k-regular directed graph has a collection of |k/(3In k)]
vertex disjoint cycles.
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Theorem 19.4 (Erdds 1963a).

Every finite k-regular directed graph has a collection of |k/(3In k)]
vertex disjoint cycles.

m Consider a uniform random coloring of the vertices using
r:=|k/(3Ink)| colors.

/ 0
To prove the lemma, we will show that, ‘<

there exists a coloring such that, v

every vertex has all the r colors in its out-neighbors.

Why does this suffice?




Theorem 19.4 (Erdos 1963a).

Every finite k-regular directed graph has a collection of |k/(31nk)]
vertex disjoint cycles.

m Consider a random coloring of the vertices using r := |k/(31In k)| colors.

We will show that, there exists a coloring such that,
every vertex has all the r colors In its out-neighbors.

Continue to follow O
the same color. oO—~>
%0/ -7
. @
We will eventually | v O
obtain a cycle. All the r colors appear at least once

in the out-neighbor set of v




Theorem 19.4 (Erdds 1963a).

Every finite k-regular directed graph has a collection of |k/(31n k)]
vertex disjoint cycles.

m Consider a random coloring of the vertices using r .= |k/(3In k)] colors.

We will show that, there exists a coloring such that,
every vertex has all the r colors In its out-neighbors.

/.
/ Apply the same argument for all colors.

of the theorem.

v
i/ [ This will imply the conclusion




m Consider a random coloring of the vertices using r := |k/(31n k)| colors.

m Foranyv eV, let A, denote the event that
not every color is used in the out-neighbors of v.

- Forany 1 <i<r,let 4;, denote the event that

the it" color is not used in the out-neighbors of v.

- Then we obtain

1\° k 1
Pr|A,] = Pr 1U Aiy| =1 1—; < r-er < VATV
<L<Tr




m Consider a random coloring of the vertices using r := |k/(31n k)| colors.

m Foranyv eV, let A, denote the event that

not every color is used in the out-neighbors of v. The events of the
k in-neighbors of
- Then we obtain this vertex will share

dependency with A,

k k 1
: — = < . < :
’"(1 r>_rer_3k21nk g
@

- Let N(v) denote the out-neighbors of v.

/ O
Then, 4, is mutually independent to QQ

Pr[4,] <

v O
{A,: Nwu)nNw)=0}.

So, A4, shares dependency with at most k? events.
A, . not every color is used




m Consider a random coloring of the vertices using r = |k/(31n k)|
colors.

m Foranyv eV, let A, denote the event that
not every color is used in the out-neighbors of v.

1\k K 1
- Then Pr[A,] Sr-(l—;) < r-er < T

- The maximum degree of dependency d < k?.

- Since .. 1
3k?2Ink

(k*+1) < 1, Vk=3,

Pr[n 4,] > 0 by the Lovasz Local Lemma.

- Hence, there must exist such a good coloring for k > 3.

- For k < 2, r = 0 and the statement of the lemma holds trivially.




Some remarks

m If you have read the textbook,
the proof of the Theorem 19.4 in the textbook is incorrect.

- The reason is that, it sets the event 4, as
“the color of v does not appear in the out-neighbors of v.”

- As a result, it didn’t consider the event that not all the r colors are used.

- When this happens, we don’t get r disjoint cycles, and
what it has truly proved is that,

“there exists a cycle in the graph.”




The Lovasz Local Lemma

--- The Asymmetric Version

When the universal bounds of the events are not good enough.




Theorem 19.2.

Let ¢ = (V,E) be a dependency graph of events 44, 4,, ..., A,,.

Suppose that there exists real numbers x4, x5, ..., x, With 0 < x; < 1
such that, for all i,

Pr[4;] < «x;- 1_[ (1—xj).

J:(Lj))EE

Then

Pr[AlAz"‘An] 2 l_[(l—xl)
1<isn

In particular, with positive probability, no A; occurs.




EXx2.

2-Colorable Families




2-Colorable Families

In Lecture 2, we use simple union bound to show that

when the size of a k-uniform family is no more than 2*~1, it is 2-colorable.

We use the Lovasz Local Lemma to prove a stronger statement, which
takes the structure of the family into consideration.

It says that, when the dependency of the members is bounded within 2%~3,
the family is 2-colorable.

Theorem 19.5 (Erdds-Lovasz 1975).

If every member of a k-uniform family intersects at most 2%~3 other members,
then the family is 2-colorable.




Theorem 19.5 (Erdds-Lovasz 1975).

If every member of a k-uniform family F = {§,, S,, ..., S;;} intersects at most

2k=3 other members, then the family is 2-colorable.

Proof.

m Let X be the ground set. Consider a random 2-coloring on X and let A; be
the event that S; Is monochromatic.

- We have Pr[4;] = 2-2715il = 217k,

- Any 4; is mutually independentto { 4;: S, nS; = @ }.
So the maximum degree of dependency d < 273,

m Since 4pd = 2° < 1, the LLL guarantees that Pr| 4; 4,4, | > 0.




For non-uniform families, we have the following theorem.

Theorem 19.6 (Beck 1980).

Let F = {S,,S,, ..., S,,,} be a family of sets, each of which has at least k > 2 elements.
Suppose that for each element v in the ground set,

=S|
1 1
—_— . _|S|+1 < —
E (1 k> 2 S 5

SeEF:veS

Then F I1s 2-colorable.

Consider a random coloring, and
let A; be the event that S; iIs monochromatic.

Include an edge for 4;, 4; in the dependency graph if and only if §; n'S; # @,

—|S;l
and define x; := (1 —%) . 2715+ for all i.




Theorem 19.6 (Beck 1980).

Let F ={S;,S,, ...,S,,,} be a family of sets, each of which has at least k > 2 elements.

1 1

—|S]
Suppose that for each element v, Y ccr.pes (1 — E) 27151 < =

Then F is 2-colorable.

Consider a random coloring, and let A; be the event that S; iIs monochromatic.
Include an edge for A;, A; in the dependency graph if and only if 5; nS; # 0,

=[S
and define x; == (1 —%) . 271Sd+1 for all ;.

To apply the local lemma, we need to show that

X; - 1_[ (1—xj)2Pr[Al-], Vi<i<m.
J:(L,j)EE




Theorem 19.6 (Beck 1980).

Let F = {5, 5,, ...,S,,} be a family of sets, each of which has at least k > 2 points.

1 1

: =S|
Suppose that for each point v, Y ccr.pes (1 _E) 271SHL < =

Then F I1s 2-colorable.

—|Sil
Define x; = (1 —%) . 2715i+1 for all i .

m We have O=x; <1
j:(i,j)EE VES; JWES;
1 |Sil
Interprete Xi as probabilities of > x; - 1 — 2 X; > X 1 ——
some other independent events. 11 , k
_ _ VES; JVES
Refer to jamboard for details.
— 2-ISil+1 — PF[Ai] _ by the assumption of the theorem

by the definition of x;




Can we actually construct the object ?




Some remark

m The Lovasz Local Lemma, and the probabilistic method we introduced,
alms to prove the existence of an object satisfying a set of constraints.

- A natural question is that,

can we actually compute such an object efficiently?

- When the conditions in the Lovasz Local Lemma are met,
the answer is yes!

x(A)
1-x(A4)

Such an object can be constructed in expected 0O (Z 4 ) time.

We will talk about this in lecture #15 (as supplementary content).



Proof of Theorem 19.1

(Symmetric LLL, weaker version)




Proof of the LLL (weaker version)

m We will prove the theorem under a slightly stronger condition, i.e., 4pd < 1.

Theorem (Erdds-Lovasz 1975).

Let A, A,, ..., A,, be events with Pr[4;] < p for all i, and
let d be the maximum degree of their dependence.

If 4pd < 1, then Pr|A; 4; -+ A,] > 0.

m In HW3, you will use asymmetric LLL to prove the stronger version of
symmetric LLL with ep(d + 1) < 1.




Tools to Use

m We will use the following two identities for conditional probability.

pr[AB | C]
Pr[B | C] °

- Pr[A|BC] =

- Pr[ABC] = Pr|[A | BC] - Pr[B | C] - Pr|C] .

They follow directly from the definition of conditional probability.




Tools to Use

m In general,

_ Pr|ABB; - B; | Bj11Bj12 B | vi<j<m

Pr[A| BB, B, ] = <
" Pr[ BB, Bj | Bj41Bj12 " Bm |

and

Pr[A,4, A, ] = 1_[ Pr| A; | Aj 41442+ Am |

1<jsm

(**)

Refer to the jamboard for the details.




Theorem (Erdds-Lovasz 1975).

Let A, A,, ..., A, be events with Pr[4;] < p for all i, and let d be the maximum
degree of their dependence. If 4pd < 1, then Pr[4; 4, ---4,] > 0.

Proof.

m Fix a dependency graph with maximum degree d.

m We will prove that, for any subset of events of 4A,,4,, ..., A,
denoted B4, B,, ..., B,,, for convenience,

we always have

Pr[B;, | B, Bs- By ] < 2p.




m We will prove that, for any subset of m events of 4,4, ..., A,
denoted B4, B,, ..., B,,, for convenience,

we always have

Pr[B, | B, Bs- B, ] < 2p.

m If this holds, then by (x*), we have

Pr{ A Ay A | = | | Pl ) ) B A A ]

1<js<n

B 1_[ (1=Pr[4 [ 41424y ]) 2 1=2p)" >0.

1<jsn




It suffices to show that, for any subset of m events of 44, A4,, ..., A,,,
denoted B4, B,, ..., B,,,, we always have

Pr[ By | By Bs B < 2p.
m Prove by induction on m.
- The base case m = 1 Is trivial.

- Form = 2, assume without loss of generality that,
B, and By, ..., B,, are mutually independent.

m i.e., B, share dependency only with B,, Bs, ..., By.

Hence, k—1<d.




It suffices to show that, for any subset of m events of 44,4,, ..., A,,
denoted B4, B,, ..., B,,,, we always have

Pr( B, | B, Bs By | < 2p.

- Form = 2, assume without loss of generality that,
B, and By, ..., B,,, are mutually independent. Hence. k—1<d .

m l.e., B; share dependency only with B,, Bs, ..., By.

- By (*), we have

_—— — Pr| BiB, B;--By | B ... B
Pr[BllBZBS'”Bm] _ [ 122 ~3 k| k+1 m]
Pr| B, B; :** By, | Bi.q1 " B, ]

Consider the numerator and the denominator separately.




m Assume that B; i1s mutually independent to By .1, ..., Byy,.

By (%), we have

m |

.- B
Pr[B; B3+ By | Bx41 *** Bl

Pr[ BB, By -+ By | Bea1 -
Pr[BllBZB3Bm]= [ 122 23 kl k+1

m For the numerator, we have

Pr[BiB; B3 By | Bx41 By | < Pr[By | Byyy -+ By

Since B, is mutually independent of By, 4, ..., B,




It suffices to show that, for any subset of m events of 44, A4,, ..., A,,,
denoted B4, B,, ..., B,,,, we always have

Pr( B, | B, Bs By | < 2p.

m For the denominator,

Pr[B; B; By | Bi1 ** Bl = 1 = Pr[ B, U U By | Biyy Byl

Union bound > 1-— z Pr[B; | By+1 *** By |
2<isk

Induction hypothesis > 1-2p(k—-1) = >

_ Instead of applying union bound directly,
since 2p(k—1) < 2pd < 1/2. this lemma applies
when the events are properly conditioned.




It suffices to show that, for any subset of m events of 44, A4,, ..., A,,,
denoted B4, B,, ..., B,,,, we always have

Pr( B, | B, Bs By | < 2p.

m [hen, we obtain

S Pr[ B;B, B;--- By | B ++ B,
Pr[Bl|BzB3-~Bm]= [ 122 P3 k| k+1 _m]
Pr[B, B; - By | Brss - By

p
< ——— =2p.
= 12 P




Proof of the Asymmetric LLL




Theorem 19.2.

Let ¢ = (V,E) be a dependency graph of events 44, 4,, ..., A,,.

Suppose that there exists real numbers x;, x5, ..., x, With 0 < x; < 1
such that, for all i,
Pr[4;] < x; - 1_[ (1—xj) .

J:(L.j))EE

Then

Pr[AlAz"‘An] 2 l_[(l—xl)
1<isn

In particular, with positive probability, no event A; holds.




m The proof is analogous to the symmetric version of the lemma.
m We will use induction to prove that,

for any subset of events of 44, 4,, ..., A, say, B4, B,, ..., B,;, for convenience,
we always have

Pr[B,|B; B3+ B,] < x;.

Then by (x*) we have

Pr[AlAZ---An] — 1_[ (1_PF[A]|A]+1A]+2ATLJ) = n(l—xi).

m The induction base m = 1 follows from the assumption of the lemma.

For m > 2, we consider an arbitrary combination of m events.




It suffices to show that,
for any subset of m events of A4, A4, ..., A,,, say, By, B,, ..., B,,,, we always have

Pr[B, |B; Bs- By ] < x;.

m W.LO.G, letB,,Bs, ..., By be events that share dependency with By,
while By, 4, ..., B, are mutually independent to B;.

_ PI‘[ Ble B3 Bk | Bk+1 Bm]
pr[ B; B3 - By | Bit1 *** B

m By (x), we have Pr[ B, | B, B; - By, ]

m For the numerator,

Pr[B;B; B3 By | By+1 **Bm 1 < Pr[ By | Byyq By 1 = Pr[ By ]

< xq- 1_[ (1-x) < xl-l_[(l—xj).

Jj:(i,j)EE 2<j<k




It suffices to show that,
for any subset of m events of A4, A4, ..., A,,, say, By, B,, ..., B,,,, we always have

Pr[B, |B; Bs- By ] < x;.

m WL.O.G,, let B,, Bs, ..., B, be events that share dependency with By,
while By 4, ..., B;,, are mutually independent to B;.

. B,B, B By | Bxay - B
m By (+), we have Pr[B; | B, B; By | = Prir[;_zzB_;’mBk"] |BRI:1---B "Jl].
m

m For the denominator, apply (x*) and the induction hypothesis, we obtain

Pr[B, Bs By | Byy1 = Bl = 1_[ Pr|B; | Bjy1Bm | = 1_[ (1-x) .



It suffices to show that,
for any subset of m events of A4, A4, ..., A,,, say, By, B,, ..., B,,,, we always have

Pr[B, |B; Bs- By ] < x;.

m WL.O.G,, let B,, Bs, ..., B, be events that share dependency with By,
while By 4, ..., B;,, are mutually independent to B;.

. B,B, B By | Bxay - B
m By (+), we have Pr[B; | B, B; By | = PFJF[E_ZZB_;’MBR"] |BRI:1---B "Jl].
m

m Combine the two inequalities. We obtain

_ Pr[Ble B3“‘Bk |Bk+1 "'Bm] < X1 .HZSjSk(l_xj)

Pr[B; | B, Bs "By, ] = .
1| 273 i Pr[Bng"'Bk|Bk+1 Bm] HZSjSk(l_xj)

=x1.



Some remark

m In HW3, you will prove that Theorem 19.2 leads to Theorem 19.1.

- This I1s done as follows.

Set x; = ﬁ for each event A;, and apply the inequality that

d
This can be obtained from the limit formula e = lim (1 + %)

d— oo

and the fact that it converges from the above.




