Combinatorial Mathematics

Mong-Jen Kao (高孟駿)

Monday 18:30 – 21:20

Outline

- The Lovász Local Lemma
 - Symmetric & Asymmetric versions
- Ex 1. Disjoint Cycles
- Ex 2. 2-Colorable Families

The Scenario

■ To prove that $\Pr[\bigcap_i \overline{A_i}] > 0$ for a collection of <u>bad events</u> A_i , where

- A₁: undesirable event #1
- A₂: undesirable event #2

. . .

 $-\bigcap_{i}\overline{A_{i}}$: the event that none of the bad events happen

The Scenario

- To prove that $\Pr[\bigcap_i \overline{A_i}] > 0$ for a collection of bad events A_i
- When A_i are <u>mutually independent</u> and $Pr[A_i] < 1$ for all i, then

$$\Pr\left[\bigcap_{i} \overline{A_{i}}\right] = \prod_{i} \Pr[\overline{A_{i}}] = \prod_{i} (1 - \Pr[A_{i}]) > 0.$$

This argument works only when
 A_i satisfy strong independent requirement.

■ When A_i are not independent, but $\sum_i \Pr[A_i] < 1$, we can apply *union bound* on A_i .

$$\Pr\left[\bigcup_{i} A_{i}\right] \leq \sum_{i} \Pr[A_{i}], \quad \text{and} \quad$$

$$\Pr\left[\bigcap_{i} \overline{A_{i}}\right] = \Pr\left[\bigcup_{i} A_{i}\right] = 1 - \Pr\left[\bigcup_{i} A_{i}\right]$$

$$\geq 1 - \sum_{i} \Pr[A_{i}] > 0.$$

However, when $\sum_{i} \Pr[A_i] \ge 1$, the approach is inconclusive.

The Pros and the Cons

- Method 1 has the exact probability on $\Pr[\bigcap_i \overline{A_i}]$. However, it works only when A_i are independent.
- Method 2 can be used with dependency.
 However, union bound is loose and often it becomes inconclusive.

The shared area is counted a number of times in the union bound.

The Lovász Local Lemma (LLL)

- The Lovász Local Lemma provides a possible solution to the above scenario.
 - Roughly speaking, it says that,

We need to define what they mean.

when the events are "<u>mostly independent</u>" and <u>individually "not too likely to happen"</u>,

then there is a positive probability that *none of the events will occur*.

A revised union bound that takes the dependency of the events into considerations.

Some Definitions

Mutual Independence

■ An event A is <u>mutually independent</u> of the events $B_1, B_2, ..., B_k$,

if for any Boolean combination
$$C = \{C_1, C_2, ..., C_k\}$$
 of $B_1, B_2, ..., B_k$, where $C_i \in \{B_i, \overline{B_i}\}$ for all $1 \le i \le k$,

we always have

$$Pr[A|C] = Pr[A]$$
.

Mutual Independence

Note that, by the definition, if A is mutually independent of the events $B_1, B_2, ..., B_k$, then A is mutually independent of **any subsets of** $B_1, B_2, ..., B_k$.

Refer to the jamboard for a sketch of the proof.

Note that, it is possible that

An event A is <u>individually independent</u> of the events $B_1, B_2, ..., B_k$, but <u>depends on some combination of them</u>.

- For example, suppose that a fair coin is flipped twice, and let

A: both flips are the same.

 B_i : the i^{th} -flip is a head.

$$Pr[A | B_i] = 1/2 = Pr[A].$$

Then A is independent of B_1 and B_2 separately, but

$$Pr[A \mid B_1B_2] = 1 \neq Pr[A].$$

Dependency Graph of the Events

- Let $A_1, A_2, ..., A_n$ be events.
 - A graph G = (V, E) with $V = \{1, 2, ..., n\}$ is said to be

a <u>dependency graph</u> for $A_1, A_2, ..., A_n$

if for all
$$1 \le i \le n$$
,

 A_i is mutually independent to $\{A_j : (i,j) \notin E\}$.

Note that, by the definition, dependency graph is not unique.

The Lovász Local Lemma

(Symmetric version)

The Lovász Local Lemma

Theorem 19.1 (Erdös-Lovász 1975).

Let $A_1, A_2, ..., A_n$ be events with $\Pr[A_i] \leq p$ for all i, and d be the maximum degree of a dependency graph for the events.

If
$$ep(d+1) \leq 1$$
, then

$$\Pr[\overline{A_1} \, \overline{A_2} \, \cdots \, \overline{A_n}] > 0$$
.

A slightly weaker version

■ The following (weaker) version is sometimes more handy to apply.

Theorem (Erdös-Lovász 1975).

Let $A_1, A_2, ..., A_n$ be events with $Pr[A_i] \le p$ for all i, and let d be the maximum degree of a dependency graph.

If
$$4pd \leq 1$$
, then $\Pr[\overline{A_1} \overline{A_2} \cdots \overline{A_n}] > 0$.

Ex1.

Disjoint Cycles

■ A directed graph is said to be k-regular, if the in-degree and the out-degree of every vertex are both k.

Theorem 19.4 (Erdös 1963a).

Every finite k-regular directed graph has a collection of $\lfloor k/(3 \ln k) \rfloor$ vertex disjoint cycles.

Theorem 19.4 (Erdös 1963a).

Every finite k-regular directed graph has a collection of $\lfloor k/(3 \ln k) \rfloor$ vertex disjoint cycles.

Consider a <u>uniform random coloring</u> of the vertices using $r := \lfloor k/(3 \ln k) \rfloor$ colors.

To prove the lemma, we will show that, there exists a coloring such that,

every vertex has all the r colors in its out-neighbors.

Theorem 19.4 (Erdös 1963a).

Every finite k-regular directed graph has a collection of $\lfloor k/(3 \ln k) \rfloor$ vertex disjoint cycles.

Consider a random coloring of the vertices using $r := \lfloor k/(3 \ln k) \rfloor$ colors. We will show that, there exists a coloring such that, <u>every vertex</u> has <u>all the r colors</u> in its <u>out-neighbors</u>.

Theorem 19.4 (Erdös 1963a).

Every finite k-regular directed graph has a collection of $\lfloor k/(3 \ln k) \rfloor$ vertex disjoint cycles.

Consider a random coloring of the vertices using $r := \lfloor k/(3 \ln k) \rfloor$ colors. We will show that, there exists a coloring such that, <u>every vertex</u> has <u>all the r colors</u> in its <u>out-neighbors</u>.

Apply the same argument for all colors.

This will imply the conclusion of the theorem.

- Consider a random coloring of the vertices using $r := \lfloor k/(3 \ln k) \rfloor$ colors.
- For any $v \in V$, let A_v denote the event that not every color is used in the out-neighbors of v.
 - For any $1 \le i \le r$, let $A_{i,v}$ denote the event that the i^{th} color is not used in the out-neighbors of v.
 - Then we obtain

$$\Pr[A_v] = \Pr\left[\bigcup_{1 \le i \le r} A_{i,v}\right] \le r \cdot \left(1 - \frac{1}{r}\right)^k \le r \cdot e^{-\frac{k}{r}} \le \frac{1}{3k^2 \ln k}.$$

- Consider a random coloring of the vertices using $r := \lfloor k/(3 \ln k) \rfloor$ colors.
- For any $v \in V$, let A_v denote the event that not every color is used in the out-neighbors of v.
 - Then we obtain

$$\Pr[A_v] \leq r \cdot \left(1 - \frac{1}{r}\right)^k \leq r \cdot e^{-\frac{k}{r}} \leq \frac{1}{3k^2 \ln k}.$$

- Let N(v) denote the out-neighbors of v.

Then, A_{v} is mutually independent to

$$\{A_u: N(u) \cap N(v) = \emptyset\}.$$

So, A_v shares dependency with at most k^2 events.

The events of the k in-neighbors of this vertex will share dependency with A_v

 A_v : not every color is used

- Consider a random coloring of the vertices using $r := \lfloor k/(3 \ln k) \rfloor$ colors.
- For any $v \in V$, let A_v denote the event that not every color is used in the out-neighbors of v.

- Then
$$\Pr[A_v] \le r \cdot \left(1 - \frac{1}{r}\right)^k \le r \cdot e^{-\frac{k}{r}} \le \frac{1}{3k^2 \ln k}$$
.

- The maximum degree of dependency $d \leq k^2$.
- Since $e \cdot \frac{1}{3k^2 \ln k} \cdot (k^2 + 1) \le 1$, $\forall k \ge 3$,

 $\Pr[\cap \overline{A_v}] > 0$ by the Lovász Local Lemma.

- Hence, there must exist such a good coloring for $k \ge 3$.
- For $k \le 2$, r = 0 and the statement of the lemma holds trivially.

Some remarks

- If you have read the textbook, the proof of the Theorem 19.4 in the textbook is <u>incorrect</u>.
 - The reason is that, it sets the event A_v as "the color of v does not appear in the out-neighbors of v."
 - As a result, it didn't consider the event that not all the r colors are used.
 - When this happens, we don't get r disjoint cycles, and what it has truly proved is that,

"there exists a cycle in the graph."

The Lovász Local Lemma

--- The Asymmetric Version

When the universal bounds of the events are not good enough.

Theorem 19.2.

Let G = (V, E) be a dependency graph of events $A_1, A_2, ..., A_n$.

Suppose that there exists real numbers $x_1, x_2, ..., x_n$ with $0 \le x_i < 1$ such that, for all i,

$$\Pr[A_i] \leq x_i \cdot \prod_{j:(i,j)\in E} (1-x_j).$$

Then

$$\Pr\left[\overline{A_1}\,\overline{A_2}\,\cdots\overline{A_n}\,\right] \geq \prod_{1\leq i\leq n} (1-x_i).$$

In particular, with positive probability, no A_i occurs.

Ex2.

2-Colorable Families

2-Colorable Families

- In Lecture 2, we use simple union bound to show that when the size of a k-uniform family is no more than 2^{k-1} , it is 2-colorable.
- We use the Lovász Local Lemma to prove a stronger statement, which takes the structure of the family into consideration.

It says that, when the dependency of the members is bounded within 2^{k-3} , the family is 2-colorable.

Theorem 19.5 (Erdös-Lovász 1975).

If every member of a k-uniform family intersects at most 2^{k-3} other members, then the family is 2-colorable.

Theorem 19.5 (Erdös-Lovász 1975).

If every member of a k-uniform family $F = \{S_1, S_2, ..., S_m\}$ intersects at most 2^{k-3} other members, then the family is 2-colorable.

Proof.

- Let X be the ground set. Consider a random 2-coloring on X and let A_i be the event that S_i is monochromatic.
 - We have $Pr[A_i] = 2 \cdot 2^{-|S_i|} = 2^{1-k}$.
 - Any A_i is mutually independent to $\{A_j : S_i \cap S_j = \emptyset\}$. So the maximum degree of dependency $d \le 2^{k-3}$.
- Since $4pd = 2^0 \le 1$, the LLL guarantees that $\Pr\left[\overline{A_1}\,\overline{A_2}\,\cdots\,\overline{A_n}\,\right] > 0$.

■ For non-uniform families, we have the following theorem.

Theorem 19.6 (Beck 1980).

Let $F = \{S_1, S_2, ..., S_m\}$ be a family of sets, each of which has at least $k \ge 2$ elements. Suppose that for each element v in the ground set,

$$\sum_{S \in F: n \in S} \left(1 - \frac{1}{k} \right)^{-|S|} \cdot 2^{-|S|+1} \le \frac{1}{k} .$$

Then *F* is 2-colorable.

Consider a random coloring, and let A_i be the event that S_i is monochromatic. Include an edge for A_i, A_j in the dependency graph if and only if $S_i \cap S_j \neq \emptyset$, and define $x_i \coloneqq \left(1 - \frac{1}{k}\right)^{-|S_i|} \cdot 2^{-|S_i|+1}$ for all i.

Theorem 19.6 (Beck 1980).

Let $F = \{S_1, S_2, ..., S_m\}$ be a family of sets, each of which has at least $k \ge 2$ elements.

Suppose that for each element
$$v$$
, $\sum_{S \in F: v \in S} \left(1 - \frac{1}{k}\right)^{-|S|} \cdot 2^{-|S|+1} \leq \frac{1}{k}$.

Then *F* is 2-colorable.

- Consider a random coloring, and let A_i be the event that S_i is monochromatic. Include an edge for A_i, A_j in the dependency graph if and only if $S_i \cap S_j \neq \emptyset$, and define $x_i \coloneqq \left(1 \frac{1}{k}\right)^{-|S_i|} \cdot 2^{-|S_i|+1}$ for all i.
- To apply the local lemma, we need to show that

$$x_i \cdot \prod_{j:(i,j)\in E} (1-x_j) \ge \Pr[A_i], \quad \forall 1 \le i \le m.$$

Theorem 19.6 (Beck 1980).

Let $F = \{S_1, S_2, ..., S_m\}$ be a family of sets, each of which has at least $k \ge 2$ points.

Suppose that for each point v, $\sum_{S \in F: v \in S} \left(1 - \frac{1}{k}\right)^{-|S|} \cdot 2^{-|S|+1} \le \frac{1}{k}$.

Then *F* is 2-colorable.

Define $x_i \coloneqq \left(1 - \frac{1}{k}\right)^{-|S_i|} \cdot 2^{-|S_i|+1}$ for all i.

We have

$$0 \le x_i < 1$$

$$x_i \cdot \prod_{j:(i,j)\in E} (1-x_j) \geq x_i \cdot \prod_{v\in S_i} \prod_{j:v\in S_j} (1-x_j)$$

Interprete x_i as probabilities of some other independent events.

Refer to jamboard for details.

$$\geq x_i \cdot \prod_{v \in S_i} \left(1 - \sum_{j:v \in S_j} x_j\right) \geq x_i \cdot \left(1 - \frac{1}{k}\right)^{|S_i|}$$

$$= 2^{-|S_i|+1} = \Pr[A_i]$$
.

by the assumption of the theorem

by the definition of x_i

Can we actually construct the object?

Some remark

- The Lovász Local Lemma, and the probabilistic method we introduced, aims to prove the existence of an object satisfying a set of constraints.
 - A natural question is that,
 can we actually compute such an object efficiently?
 - When the conditions in the Lovász Local Lemma are met, the answer is yes!
 - Such an object can be constructed in expected $O\left(\sum_{A} \frac{x(A)}{1-x(A)}\right)$ time.
 - We will talk about this in lecture #15 (as supplementary content).

Proof of Theorem 19.1

(Symmetric LLL, weaker version)

Proof of the LLL (weaker version)

■ We will prove the theorem under a slightly stronger condition, i.e., $4pd \le 1$.

Theorem (Erdös-Lovász 1975).

Let $A_1, A_2, ..., A_n$ be events with $\Pr[A_i] \leq p$ for all i, and let d be the maximum degree of their dependence.

If
$$4pd \leq 1$$
, then $\Pr[\overline{A_1} \ \overline{A_2} \cdots \overline{A_n}] > 0$.

■ In HW3, you will use asymmetric LLL to prove the stronger version of symmetric LLL with $ep(d + 1) \le 1$.

Tools to Use

■ We will use the following two identities for conditional probability.

-
$$Pr[A \mid BC] = \frac{Pr[AB \mid C]}{Pr[B \mid C]}$$
.

-
$$Pr[ABC] = Pr[A \mid BC] \cdot Pr[B \mid C] \cdot Pr[C]$$
.

Tools to Use

■ In general,

$$\Pr[A \mid B_{1}B_{2} \cdots B_{m}] = \frac{\Pr[AB_{1}B_{2} \cdots B_{j} \mid B_{j+1}B_{j+2} \cdots B_{m}]}{\Pr[B_{1}B_{2} \cdots B_{j} \mid B_{j+1}B_{j+2} \cdots B_{m}]} \quad \forall 1 \leq j \leq m,$$

and

$$\Pr[A_1 A_2 \cdots A_m] = \prod_{1 \le j \le m} \Pr[A_j \mid A_{j+1} A_{j+2} \cdots A_m]$$

(**)

(*)

Theorem (Erdös-Lovász 1975).

Let $A_1, A_2, ..., A_n$ be events with $\Pr[A_i] \leq p$ for all i, and let d be the maximum degree of their dependence. If $\mathbf{4pd} \leq 1$, then $\Pr[\overline{A_1} \ \overline{A_2} \cdots \overline{A_n}] > 0$.

Proof.

- Fix a dependency graph with maximum degree d.
- We will prove that, for *any subset of events* of $A_1, A_2, ..., A_n$, denoted $B_1, B_2, ..., B_m$ for convenience,

we always have

$$\Pr[B_1 \mid \overline{B_2} \, \overline{B_3} \cdots \overline{B_m}] \le 2p.$$

We will prove that, for *any subset of m events* of $A_1, A_2, ..., A_n$, denoted $B_1, B_2, ..., B_m$ for convenience,

we always have

$$\Pr[B_1 \mid \overline{B_2} \, \overline{B_3} \cdots \overline{B_m}] \le 2p.$$

■ If this holds, then by (**), we have

$$\Pr\left[\overline{A_1}\,\overline{A_2}\,\cdots\overline{A_n}\,\right] = \prod_{1\leq j\leq n} \Pr\left[\overline{A_j}\,|\,\overline{A_{j+1}}\,\overline{A_{j+2}}\,\cdots\overline{A_n}\,\right]$$

$$= \prod_{1\leq j\leq n} \left(1 - \Pr\left[A_j\,|\,\overline{A_{j+1}}\,\overline{A_{j+2}}\,\cdots\overline{A_n}\,\right]\right) \geq (1 - 2p)^n > 0.$$

$$\Pr[B_1 \mid \overline{B_2} \, \overline{B_3} \cdots \overline{B_m}] \le 2p.$$

- \blacksquare Prove by induction on m.
 - The base case m = 1 is trivial.
 - For $m \ge 2$, assume without loss of generality that, B_1 and B_{k+1}, \dots, B_m are mutually independent.
 - i.e., B_1 share dependency only with $B_2, B_3, ..., B_k$.

$$\Pr[B_1 \mid \overline{B_2} \, \overline{B_3} \cdots \overline{B_m}] \le 2p.$$

- For $m \ge 2$, assume without loss of generality that, B_1 and B_{k+1}, \dots, B_m are mutually independent. Hence, $k-1 \le d$.
 - i.e., B_1 share dependency only with $B_2, B_3, ..., B_k$.
- By (*), we have

$$\Pr[B_1 \mid \overline{B_2} \, \overline{B_3} \cdots \overline{B_m}] = \frac{\Pr[B_1 \overline{B_2} \, \overline{B_3} \cdots \overline{B_k} \mid \overline{B_{k+1}} \cdots \overline{B_m}]}{\Pr[\overline{B_2} \, \overline{B_3} \cdots \overline{B_k} \mid \overline{B_{k+1}} \cdots \overline{B_m}]}$$

Consider the numerator and the denominator separately.

Assume that B_1 is mutually independent to $B_{k+1}, ..., B_m$.

By (*), we have

$$\Pr[B_1 \mid \overline{B_2} \, \overline{B_3} \cdots \overline{B_m}] = \frac{\Pr[B_1 \overline{B_2} \, \overline{B_3} \cdots \overline{B_k} \mid \overline{B_{k+1}} \cdots \overline{B_m}]}{\Pr[\overline{B_2} \, \overline{B_3} \cdots \overline{B_k} \mid \overline{B_{k+1}} \cdots \overline{B_m}]}.$$

For the numerator, we have

$$\Pr[B_1 \overline{B_2} \overline{B_3} \cdots \overline{B_k} \mid \overline{B_{k+1}} \cdots \overline{B_m}] \le \Pr[B_1 \mid \overline{B_{k+1}} \cdots \overline{B_m}]$$

$$= \Pr[B_1] \le p.$$

Since B_1 is mutually independent of $B_{k+1}, ..., B_m$

$$\Pr[B_1 \mid \overline{B_2} \, \overline{B_3} \cdots \overline{B_m}] \le 2p.$$

For the denominator,

$$\Pr[\overline{B_2} \, \overline{B_3} \, \cdots \, \overline{B_k} \, \big| \, \overline{B_{k+1}} \, \cdots \, \overline{B_m}] = 1 - \Pr[B_2 \cup \cdots \cup B_k \, \big| \, \overline{B_{k+1}} \, \cdots \, \overline{B_m}]$$

Union bound
$$\geq 1 - \sum_{2 \leq i \leq k} \Pr[B_i \mid \overline{B_{k+1}} \cdots \overline{B_m}]$$

Induction hypothesis
$$\geq 1 - 2p(k-1) \geq \frac{1}{2}$$
,

since
$$2p(k-1) \le 2pd \le 1/2$$
.

Instead of applying union bound directly, this lemma applies when the events are properly conditioned.

$$\Pr[B_1 \mid \overline{B_2} \, \overline{B_3} \cdots \overline{B_m}] \le 2p.$$

Then, we obtain

$$\Pr[B_1 \mid \overline{B_2} \, \overline{B_3} \cdots \overline{B_m}] = \frac{\Pr[B_1 \overline{B_2} \, \overline{B_3} \cdots \overline{B_k} \mid \overline{B_{k+1}} \cdots \overline{B_m}]}{\Pr[\overline{B_2} \, \overline{B_3} \cdots \overline{B_k} \mid \overline{B_{k+1}} \cdots \overline{B_m}]} .$$

$$\leq \frac{p}{1/2} = 2p.$$

Proof of the Asymmetric LLL

Theorem 19.2.

Let G = (V, E) be a dependency graph of events $A_1, A_2, ..., A_n$.

Suppose that there exists real numbers $x_1, x_2, ..., x_n$ with $0 \le x_i < 1$ such that, for all i,

$$\Pr[A_i] \leq x_i \cdot \prod_{j:(i,j)\in E} (1-x_j).$$

Then

$$\Pr\left[\overline{A_1}\,\overline{A_2}\,\cdots\overline{A_n}\,\right] \geq \prod_{1\leq i\leq n} (1-x_i).$$

In particular, with positive probability, no event A_i holds.

- The proof is analogous to the symmetric version of the lemma.
- We will use induction to prove that,

for any subset of events of $A_1, A_2, ..., A_n$, say, $B_1, B_2, ..., B_m$, for convenience, we always have

$$Pr[B_1 \mid \overline{B_2} \, \overline{B_3} \cdots \overline{B_m}] \leq x_1$$
.

Then by (**) we have

$$\Pr\left[\overline{A_1}\,\overline{A_2}\,\cdots\overline{A_n}\,\right] = \prod_{1\leq j\leq n} \left(1 - \Pr\left[A_j\,|\,\overline{A_{j+1}}\,\overline{A_{j+2}}\,\cdots\overline{A_n}\right]\right) \geq \prod_{1\leq i\leq n} (1 - x_i).$$

The induction base m = 1 follows from the assumption of the lemma. For $m \ge 2$, we consider an arbitrary combination of m events. It suffices to show that, for any subset of m events of $A_1, A_2, ..., A_n$, say, $B_1, B_2, ..., B_m$, we always have $\Pr[B_1 \mid \overline{B_2} \, \overline{B_3} \, \cdots \, \overline{B_m}] \le x_1.$

- W.L.O.G., let $B_2, B_3, ..., B_k$ be events that share dependency with B_1 , while $B_{k+1}, ..., B_m$ are mutually independent to B_1 .
- By (*), we have $\Pr[B_1 \mid \overline{B_2} \, \overline{B_3} \cdots \overline{B_m}] = \frac{\Pr[B_1 B_2 \, B_3 \cdots B_k \mid B_{k+1} \cdots B_m]}{\Pr[\overline{B_2} \, \overline{B_3} \cdots \overline{B_k} \mid \overline{B_{k+1}} \cdots \overline{B_m}]}$.
- For the numerator,

$$\Pr[B_1\overline{B_2}\ \overline{B_3}\cdots\overline{B_k}\ \big|\ \overline{B_{k+1}}\ \cdots\overline{B_m}\] \ \leq \ \Pr[B_1\ \big|\ \overline{B_{k+1}}\ \cdots\overline{B_m}\] \ = \ \Pr[B_1\]$$

$$\leq \ x_1\cdot\prod_{j:(i,j)\in E} (1-x_j) \ \leq \ x_1\cdot\prod_{2\leq j\leq k} (1-x_j) \ .$$

It suffices to show that, for any subset of m events of $A_1, A_2, ..., A_n$, say, $B_1, B_2, ..., B_m$, we always have $\Pr[\ B_1 \ | \ \overline{B_2} \ \overline{B_3} \cdots \overline{B_m} \] \le x_1.$

- W.L.O.G., let $B_2, B_3, ..., B_k$ be events that share dependency with B_1 , while $B_{k+1}, ..., B_m$ are mutually independent to B_1 .
- By (*), we have $\Pr[B_1 \mid \overline{B_2} \, \overline{B_3} \cdots \overline{B_m}] = \frac{\Pr[B_1 B_2 \, B_3 \cdots B_k \mid B_{k+1} \cdots B_m]}{\Pr[\overline{B_2} \, \overline{B_3} \cdots \overline{B_k} \mid \overline{B_{k+1}} \cdots \overline{B_m}]}$.
- For the denominator, apply (**) and the induction hypothesis, we obtain

$$\Pr[\overline{B_2}\,\overline{B_3}\,\cdots\overline{B_k}\,\big|\,\overline{B_{k+1}}\,\cdots\overline{B_m}] = \prod_{2\leq j\leq k} \Pr[\,\overline{B_j}\,|\,\overline{B_{j+1}}\,\cdots\overline{B_m}\,] \geq \prod_{2\leq j\leq k} (1-x_j) \;.$$

It suffices to show that, for any subset of m events of $A_1, A_2, ..., A_n$, say, $B_1, B_2, ..., B_m$, we always have $\Pr[\ B_1 \ \big| \ \overline{B_2} \ \overline{B_3} \cdots \overline{B_m} \] \le x_1.$

- W.L.O.G., let $B_2, B_3, ..., B_k$ be events that share dependency with B_1 , while $B_{k+1}, ..., B_m$ are mutually independent to B_1 .
- By (*), we have $\Pr[B_1 \mid \overline{B_2} \, \overline{B_3} \cdots \overline{B_m}] = \frac{\Pr[B_1 B_2 \, B_3 \cdots B_k \mid B_{k+1} \cdots B_m]}{\Pr[\overline{B_2} \, \overline{B_3} \cdots \overline{B_k} \mid \overline{B_{k+1}} \cdots \overline{B_m}]}$.
- Combine the two inequalities. We obtain

$$\Pr[B_1 \mid \overline{B_2} \, \overline{B_3} \cdots \overline{B_m}] = \frac{\Pr[B_1 \overline{B_2} \, \overline{B_3} \cdots \overline{B_k} \mid \overline{B_{k+1}} \cdots \overline{B_m}]}{\Pr[\overline{B_2} \, \overline{B_3} \cdots \overline{B_k} \mid \overline{B_{k+1}} \cdots \overline{B_m}]} \le \frac{x_1 \cdot \prod_{2 \le j \le k} (1 - x_j)}{\prod_{2 \le j \le k} (1 - x_j)} = x_1.$$

Some remark

- In HW3, you will prove that Theorem 19.2 leads to Theorem 19.1.
 - This is done as follows.

Set $x_i = \frac{1}{d+1}$ for each event A_i , and apply the inequality that

$$\frac{1}{e} \le \left(1 - \frac{1}{d+1}\right)^d.$$

This can be obtained from the limit formula $e = \lim_{d \to \infty} \left(1 + \frac{1}{d}\right)^a$ and the fact that it converges from the above.