Combinatorial Mathematics

Mong-Jen Kao (高孟駿)

Monday 18:30 – 21:20

Outline

- Probabilistic Counting The Framework
 - Ex1. Tournaments
 - Ex2. Universal Sets
 - Ex4. 2-Colorable Families
 - Ex3. Covering by Bipartite Cliques
 - Some Useful Tools & Bounds

Probabilistic Method

The Framework (in this lecture)

To prove that an object with certain properties exists.

2-Coloring for Set Families

■ Let \mathcal{F} be a family of subsets for some finite ground set N, and let

$$g: N \longrightarrow \{R, B\}$$

be a coloring of the elements in N into <u>red</u> or <u>blue</u>.

- A set $A \in \mathcal{F}$ is *monochromatic*, if g(x) = g(y) for all $x, y \in A$, i.e., all the elements in A are colored the same.
- g is said to be a <u>valid 2-coloring</u> for F, if **none** of the sets in \mathcal{F} is monochromatic.

(Scenario 1) Proving that an *Object of Interest* Exists

- \blacksquare Suppose that *A* is a set of objects we are interested in.
- To prove that $A \neq \emptyset$, i.e., there exists an $x \in A$,
 - One way is to define a probability distribution over some $B \supseteq A$ and show that

$$\Pr_{x \leftarrow B}[x \in A] > 0,$$

i.e., if we sample an element x from B, then with nonzero probability, the element x is in A.

(Scenario 2) Proving that a Good Object Exists

- Suppose that A is a set of objects we are interested in and $f:A \to \mathbb{R}$ is a weight function of the objects in A.
- To prove that there exists $x \in A$ with $f(x) \ge t$ for some given t,
 - One way is to define a probability distribution over A and show that

$$E_A[f] \geq t$$
,

i.e., the expectation of f is at least t.

Ex1. Tournaments

Ex1. Tournaments

It has no self-loop.

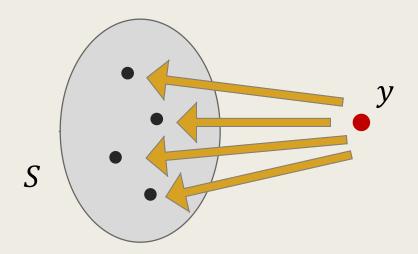
- A tournament is a directed graph G = (V, E) such that
 - $(v, v) \notin E$, for all $v \in V$, and

There is exactly one directed edge between every pair of vertices.

- For any $u, v \in V$, exactly one of $(u, v) \in E$ or $(v, u) \in E$ holds.
- Intuitively, a tournament graph represents the result of the match between all pair of players.

Ex1. Tournaments

- We say that a tournament G = (V, E) has the **property** P_k , if for every subset $S \subseteq V$ of k players, there exists a player $y \notin S$ that beats all the players in S, i.e., $(y, v) \in E$ for all $v \in S$.
 - P_k implies P_ℓ for all $\ell \leq k$.



What does this mean?

Theorem 1 (Erdös 1963a).

For any $k \ge 2$, if $n \ge k^2 \cdot 2^{k+1}$, then there is a tournament of n players that has the property P_k .

- Consider a random tournament of the n players, where
 the <u>direction of the edges</u> are <u>determined by a fair coin</u>.
- For any subset S of k players, let A_S denote the event that there exists no $y \notin S$ that beats all $v \in S$.

■ For any subset *S* of *k* players, let A_S denote the event that there exists no $y \notin S$ that beats all $v \in S$.

- For any $y \notin S$,

$$\Pr[y \text{ beats all of } v \in S] = 2^{-k}$$
.

Pr[
$$y$$
 does not beat all of $v \in S$] = 1 – 2^{- k} .

- There are n - k other vertices that can beat all $v \in S$. Hence

$$\Pr[A_S] = \left(1 - 2^{-k}\right)^{n-k}.$$

■ For any subset S of k players, let A_S denote the event that there exists no $y \notin S$ that beats all $v \in S$.

-
$$\Pr[A_S] = (1 - 2^{-k})^{n-k}$$
.

By the union bound,

Pr[Some *S* is not dominated by some player]

$$= \Pr[\bigcup A_S] \le \sum_{S,|S|=k} \Pr[A_S] = \binom{n}{k} \cdot (1 - 2^{-k})^{n-k}$$

$$< \frac{n^k}{k!} \cdot e^{-\frac{n-k}{2^k}} \le n^k \cdot e^{-\frac{n}{2^k}},$$

which is less than 1 when $n \ge k^2 \cdot 2^{k+1}$.

Refer to the jamboard for details.

■ For any subset S of k players, let A_S denote the event that there exists no $y \notin S$ that beats all $v \in S$.

-
$$\Pr[A_S] = (1 - 2^{-k})^{n-k}$$
.

By the union bound,

Pr[Some *S* is not dominated by some player] < 1 when $n > k^2 \cdot 2^{k+1}$.

■ So, when $n \ge k^2 \cdot 2^{k+1}$,

Pr[All S is dominated by some player] > 0.

- Let a be a 0-1 string of length n.
 - For any subset $S = \{i_1, i_2, ..., i_k\}$ of k coordinates, define the **projection of** a **onto** S to be

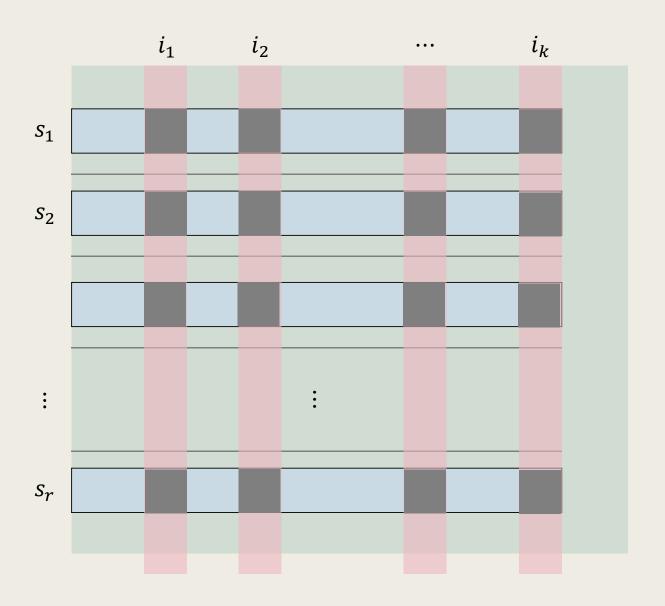
$$a \mid_{S} \coloneqq (a_{i_1}, a_{i_2}, \dots, a_{i_k}),$$

i.e., the *substring* formed by the coordinates specified in *S*.

- Let A be a set of 0-1 strings of length n.
- We say that A is (n, k)-universal, if for any subset $S = \{i_1, i_2, ..., i_k\}$ of k coordinates, the projection of k onto k.

$$A \mid_{S} \coloneqq \left\{ a \mid_{S} : a \in A \right\}$$

always contains all possible 2^k combinations.



For an arbitrary choice of k coordinates $i_1, i_2, ..., i_k$,

the projection of the strings onto the k coordinates contains all 2^k possible strings.

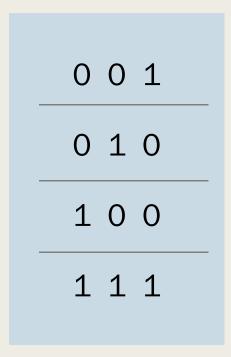
0 0 0 0

1 1 1 1

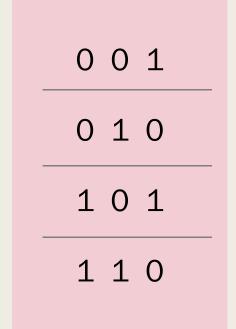
are both (4,1)-universal.

0 1 0 1

1 0 1 0



is (3,2)-universal, but



is not.

We are interested in knowing, how many strings does it suffice to be universal.

- When the entries of the strings are <u>determined randomly</u>, we can write down the probability that the generated strings are not (n, k)-universal.
 - By requiring the probability to be < 1, we get a simple bound.

Theorem 2 (Kleitman-Spencer 1973).

If
$$\binom{n}{k} \cdot 2^k \cdot \left(1 - 2^{-k}\right)^r < 1$$
,

then there is an (n, k)-universal set of size r.

- Let A be a set of r random 0-1 strings of length n, where each entry takes values 0 or 1 independently with probability 1/2.
- \blacksquare Fix a set S of k coordinates.

For any vector $v \in \{0,1\}^k$,

$$\Pr\left[v \notin A \mid_{S}\right] = \prod_{a \in A} \Pr\left[v \neq a \mid_{S}\right] = \prod_{a \in A} \left(1 - 2^{-k}\right) = \left(1 - 2^{-k}\right)^{r}.$$

■ Fix a set *S* of *k* coordinates. For any vector $v \in \{0,1\}^k$,

$$\Pr\left[v \notin A \mid_{S}\right] = \prod_{a \in A} \Pr\left[v \neq a \mid_{S}\right] = \prod_{a \in A} \left(1 - 2^{-k}\right) = \left(1 - 2^{-k}\right)^{r}.$$

There are $\binom{n}{k} \cdot 2^k$ ways to choose such a pair (S, v). By union bound, the probability that A is not (n, k)-universal is at most

$$\sum_{Sv} \Pr\left[v \notin A \mid_{S}\right] = \binom{n}{k} \cdot 2^{k} \cdot \left(1 - 2^{-k}\right)^{r}$$

- When $\binom{n}{k} \cdot 2^k \cdot (1 - 2^{-k})^r < 1$, $\Pr[A \text{ is } (n, k) - \text{universal }] > 0$.

2-Colorable Families

2-Colorable Families

■ Let \mathcal{F} be a family of subsets for some finite ground set N, and let

$$g: N \longrightarrow \{R, B\}$$

be a coloring of the elements in N into <u>red</u> or <u>blue</u>.

- A set $A \in \mathcal{F}$ is *monochromatic*, if g(x) = g(y) for all $x, y \in A$, i.e., all the elements in A are colored the same.
- g is said to be a <u>valid 2-coloring</u> for F, if **none** of the sets in \mathcal{F} is monochromatic.

■ A set family \mathcal{F} is k-uniform if |A| = k for all $A \in \mathcal{F}$.

Theorem 4 (Erdös 1963b).

Every k-uniform family with fewer than 2^{k-1} members (subsets) is 2-colorable.

- Suppose that we color the elements independent with a fair 0-1 coin.
 - For any $A \in F$, $Pr[A \text{ is monochromatic}] = 2 \cdot 2^{-k} = 2^{1-k}$.
 - When $|F| < 2^{k-1}$, the expected number of monochromatic sets is $|F| \cdot 2^{1-k} < 1$.

Theorem 4 (Erdös 1963b).

Every k-uniform family with fewer than 2^{k-1} members (subsets) is 2-colorable.

- Suppose that we color the elements independent with a fair 0-1 coin.
 - When $|F| < 2^{k-1}$, the expected number of monochromatic sets is $|F| \cdot 2^{1-k} < 1$.
 - There must be a coloring whose value is at most the expectation.
 Since the number of monochromatic sets is integral,
 it must be 0.

Theorem 5 (Erdös 1964a).

If k is sufficiently large, then there exists a k-uniform family F with $|F| \le k^2 2^k$ that is not 2-colorable.

- Let $r = \lfloor k^2/2 \rfloor$ and $N = \{1, 2, ..., r\}$ be the ground set to consider.
- Consider a *random family* $F = \{A_1, A_2, ..., A_b\}$ generated as follows.
 - Let A_i be a set picked uniformly and independently from all size-k subsets of N,

i.e., for any
$$A \subseteq N$$
, $\Pr[A_i = A] = \binom{r}{k}^{-1}$.

Imagine that we do this before generating the set family.

- *Fix a coloring*, say, χ , on *N* that uses a reds and r a blues.
 - For any $1 \le i \le b$,

 $Pr[A_i \text{ is monochromatic}] = Pr[A_i \text{ is red}] + Pr[A_i \text{ is blue}]$

$$= \frac{\binom{a}{k} + \binom{r-a}{k}}{\binom{r}{k}} \geq 2 \cdot \frac{\binom{r/2}{k}}{\binom{r}{k}} := p.$$

 $\binom{a}{k}$ ways to form a red set, each is chosen with probability $1/\binom{r}{k}$.

By Jensen's inequality

Refer to the jamboard for more details.

- Fix a coloring, say, χ , on N that uses α reds and $r \alpha$ blues.
 - For any $1 \le i \le b$, $Pr[A_i \text{ is monochromatic}] = Pr[A_i \text{ is red}] + Pr[A_i \text{ is blue}]$

$$= \frac{\binom{a}{k} + \binom{r-a}{k}}{\binom{r}{k}} \ge 2 \cdot \frac{\binom{r/2}{k}}{\binom{r}{k}} := p.$$

- By the asymptotic formula for binomial coefficient,

$$p \approx e^{-1} \cdot 2^{1-k} .$$

- Since A_i are independently chosen,

$$\Pr[\chi \text{ is legal for } F] \leq \prod_{1 \leq i \leq b} (1-p) \leq (1-p)^b.$$

- Since A_i are independently chosen,

$$\Pr[\chi \text{ is legal for } F] \leq (1-p)^b$$
.

- There are 2^r possible colorings on N.

By the union bound,

Pr[at least one coloring is legal for *F*]

$$\leq 2^r \cdot (1-p)^b < e^{r \cdot \log 2 - pb},$$

which is no more than 1 when

$$b = \frac{r \cdot \log 2}{p} = (1 + o(1)) \cdot k^2 \cdot 2^{k-2} \cdot e \log 2 \le k^2 \cdot 2^k.$$

- Since A_i are independently chosen, $\Pr[\chi \text{ is legal for } F] \leq (1-p)^b.$

- There are 2^r possible colorings on N.

By the union bound,

Pr[at least one coloring is legal for F] $< e^{r \cdot \log 2 - pb}$ which is no more than 1 when $b \le k^2 \cdot 2^k$.

- Hence, $\Pr[\text{ no coloring is legal for } F] > 0$ when $b \le k^2 \cdot 2^k$, and there must exist one set family that has no valid 2-coloring.

2-Colorability of Uniform Set Families

- Let B(k) be the smallest size of k-uniform families that are **not** 2-colorable.
 - By Theorem 4 and Theorem 5, we know that

$$2^{k-1} \le B(k) \le k^2 \cdot 2^k.$$

- For the exact values, so far, only B(2) = 3 and B(3) = 7 are known.

Determine the exact value for B(k) ---

A somewhat interesting question of unknown importance.

Theorem 6.

Let *F* be a set family, with $|A| \ge 2$ for all $A \in F$. If $A \cap B \ne \emptyset$ implies that $|A \cap B| \ge 2$ for any $A, B \in F$, then *F* is 2-colorable.

- The given condition is strong enough for a greedy algorithm to work.
 - Let $N = \{x_1, x_2, ..., x_n\}$ be the ground set.
 - The algorithm proceeds as follows.
 - For i = 1, 2, ..., n, do
 - If coloring x_i red does not make any set monochromatic, then color x_i red.
 - Otherwise, color x_i blue.

Theorem 6.

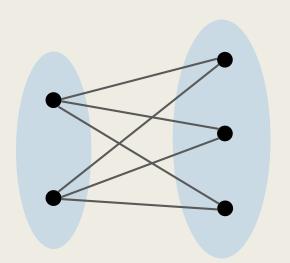
Let *F* be a set family, with $|A| \ge 2$ for all $A \in F$. If $A \cap B \ne \emptyset$ implies that $|A \cap B| \ge 2$ for any $A, B \in F$, then *F* is 2-colorable.

- For the correctness of the algorithm, observe the following.
 - If x_i cannot be colored red, then there exists some set $A \subseteq \{x_1, x_2, ..., x_i\}$ with $x_i \in A$ and $A \setminus \{x_i\}$ are all red.
 - If x_i cannot be colored blue, then there exists some $B \subseteq \{x_1, x_2, ..., x_i\}$ with $x_i \in B$ and $B \setminus \{x_i\}$ are all blue.
 - If both red and blue are not possible,
 then x_i ∈ A ∩ B ≠ Ø,
 which implies that |A ∩ B| ≥ 2, a contradiction.

Covering by Bipartite Cliques

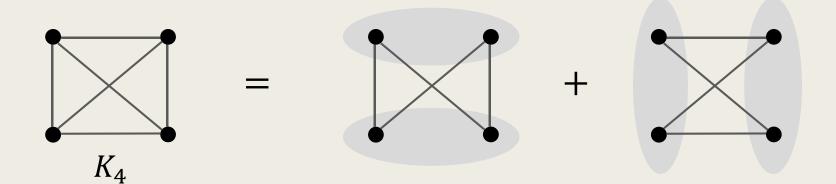
Bipartite Cliques

- A bipartite clique, or, biclique, is a complete bipartite graph.
 - It is a bipartite graph.
 - There is an edge between every pair of vertices from the two partite sets.



Covering by Bipartite Cliques

- Let G = (V, E) be a graph.
- A *biclique covering* of G is a set of subgraphs $H_1, H_2, ..., H_t$ of G such that
 - H_i is a bipartite clique, for all $1 \le i \le t$.
 - Each edge in E belongs to H_i for some $1 \le i \le t$.



Covering by Bipartite Cliques

■ The **weight** of a biclique covering $H_1, H_2, ..., H_t$ is defined to be

$$\sum_{1 \le i \le t} |V(H_i)|,$$

i.e., the total number of vertices used in the cover.

- Let bc(G) denote the minimum weight of biclique coverings of G.

Theorem 3.

If $n = 2^m$, then $bc(K_n) = n \cdot \log_2 n$.

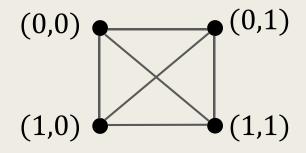
- Let's prove the two directions "≤" and "≥" separately.
- For "≤", we will construct a covering of weight $nm = n \cdot \log_2 n$.
 - This shows that, the minimum weight of K_n , $bc(K_n)$, is **at most** $n \cdot \log_2 n$.
- Label the vertices K_n with a coordinate $\{0,1\}^m$.

$$(0,0)$$
 $(1,0)$
 $(0,1)$
 $(1,1)$

- Label the vertices of K_n with a coordinate $\{0,1\}^m$.
- For any $1 \le i \le m$, define H_i as follows.

$$-V(H_i)=V(K_n).$$

Then, each edge belongs to some H_i (why?), and the total weight is $nm = n \log_2 n$.



You will prove in HW#2 that H_i is a biclique.

Theorem 3.

If $n = 2^m$, then $bc(K_n) = n \cdot \log_2 n$.

- To prove the other direction, i.e., $bc(K_n) \ge n \cdot \log_2 n$, we use a probabilistic argument.
 - No matter how we organize the bicliques, the total weight is always at least $n \log_2 n$.

This is the harder part.

How can we prove a statement like this?

Is it because we're not smart enough to do this, or there is no such way at all??

- To prove the other direction, i.e., $bc(K_n) \ge n$ we use a probabilistic argument.
- Derive *properties*for any biclique covering.

Let $(A_i \times B_i)_{1 \le i \le t}$ be an arbitrary biclique covering for K_n , and let m_v be the number of bicliques that contains v.

By the double-counting principle on the total weight, we have ___

$$\sum_{1 \le i \le t} (|A_i| + |B_i|) = \sum_{1 \le v \le n} m_v .$$

It suffices to show that $\sum_{1 \le v \le n}^{r} m_v \ge n \cdot \log_2 n$.

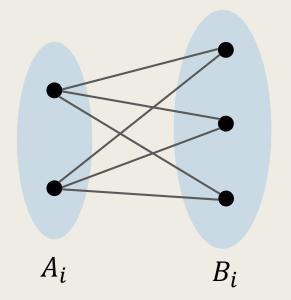
It suffices to show that
$$\sum_{1 \le v \le n} m_v \ge n \cdot \log_2 n$$
.

Note that, this inequality to prove says that,

the average number of bicliques that contain each vertex is at least $\log_2 n$.

It suffices to show that
$$\sum_{1 \le v \le n} m_v \ge n \cdot \log_2 n$$
.

- Toss a fair 0-1 coin for each biclique $A_i \times B_i$ in any order.
 - If 0 pops up, remove the *vertex set* A_i from K_n .
 - If 1 pops up, remove B_i from K_n .



Remove one of A_i , B_i from K_n .

Let a fair coin make the decision.

- Toss a fair 0-1 coin for each biclique $A_i \times B_i$ in any order.
 - If 0 pops up, remove the *vertex set* A_i from K_n .
 - If 1 pops up, remove B_i from K_n .
- Claim: When the process ends, at most one vertex will remain in K_n .
 - If there are more than two vertices, say, u, v, they are connected by edge (u, v) in K_n and will have gone through the process, since at least one of $(A_i \times B_i)$ covers (u, v).
 - This means that, at most one of them can survive when the coin is tossed.
 - A contradiction.

- Toss a fair 0-1 coin for each $A_i \times B_i$ in any order. If 0 pops up, remove A_i from K_n . Otherwise, remove B_i from K_n .
- Claim: At most one vertex will remain when the above process ends.

- For any $1 \le v \le n$, let X_v be the indicator variable for the event that vertex v survives after the process, and let $X = \sum_{1 \le v \le n} X_v$.
 - By the above claim, $E[X] \le 1$.
 - Moreover, for each vertex v,

 $Pr[v \text{ survives}] = 2^{-m_v}$.

 $X \le 1$ always holds, no matter what the toss outcomes are.

v survives with probability 1/2 for each biclique that contains it.

We have

$$\sum_{1 \le v \le n} 2^{-m_v} = \sum_{1 \le v \le n} \Pr[v \text{ survivies }] = \sum_{1 \le v \le n} E[X_v] = E[X] \le 1.$$

By the arithmetic-geometric mean inequality,

$$\frac{1}{n} \geq \frac{1}{n} \sum_{1 \leq v \leq n} 2^{-m_v} \geq \left(\prod_{1 \leq v \leq n} 2^{-m_v} \right)^{1/n} = 2^{-\frac{1}{n} \cdot \sum_{1 \leq v \leq n} m_v}.$$

This implies that $2^{\frac{1}{n} \cdot \sum_{1 \le v \le n} m_v} \ge n$, and $\sum_{1 \le v \le n} m_v \ge n \cdot \log_2 n$.

Some Useful Tools & Bounds

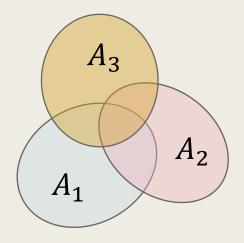
Common tools for upper- / lower- bounding the probabilities.

Some Useful Tools & Bounds

■ Union Bound.

Let $A_1, A_2, ..., A_n$ be events. Then

$$\Pr\left[\bigcup_{1\leq i\leq n}A_i\right] \leq \sum_{1\leq i\leq n}\Pr[A_i].$$



Some Useful Tools & Bounds

■ Two useful inequalities.

- For any $t \neq 0$,

- For any $0 < t < 0.6838 \dots$

$$1-t > e^{-t-t^2}$$

 $1 + t < e^t$.

By Taylor's expansion on e^t .

By Taylor's expansion on ln(1-t). See the <u>jamboard</u> for further details. ■ Stirling's Approximation for n!.

$$n! = \left(\frac{n}{e}\right)^n \cdot \sqrt{2\pi n} \cdot e^{\alpha_n}$$
, where $\frac{1}{12n+1} < \alpha_n < \frac{1}{12n}$.

- The Stirling formula is a very tight approximation for n!.
 - It leads to the following formula for k^{th} factorial.

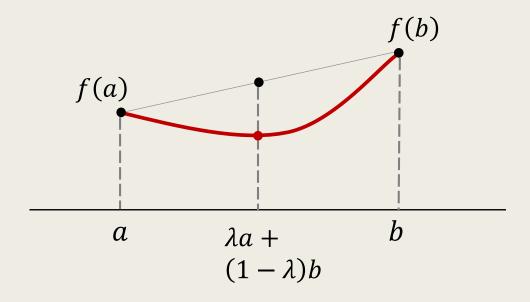
$$(n)_k := n \cdot (n-1) \cdot \dots \cdot (n-k+1)$$

$$= n^k \cdot e^{-\frac{k^2}{2n} - \frac{k^3}{6n^2} + o(1)}, \quad \forall k = o\left(n^{\frac{3}{4}}\right).$$

Convex Function.

A real-valued function f(x) is convex between [a, b], if

$$f(\lambda a + (1 - \lambda)b) \le \lambda \cdot f(a) + (1 - \lambda) \cdot f(b), \quad \forall \ 0 \le \lambda \le 1.$$



The curve always *falls under* the linear function between (a, f(a)) and (b, f(b)).

■ Jensen's Inequality for Convex Functions.

If $\lambda_i \geq 0$, $\sum_{1 \leq i \leq n} \lambda_i = 1$, and f is a real-valued <u>convex function</u>, then

$$f\left(\sum_{1\leq i\leq n}\lambda_i\cdot x_i\right)\leq \sum_{1\leq i\leq n}\lambda_i\cdot f(x_i).$$

- Refer to the jamboard for the proof.
- The Jensen's inequality is a very useful tool for obtaining *bounds* that "behaves linearly" for convex functions.

■ Arithmetic-Geometric Mean Inequality.

For any $a_i \geq 0$, we have

$$\frac{1}{n} \cdot \sum_{1 \le i \le n} a_i \ge \left(\prod_{1 \le i \le n} a_i \right)^{\frac{1}{n}}.$$

- Refer to the jamboard for the proof.
- This is yet another fundamental & useful inequality (for obtaining nontrivial lower-bounds).