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Probabilistic Method

— The Framework (in this lecture)

To prove that an object with certain properties exists.




2-Coloring for Set Families

m Let F be a family of subsets for some finite ground set N, and let
g:N —{R,B}

be a coloring of the elements in N into red or blue.

- Aset A € F is monochromatic, if g(x) = g(y) forall x,y € A,

l.e., all the elements in A are colored the same.

- g is said to be a valid 2-coloring for F,

If none of the sets in F IS monochromatic.




(Scenario 1) Proving that an Object of Interest EXxists

m Suppose that A is a set of objects we are interested in.
m To prove that A + @, I.e., there exists an x € A,

- One way Is to define a probability distribution over some B 2 A
and show that

Pr[xeAd] > 0,

X<B

l.e., If we sample an element x from B,
then with nonzero probabillity, the element x is in A.




(Scenario 2) Proving that a Good Object Exists
m Suppose that A is a set of objects we are interested in and
f +: A — R Is a weight function of the objects in A.
m To prove that there exists x € A with f(x) > t for some given t,

- One way Is to define a probability distribution over A
and show that

Eslf] = ¢,

l.e., the expectation of f Is at least t.




Ex1. Tournaments




Ex1. Tournaments It has no self-loop.

m Atournament is a directed graph ¢ = (V, E) such that

- (v,v) ¢ E,forallveV, and There is exactly one directed edge
between every pair of vertices.

- Foranyu,v eV,
exactly one of (u,v) € E or (v,u) € E holds.

m Intuitively, a tournament graph represents the result of the match
between all pair of players.




Ex1. Tournaments

m We say that a tournament ¢ = (V, E) has the property Py,

If for every subset S € V of k players, there exists a player y € S that
beats all the playersin S, i.e., (y,v) € E for all v € §S.

- P, implies P, for all £ < k.

What does this mean?




Theorem 1 (Erdds 1963a).

Forany k > 2, ifn > k? - 2k+1,

then there is a tournament of n players that has the property P,.

m Consider a random tournament of the n players, where

the direction of the edges are determined by a fair coin.

m For any subset S of k players,
let A; denote the event that there exists no y € S that beats all v € S.




m For any subset S of k players,
let A; denote the event that there exists no y € S that beats all v € S.

- Foranyy ¢S,
Pr[ ybeatsallofve S | =27F.

Pr[ y doesnotbeatallofveS | =1—-27%.

- There are n — k other vertices that can beat all v € S.

Hence

Pridg] = (1—27%)""




m For any subset S of k players,
let A; denote the event that there exists no y € S that beats all v € S.

- PrlAg] = (1-27%)"",

m By the union bound,

Pr| Some S is not dominated by some player |

PriU4g] < Z Pr[Ag] = (Z).(l_z_k)n—k

s|S[=k
nk _n-k n
< —.e 2k < pk.e 2K
k! — '
which is less than 1 when n > k2 - 2k+1, R

ﬁ Refer to the jamboard for details. }




m For any subset S of k players,
let A; denote the event that there exists no y € S that beats all v € S.

- PrlAg] = (1-279)"".

m By the union bound,

Pr[ Some S is not dominated by some player | < 1

when n > k2 - 2k+1,

m So, whenn > k2. 2k+1

Pr|[ All S is dominated by some player| > 0.




Ex2. Universal Sets




Ex 2. Universal Sets

m Let a be a0-1 string of length n.

- For any subset S = {i,, i,, ..., i} } Of k coordinates,

define the projection of a onto S to be

a‘ = (ail,aiz,...,aik),

S

l.e., the substring formed by the coordinates specified in S.




Ex 2. Universal Sets

m Let A be a set of 0-1 strings of length n.

m We say that A is (n, k)-universal, if for any subset S = {iy, iy, ..., ix}

of k coordinates, the projection of 4 onto S,

A|S :={a|5 : aEA}

always contains all possible 2* combinations.




:

For an arbitrary choice of
k coordinates iy, i, ..., iy,

the projection of the strings
onto the k coordinates
contains all 2% possible
strings.



Ex 2. Universal Sets

00O00O

1111

are both (4,1)-universal.

0101

1010




Ex 2. Universal Sets

001 001
010 010
IS (3,2)-universal, but IS not.
100 101
111 110

We are interested in knowing,
how many strings does it suffice to be universal.




Ex 2. Universal Sets

m \When the entries of the strings are determined randomly,

we can write down the probability that

the generated strings are not (n, k)-universal.

- By requiring the probability to be < 1, we get a simple bound.




Theorem 2 (Kleitman-Spencer 1973).

if(7)-2k-(1-27%) <1,

then there Is an (n, k)-universal set of size r.

m Let A be a set of r random 0-1 strings of length n, where each entry
takes values 0 or 1 independently with probability 1/2.

m Fix asetS of k coordinates.

For any vector v € {0,1}*,

Pr[vGEAu = HPr[vrﬁau = 1_[(1—2—k)=(1—2—k)’".

acA acA




m Fix a set S of k coordinates. For any vector v € {0,1}*,

Pr[vesAu = HPr[via‘S = 1_[(1—2—’<):(1—2—’<)r.

a€cA a€EeA

m There are () - 2¥ ways to choose such a pair (S, v).

By union bound, the probability that A4 is not (n, k)-universal

zPr[v$A|S] — (Z).Zk.(l_z—k)r

S,v

IS at most

- When (7)-2%-(1- Z‘R)r < 1, Pr[ Ais (n, k)—universal | > 0.




2-Colorable Families




2-Colorable Families

m Let F be a family of subsets for some finite ground set N, and let
g:N —{R,B}

be a coloring of the elements in N into red or blue.

- Aset A € F is monochromatic, if g(x) = g(y) forall x,y € A,

l.e., all the elements in A are colored the same.

- g is said to be a valid 2-coloring for F,

If none of the sets in F IS monochromatic.




m Asetfamily F is k-uniform if |[A| = k forall A € F.

Theorem 4 (Erdos 1963Db).

Every k-uniform family with fewer than 2¥~1 members (subsets)
IS 2-colorable.

m Suppose that we color the elements independent with a fair 0-1 coin.
- Forany A € F, Pr[ Ais monochromatic] =2-27% = 217k,

- When |F| < 2%°1,
the expected number of monochromatic setsis |F|-217% < 1.




Theorem 4 (Erdds 1963Db).

Every k-uniform family with fewer than 2%~ members (subsets)
IS 2-colorable.

m Suppose that we color the elements independent with a fair O-1 coin.

- When |F| < 2F° 1,
the expected number of monochromatic setsis |F|-217% < 1.

- There must be a coloring whose value Iis at most the expectation.
Since the number of monochromatic sets is integral,
it must be 0.




Theorem 5 (Erdds 1964a).

If k is sufficiently large, then there exists a k-uniform family F
with |F| < k?2* that is not 2-colorable.

m Letr =|k%/2| and N = {1,2, ...,7} be the ground set to consider.

m Consider arandom family F = {4, A,, ..., 4, } generated as follows.

- Let A; be a set picked uniformly and independently from
all size-k subsets of N,

e, forany Ac N, Pri4; = 4] = (7).




Imagine that we do this
before generating the set family.

|

m Fix acoloring, say, y, on N that uses a reds and r — a blues.

- Forany 1 <i < b,

Pr[A; is monochromatic]

RO

Pr|A; is red]| + Pr|A4; is blue]

)

-

N

—

() ways to form a red

set, each i1s chosen with
probability 1/( ;).

(i)

)

By Jensen’s inequality }

Refer to the jamboard for more details.



m Fix a coloring, say, y, on N that uses a reds and r — a blues.

- Forany1<i < b,
Pr|A; is monochromatic] = Pr[A4; is red]| + Pr[A4; is blue]

O+, (D)
O

- By the asymptotic formula for binomial coefficient,

p~el.217k

Refer to the jamboard

_ _ for more detalls.
- Since A; are independently chosen,

Pr[ yislegal for F | < 1_[ (1-p) < (1-p)P.
1<i<b




- Since A4; are independently chosen,
Pr[ yislegalfor F] < (1 —p)”.

- There are 2" possible colorings on N.

By the union bound,
Pr| at least one coloring is legal for F |

< 2T. (1 _ p)b < er-log 2—pb ’
which 1S no more than 1 when

r - log 2
b = pg = (1+0(1)) -k?2-2F2.¢clog2 < k2.2,




- Since A4; are independently chosen,
Pr[ yislegalfor F] < (1 —p)”.

- There are 2" possible colorings on N.

By the union bound,

Pr[ at least one coloring is legal for F] < e"log2-pb

which is no more than 1 when b < k2 -2k

- Hence, Pr| no coloring is legal for F ] > 0 when b < k? - 2%, and

there must exist one set family that has no valid 2-coloring.




2-Colorability of Uniform Set Families

m Let B(k) be the smallest size of k-uniform families that are
not 2-colorable.

- By Theorem 4 and Theorem 5, we know that

2k=1 < B(k) < k? - 2F.

- For the exact values,
so far, only B(2) = 3 and B(3) = 7 are known.

Determine the exact value for B(k) ---
A somewhat interesting question of unknown importance.




Theorem 6.

Let F be a set family, with |[A| > 2forall A€ F. fANB + @
implies that |[An B| = 2 forany A,B € F, then F is 2-colorable.

m The given condition is strong enough for a greedy algorithm to work.
- Let N = {xq,x,, ..., x,,} be the ground set.
- The algorithm proceeds as follows.
m Fori=1,2,..,n,do

- If coloring x; red does not make any set monochromatic,
then color x; red.

Otherwise, color x; blue.




Theorem 6.

Let F be a set family, with [A| = 2 forall A€ F. If An B # @ implies
that |AN B| = 2 forany A,B € F, then F is 2-colorable.

m For the correctness of the algorithm, observe the following.

- If x; cannot be colored red, then there exists some set
AC{x,xy, .., x;}Withx; € Aand A\ {x;} are all red.

- If x; cannot be colored blue, then there exists some
B € {x{,x,,...,x;} With x; € B and B \ {x;} are all blue.

- If both red and blue are not possible,

thenx; e AnNB # 0,
which implies that |A n B| = 2, a contradiction.




Covering by Bipartite Cliques




Bipartite Cliques

m A bipartite cligue, or, biclique, is a complete bipartite graph.

- It is a bipartite graph.

- There Is an edge between every pair of vertices from the two
partite sets.




Covering by Bipartite Cliques

m LetG = (V,E) be agraph.

m Abiclique covering of G is a set of subgraphs H{,H,, ..., H; of G
such that

- H; Is a bipartite clique, forall 1 <i <'t.

- Each edge in E belongs to H; forsome 1 <i <'t.

] - XX




Covering by Bipartite Cliques

m The weight of a biclique covering Hy, H,, ..., H; IS defined to be

> v,
1<ist

l.e., the total number of vertices used in the cover.

- Let bc(G) denote the minimum weight of biclique coverings of G.




Theorem 3.

If n = 2™, then bc(K,,) =n-log,n.

m Let’s prove the two directions “<” and “=" separately.

m For “<”, we will construct a covering of weight nm = n - log, n.

- This shows that,
the minimum weight of K,,, bc(K,,), is at most n - log, n.

m Label the vertices K,, with a coordinate {0,1}™. (0,0) (0,1)

(1,0) (1,1)




m Label the vertices of K,, with a coordinate {0,1}. (0,0) 0,1)

m Forany 1 <i < m, define H; as follows.

(1,0) (1,1)
- V(Hi) =V (Ky).

- Forany u,v € V(K,,),
(u,v) € E(H;) if the i**-coordinates of u and v differ.

You will prove in HW#2 J

m Then, each edge belongs to some H; (why?), that H; is a biclique.

and the total weight is nm = nlog, n.




Theorem 3.

If n = 2™, then bc(K,,) =n-log,n.

m To prove the other direction, i.e., bc(K,,) = n - log, n,

we use a probabilistic argument.
_ o This is the harder part. }
- No matter how we organize the bicliques,

the total weight is always at least nlog, n.

Wweprove a statement like this? J

\

Is it because we're not smart enough to do this,
or there is no such way at all??




p
Derive properties

m To prove the other direction, i.e., bc(K,,) = n| Iorany biclique covering.

we use a probabilistic argument. v

m Let (4; X B;)1<i<; be an arbitrary biclique covering for K,,, and

let m,, be the number of bicliques that contains v.

By the double-counting principle on the total weight,

we have
D (4l +1BD= ) m, .
1<is<t 1<v<n

It suffices to show that z m, =2n-log,n.
1=sv<

n




It suffices to show that z m, =n-log,n .

1<vsn

(N /

m Note that, this inequality to prove says that,

the average number of bicligues that contain each vertex
IS at least log, n.




It suffices to show that z m, =n-log,n .

1<vsn

(N /

m Toss a fair 0-1 coin for each biclique A; X B; in any order.
- If 0 pops up, remove the vertex set A; from K.

- If 1 pops up, remove B; from K.

{ Remove one of 4;, B; from K,,. }
L Let a fair coin make the decision. J

Ai Bi




m Toss a fair 0-1 coin for each bicligue A4; X B; in any order.
- If O pops up, remove the vertex set 4; from K,,.

- If 1 pops up, remove B; from K.

m Claim: When the process ends, at most one vertex will remain in K,,.

- If there are more than two vertices, say, u, v,
they are connected by edge (u, v) in K,, and will have gone
through the process, since at least one of (4; X B;) covers (u, v).

This means that,
at most one of them can survive when the coin Is tossed.

A contradiction.




m Toss a fair 0-1 coin for each A; X B; in any order.
If O pops up, remove A; from K,,. Otherwise, remove B; from K,,.

m Claim: At most one vertex will remain when the above process ends.

m Forany 1 <v <n,
let X,, be the indicator variable for the event that vertex v survives
after the process, and let X = )1 .,<, X,

- By the above claim, E[X] < 1. X < 1 always holds

no matter what the toss outcomes are.
- Moreover, for each vertex v,

. — —m
Pr[ v survives | = 27™v . i v survives with probability 1/2 }

for each biclique that contains it.




m \We have

z 27y = z Pr[ v survivies | = z E[X,] = E[X] < 1.
1sv=sn 1sv=sn

1<sv=n

m By the arithmetic-geometric mean inequality,

1
n n I I

1
This implies that 2n21=»=,r™ > 5 and ¥, ,..m, =>n-log,n .




Some Useful Tools & Bounds

Common tools for upper- / lower- bounding the probabilities.




Some Useful Tools & Bounds

m Union Bound.

Let A4, A,, ..., A,, be events. Then

Pr U A | < Z Pr[A,].
_1SiSTl | 1<i<n




Some Useful Tools & Bounds

m Two useful inequalities.

- Foranyt # 0, By Taylor’s expansion on e'.

1+t<et.

- Forany 0 <t < 0.6838 ...,

1—t > e t-t*

By Taylor’s expansion on In(1 —t).
See the [amboard for further details.




m Stirling’s Approximation for n!.

n \" 1 1
n!=(—) -V2nn - e%n, where <a, <-—.
e 12n + 1

m The Stirling formula is a very tight approximation for n!.

- It leads to the following formula for k" factorial.

n), = n-m-1)----n—k+1)

k? K3 1)
LN SPYC]
= nk.e 2n 6en2 , szo(n

eI
N—




m Convex Function.

A real-valued function f(x) is convex between [a, b], if

fFla+(1=Db) < A-f(@+(1A=21)-f(h), VvO<A<1.

f(b)
I
f(a) ? |
. ' :
I I
I I |
| | |
! ' The curve always falls under
a Aa + b

the linear function between

— Db
= (a,f(a)) and (b, f(b)).




m Jensen’s Inequality for Convex Functions.

If 4, =20, X.<;<n4i =1, and f is a real-valued convex function,

f ZA X ZA FO)

1<i<

then

- Refer to the jamboard for the proof.

m [he Jensen's inequality is a very useful tool for obtaining bounds
that ‘behaves linearly” for convex functions.




m Arithmetic-Geometric Mean Inequality.

For any a; = 0, we have

- Refer to the jamboard for the proof.

m This is yet another fundamental & useful inequality
(for obtaining nontrivial lower-bounds).




