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Probabilistic Method 

– The Framework (in this lecture)

To prove that an object with certain properties exists.



2-Coloring for Set Families

■ Let ℱ be a family of subsets for some finite ground set 𝑁, and let

𝑔 ∶ 𝑁 ⟶ 𝑅,𝐵

be a coloring of the elements in 𝑁 into red or blue.

– A set 𝐴 ∈ ℱ is monochromatic, if  𝑔 𝑥 = 𝑔(𝑦) for all 𝑥, 𝑦 ∈ 𝐴, 

i.e., all the elements in 𝐴 are colored the same.

– 𝑔 is said to be a valid 2-coloring for 𝐹, 

if none of the sets in ℱ is monochromatic.



(Scenario 1) Proving that an Object of Interest Exists

■ Suppose that 𝐴 is a set of objects we are interested in.

■ To prove that 𝐴 ≠ ∅, i.e., there exists an 𝑥 ∈ 𝐴, 

– One way is to define a probability distribution over some 𝐵 ⊇ 𝐴

and show that

Pr
𝑥←𝐵

𝑥 ∈ 𝐴 > 0 ,

i.e., if we sample an element 𝑥 from 𝐵, 

then with nonzero probability, the element 𝑥 is in 𝐴.



(Scenario 2) Proving that a Good Object Exists

■ Suppose that 𝐴 is a set of objects we are interested in and 

𝑓 ∶ 𝐴 ⟶ ℝ is a weight function of the objects in 𝐴.

■ To prove that there exists 𝑥 ∈ 𝐴 with 𝑓 𝑥 ≥ 𝑡 for some given 𝑡,

– One way is to define a probability distribution over 𝐴

and show that

𝐸𝐴 𝑓 ≥ 𝑡 ,

i.e., the expectation of 𝑓 is at least 𝑡.



Ex1. Tournaments



Ex1. Tournaments

■ A tournament is a directed graph 𝐺 = (𝑉, 𝐸) such that 

– 𝑣, 𝑣 ∉ 𝐸, for all 𝑣 ∈ 𝑉,  and

– For any 𝑢, 𝑣 ∈ 𝑉, 

exactly one of 𝑢, 𝑣 ∈ 𝐸 or 𝑣, 𝑢 ∈ 𝐸 holds.

■ Intuitively, a tournament graph represents the result of the match 

between all pair of players.

It has no self-loop.

There is exactly one directed edge 

between every pair of vertices.



Ex1. Tournaments

■ We say that a tournament 𝐺 = (𝑉, 𝐸) has the property 𝑷𝒌, 

if for every subset 𝑆 ⊆ 𝑉 of 𝑘 players, there exists a player 𝑦 ∉ 𝑆 that 

beats all the players in 𝑆, i.e., 𝑦, 𝑣 ∈ 𝐸 for all 𝑣 ∈ 𝑆.

– 𝑃𝑘 implies 𝑃ℓ for all ℓ ≤ 𝑘.

𝑆

𝑦

What does this mean?



Theorem 1 (Erdös 1963a).

For any 𝑘 ≥ 2, if 𝑛 ≥ 𝑘2 ⋅ 2𝑘+1, 

then there is a tournament of 𝑛 players that has the property 𝑃𝑘.

■ Consider a random tournament of the 𝑛 players, where 

the direction of the edges are determined by a fair coin.

■ For any subset 𝑆 of 𝑘 players, 

let 𝐴𝑆 denote the event that there exists no 𝑦 ∉ 𝑆 that beats all 𝑣 ∈ 𝑆.



■ For any subset 𝑆 of 𝑘 players, 

let 𝐴𝑆 denote the event that there exists no 𝑦 ∉ 𝑆 that beats all 𝑣 ∈ 𝑆.

– For any 𝑦 ∉ 𝑆,   

Pr 𝑦 beats all of 𝑣 ∈ 𝑆 = 2−𝑘 .

Pr 𝑦 does not beat all of 𝑣 ∈ 𝑆 = 1 − 2−𝑘 .

– There are 𝑛 − 𝑘 other vertices that can beat all 𝑣 ∈ 𝑆.  

Hence 

Pr 𝐴𝑆 = 1 − 2−𝑘
𝑛−𝑘

.



Let’s come back to the claims later.

■ For any subset 𝑆 of 𝑘 players, 

let 𝐴𝑆 denote the event that there exists no 𝑦 ∉ 𝑆 that beats all 𝑣 ∈ 𝑆.

– Pr 𝐴𝑆 = 1 − 2−𝑘
𝑛−𝑘

.

■ By the union bound,

Pr Some 𝑆 is not dominated by some player

= Pr ⋃𝐴𝑆 ≤ ෍

𝑆, 𝑆 =𝑘

Pr 𝐴𝑆 =
𝑛

𝑘
⋅ 1 − 2−𝑘

𝑛−𝑘

<
𝑛𝑘

𝑘!
⋅ 𝑒

−
𝑛−𝑘

2𝑘 ≤ 𝑛𝑘 ⋅ 𝑒
−
𝑛

2𝑘 ,

which is  less than 1 when 𝑛 ≥ 𝑘2 ⋅ 2𝑘+1.
Refer to the jamboard for details.



■ For any subset 𝑆 of 𝑘 players, 

let 𝐴𝑆 denote the event that there exists no 𝑦 ∉ 𝑆 that beats all 𝑣 ∈ 𝑆.

– Pr 𝐴𝑆 = 1 − 2−𝑘
𝑛−𝑘

.

■ By the union bound,

Pr Some 𝑆 is not dominated by some player < 1

when 𝑛 ≥ 𝑘2 ⋅ 2𝑘+1.

■ So, when 𝑛 ≥ 𝑘2 ⋅ 2𝑘+1,

Pr All 𝑆 is dominated by some player > 0 .



Ex2. Universal Sets



Ex 2. Universal Sets

■ Let 𝑎 be a 0-1 string of length 𝑛.

– For any subset 𝑆 = 𝑖1, 𝑖2, … , 𝑖𝑘 of 𝑘 coordinates, 

define the projection of 𝒂 onto 𝑺 to be

𝑎 ቚ
𝑆
≔ 𝑎𝑖1 , 𝑎𝑖2 , … , 𝑎𝑖𝑘 ,

i.e., the substring formed by the coordinates specified in 𝑆.



Ex 2. Universal Sets

■ Let 𝐴 be a set of 0-1 strings of length 𝑛.

■ We say that 𝑨 is (𝒏, 𝒌)-universal, if for any subset 𝑆 = 𝑖1, 𝑖2, … , 𝑖𝑘

of 𝑘 coordinates, the projection of 𝐴 onto 𝑆,

𝐴 ቚ
𝑆
≔ 𝑎 ቚ

𝑆
∶ 𝑎 ∈ 𝐴

always contains all possible 2𝑘 combinations.



⋯

𝑠1

𝑖1 𝑖2 𝑖𝑘⋯

𝑠2

𝑠𝑟

⋮

For an arbitrary choice of 

𝑘 coordinates 𝑖1, 𝑖2, … , 𝑖𝑘,

the projection of the strings 

onto the 𝑘 coordinates 

contains all 2𝑘 possible 

strings.



Ex 2. Universal Sets

0  0  0  0

1  1  1  1

0  1  0  1

1  0  1  0

are both (4,1)-universal.



Ex 2. Universal Sets

0  0  1

0  1  0

1  0  0

1  1  1

is (3,2)-universal, but                                is not.

0  0  1

0  1  0

1  0  1

1  1  0

We are interested in knowing, 

how many strings does it suffice to be universal.



Ex 2. Universal Sets

■ When the entries of the strings are determined randomly,

we can write down the probability that 

the generated strings are not (𝑛, 𝑘)-universal.

– By requiring the probability to be < 1, we get a simple bound.



Theorem 2 (Kleitman-Spencer 1973).

If 𝑛
𝑘

⋅ 2𝑘 ⋅ 1 − 2−𝑘
𝑟
< 1, 

then there is an (𝑛, 𝑘)-universal set of size 𝑟.

■ Let 𝐴 be a set of 𝑟 random 0-1 strings of length 𝑛, where each entry 

takes values 0 or 1 independently with probability 1/2.

■ Fix a set 𝑆 of 𝑘 coordinates.

For any vector 𝑣 ∈ 0,1 𝑘,

Pr 𝑣 ∉ 𝐴 ቚ
𝑆

= ෑ

𝑎∈𝐴

Pr 𝑣 ≠ 𝑎 ቚ
𝑆

= ෑ

𝑎∈𝐴

1 − 2−𝑘 = 1 − 2−𝑘
𝑟
.



■ Fix a set 𝑆 of 𝑘 coordinates. For any vector 𝑣 ∈ 0,1 𝑘,

Pr 𝑣 ∉ 𝐴 ቚ
𝑆

= ෑ

𝑎∈𝐴

Pr 𝑣 ≠ 𝑎 ቚ
𝑆

= ෑ

𝑎∈𝐴

1 − 2−𝑘 = 1 − 2−𝑘
𝑟
.

■ There are 𝑛
𝑘

⋅ 2𝑘 ways to choose such a pair (𝑆, 𝑣).

By union bound, the probability that 𝐴 is not (𝑛, 𝑘)-universal 

is at most

෍

𝑆,𝑣

Pr 𝑣 ∉ 𝐴 ቚ
𝑆

=
𝑛

𝑘
⋅ 2𝑘 ⋅ 1 − 2−𝑘

𝑟

– When 𝑛
𝑘

⋅ 2𝑘 ⋅ 1 − 2−𝑘
𝑟
< 1,  Pr 𝐴 is 𝑛, 𝑘 −universal > 0.



2-Colorable Families



2-Colorable Families

■ Let ℱ be a family of subsets for some finite ground set 𝑁, and let

𝑔 ∶ 𝑁 ⟶ 𝑅,𝐵

be a coloring of the elements in 𝑁 into red or blue.

– A set 𝐴 ∈ ℱ is monochromatic, if  𝑔 𝑥 = 𝑔(𝑦) for all 𝑥, 𝑦 ∈ 𝐴, 

i.e., all the elements in 𝐴 are colored the same.

– 𝑔 is said to be a valid 2-coloring for 𝐹, 

if none of the sets in ℱ is monochromatic.



■ A set family ℱ is 𝑘-uniform  if 𝐴 = 𝑘 for all 𝐴 ∈ ℱ.

■ Suppose that we color the elements independent with a fair 0-1 coin.

– For any 𝐴 ∈ 𝐹,  Pr 𝐴 is monochromatic = 2 ⋅ 2−𝑘 = 21−𝑘 .

– When 𝐹 < 2𝑘−1, 

the expected number of monochromatic sets is  𝐹 ⋅ 21−𝑘 < 1 .

Theorem 4 (Erdös 1963b).

Every 𝑘-uniform family with fewer than 2𝑘−1 members (subsets) 

is 2-colorable.



■ Suppose that we color the elements independent with a fair 0-1 coin.

– When 𝐹 < 2𝑘−1, 

the expected number of monochromatic sets is  𝐹 ⋅ 21−𝑘 < 1 .

– There must be a coloring whose value is at most the expectation. 

Since the number of monochromatic sets is integral, 

it must be 0.

Theorem 4 (Erdös 1963b).

Every 𝑘-uniform family with fewer than 2𝑘−1 members (subsets) 

is 2-colorable.



Theorem 5 (Erdös 1964a).

If 𝑘 is sufficiently large, then there exists a 𝑘-uniform family 𝐹

with 𝐹 ≤ 𝑘22𝑘 that is not 2-colorable.

■ Let 𝑟 = 𝑘2/2 and 𝑁 = 1,2,… , 𝑟 be the ground set to consider.

■ Consider a random family 𝐹 = 𝐴1, 𝐴2, … , 𝐴𝑏 generated as follows.

– Let 𝐴𝑖 be a set picked uniformly and independently from 

all size-𝑘 subsets of 𝑁, 

i.e., for any 𝐴 ⊆ 𝑁,  Pr 𝐴𝑖 = 𝐴 = 𝑟
𝑘

−1
.



■ Fix a coloring, say, 𝜒, on 𝑁 that uses 𝒂 reds and 𝒓 − 𝒂 blues. 

– For any 1 ≤ 𝑖 ≤ 𝑏, 

Pr 𝐴𝑖 is monochromatic = Pr 𝐴𝑖 is red + Pr 𝐴𝑖 is blue

=

𝑎
𝑘

+ 𝑟−𝑎
𝑘

𝑟
𝑘

≥ 2 ⋅

𝑟/2
𝑘
𝑟
𝑘

≔ 𝑝 .

Refer to the jamboard for more details.

By Jensen’s inequality
𝑎
𝑘

ways to form a red 

set, each is chosen with 

probability 1/ 𝑟
𝑘

.

Imagine that we do this 

before generating the set family.



■ Fix a coloring, say, 𝜒, on 𝑁 that uses 𝑎 reds and 𝑟 − 𝑎 blues. 

– For any 1 ≤ 𝑖 ≤ 𝑏, 

Pr 𝐴𝑖 is monochromatic = Pr 𝐴𝑖 is red + Pr 𝐴𝑖 is blue

=

𝑎
𝑘

+ 𝑟−𝑎
𝑘

𝑟
𝑘

≥ 2 ⋅

𝑟/2
𝑘
𝑟
𝑘

≔ 𝑝 .

– By the asymptotic formula for binomial coefficient,  

𝑝 ≈ 𝑒−1 ⋅ 21−𝑘 .

– Since 𝐴𝑖 are independently chosen, 

Pr 𝜒 is legal for 𝐹 ≤ ෑ

1≤𝑖≤𝑏

(1 − 𝑝) ≤ 1 − 𝑝 𝑏 .

Refer to the jamboard

for more details.



– Since 𝐴𝑖 are independently chosen, 

Pr 𝜒 is legal for 𝐹 ≤ 1 − 𝑝 𝑏 .

– There are 2𝑟 possible colorings on 𝑁.

By the union bound, 

Pr at least one coloring is legal for 𝐹

≤ 2𝑟 ⋅ 1 − 𝑝 𝑏 < 𝑒𝑟⋅log 2−𝑝𝑏 ,

which is no more than 1 when 

𝑏 =
𝑟 ⋅ log 2

𝑝
= 1 + 𝑜 1 ⋅ 𝑘2 ⋅ 2𝑘−2 ⋅ 𝑒 log 2 ≤ 𝑘2 ⋅ 2𝑘 .



– Since 𝐴𝑖 are independently chosen, 

Pr 𝜒 is legal for 𝐹 ≤ 1 − 𝑝 𝑏 .

– There are 2𝑟 possible colorings on 𝑁. 

By the union bound, 

Pr at least one coloring is legal for 𝐹 < 𝑒𝑟⋅log 2−𝑝𝑏 ,

which is no more than 1 when 𝑏 ≤ 𝑘2 ⋅ 2𝑘 .

– Hence, Pr no coloring is legal for 𝐹 > 0 when 𝑏 ≤ 𝑘2 ⋅ 2𝑘, and 

there must exist one set family that has no valid 2-coloring.



2-Colorability of Uniform Set Families

■ Let 𝐵 𝑘 be the smallest size of 𝑘-uniform families that are 

not 2-colorable.

– By Theorem 4 and Theorem 5, we know that

2𝑘−1 ≤ 𝐵 𝑘 ≤ 𝑘2 ⋅ 2𝑘 .

– For the exact values, 

so far, only 𝐵 2 = 3 and 𝐵 3 = 7 are known.

Determine the exact value for 𝐵(𝑘) ---

A somewhat interesting question of unknown importance.



Theorem 6.

Let 𝐹 be a set family, with 𝐴 ≥ 2 for all 𝐴 ∈ 𝐹.  If 𝐴 ∩ 𝐵 ≠ ∅

implies that 𝐴 ∩ 𝐵 ≥ 2 for any 𝐴, 𝐵 ∈ 𝐹, then 𝐹 is 2-colorable.

■ The given condition is strong enough for a greedy algorithm to work.

– Let 𝑁 = 𝑥1, 𝑥2, … , 𝑥𝑛 be the ground set.

– The algorithm proceeds as follows.

■ For 𝑖 = 1,2,… , 𝑛, do

– If coloring 𝑥𝑖 red does not make any set monochromatic, 

then color 𝑥𝑖 red.

Otherwise, color 𝑥𝑖 blue.



Theorem 6.

Let 𝐹 be a set family, with 𝐴 ≥ 2 for all 𝐴 ∈ 𝐹.  If 𝐴 ∩ 𝐵 ≠ ∅ implies 

that 𝐴 ∩ 𝐵 ≥ 2 for any 𝐴, 𝐵 ∈ 𝐹, then 𝐹 is 2-colorable.

■ For the correctness of the algorithm, observe the following.

– If 𝑥𝑖 cannot be colored red, then there exists some set

𝐴 ⊆ {𝑥1, 𝑥2, … , 𝑥𝑖} with 𝑥𝑖 ∈ 𝐴 and 𝑨 ∖ {𝒙𝒊} are all red.

– If 𝑥𝑖 cannot be colored blue, then there exists some 

𝐵 ⊆ {𝑥1, 𝑥2, … , 𝑥𝑖} with 𝑥𝑖 ∈ 𝐵 and 𝑩 ∖ {𝒙𝒊} are all blue.

– If both red and blue are not possible, 

then 𝑥𝑖 ∈ 𝐴 ∩ 𝐵 ≠ ∅, 

which implies that 𝐴 ∩ 𝐵 ≥ 2, a contradiction.



Covering by Bipartite Cliques



Bipartite Cliques

■ A bipartite clique, or, biclique, is a complete bipartite graph.

– It is a bipartite graph.

– There is an edge between every pair of vertices from the two 

partite sets.



Covering by Bipartite Cliques

■ Let 𝐺 = (𝑉, 𝐸) be a graph.

■ A biclique covering of 𝐺 is a set of subgraphs 𝐻1, 𝐻2, … , 𝐻𝑡 of 𝐺

such that 

– 𝐻𝑖 is a bipartite clique, for all 1 ≤ 𝑖 ≤ 𝑡.

– Each edge in 𝐸 belongs to 𝐻𝑖 for some 1 ≤ 𝑖 ≤ 𝑡.

𝐾4

= +



Covering by Bipartite Cliques

■ The weight of a biclique covering 𝐻1, 𝐻2, … , 𝐻𝑡 is defined to be 

෍

1≤𝑖≤𝑡

𝑉 𝐻𝑖 ,

i.e., the total number of vertices used in the cover.

– Let bc 𝐺 denote the minimum weight of biclique coverings of 𝐺.



Theorem 3.

If 𝑛 = 2𝑚,  then  bc 𝐾𝑛 = 𝑛 ⋅ log2 𝑛 .

■ Let’s prove the two directions  “≤”  and  “≥“  separately. 

■ For “≤”, we will construct a covering of weight 𝑛𝑚 = 𝑛 ⋅ log2 𝑛. 

– This shows that,

the minimum weight of 𝐾𝑛, bc 𝐾𝑛 , is at most 𝑛 ⋅ log2 𝑛.

■ Label the vertices 𝐾𝑛 with a coordinate 0,1 𝑚. (0,1)

(1,0)

(0,0)

(1,1)



■ Label the vertices of 𝐾𝑛 with a coordinate 0,1 𝑚.

■ For any 1 ≤ 𝑖 ≤ 𝑚, define 𝐻𝑖 as follows.

– 𝑉 𝐻𝑖 = 𝑉(𝐾𝑛).

– For any 𝑢, 𝑣 ∈ 𝑉(𝐾𝑛), 

𝑢, 𝑣 ∈ 𝐸 𝐻𝑖 if the 𝑖𝑡ℎ-coordinates of 𝑢 and 𝑣 differ.

■ Then, each edge belongs to some 𝐻𝑖 (why?),

and the total weight is 𝑛𝑚 = 𝑛 log2 𝑛.

You will prove in HW#2 

that 𝐻𝑖 is a biclique.

(0,1)

(1,0)

(0,0)

(1,1)



■ To prove the other direction, i.e., bc 𝐾𝑛 ≥ 𝑛 ⋅ log2 𝑛, 

we use a probabilistic argument. 

– No matter how we organize the bicliques,

the total weight is always at least 𝑛 log2 𝑛.

Theorem 3.

If 𝑛 = 2𝑚,  then  bc 𝐾𝑛 = 𝑛 ⋅ log2 𝑛 .

This is the harder part.

How can we prove a statement like this?

Is it because we’re not smart enough to do this, 

or there is no such way at all??



■ To prove the other direction, i.e., bc 𝐾𝑛 ≥ 𝑛 ⋅ log2 𝑛, 

we use a probabilistic argument. 

■ Let 𝐴𝑖 × 𝐵𝑖 1≤𝑖≤𝑡 be an arbitrary biclique covering for 𝐾𝑛, and 

let 𝑚𝑣 be the number of bicliques that contains 𝑣.

By the double-counting principle on the total weight, 

we have

෍

1≤𝑖≤𝑡

𝐴𝑖 + 𝐵𝑖 = ෍

1≤𝑣≤𝑛

𝑚𝑣 .

It suffices to show that ෍

1≤𝑣≤𝑛

𝑚𝑣 ≥ 𝑛 ⋅ log2 𝑛 .

Derive properties

for any biclique covering.



■ Note that, this inequality to prove says that,

the average number of bicliques that contain each vertex 

is at least log2 𝑛. 

It suffices to show that ෍

1≤𝑣≤𝑛

𝑚𝑣 ≥ 𝑛 ⋅ log2 𝑛 .



■ Toss a fair 0-1 coin for each biclique 𝐴𝑖 × 𝐵𝑖 in any order.

– If 0 pops up, remove the vertex set 𝐴𝑖 from 𝐾𝑛.

– If 1 pops up, remove 𝐵𝑖 from 𝐾𝑛.

It suffices to show that ෍

1≤𝑣≤𝑛

𝑚𝑣 ≥ 𝑛 ⋅ log2 𝑛 .

𝐴𝑖 𝐵𝑖

Remove one of 𝐴𝑖, 𝐵𝑖 from 𝐾𝑛.

Let a fair coin make the decision.



■ Toss a fair 0-1 coin for each biclique 𝐴𝑖 × 𝐵𝑖 in any order.

– If 0 pops up, remove the vertex set 𝐴𝑖 from 𝐾𝑛.

– If 1 pops up, remove 𝐵𝑖 from 𝐾𝑛.

■ Claim: When the process ends, at most one vertex will remain in 𝐾𝑛.

– If there are more than two vertices, say, 𝑢, 𝑣, 

they are connected by edge 𝑢, 𝑣 in 𝐾𝑛 and will have gone 

through the process, since at least one of 𝐴𝑖 × 𝐵𝑖 covers (𝑢, 𝑣). 

This means that, 

at most one of them can survive when the coin is tossed. 

A contradiction.



■ Toss a fair 0-1 coin for each 𝐴𝑖 × 𝐵𝑖 in any order.

If 0 pops up, remove 𝐴𝑖 from 𝐾𝑛. Otherwise, remove 𝐵𝑖 from 𝐾𝑛.

■ Claim: At most one vertex will remain when the above process ends.

■ For any 1 ≤ 𝑣 ≤ 𝑛, 

let 𝑋𝑣 be the indicator variable for the event that vertex 𝑣 survives 

after the process, and let 𝑋 = σ1≤𝑣≤𝑛𝑋𝑣.

– By the above claim, E 𝑋 ≤ 1.

– Moreover, for each vertex 𝑣,

Pr 𝑣 survives = 2−𝑚𝑣 .

𝑋 ≤ 1 always holds, 

no matter what the toss outcomes are.

𝑣 survives with probability 1/2

for each biclique that contains it.



■ We have

෍

1≤𝑣≤𝑛

2−𝑚𝑣 = ෍

1≤𝑣≤𝑛

Pr 𝑣 survivies = ෍

1≤𝑣≤𝑛

E 𝑋𝑣 = E 𝑋 ≤ 1 .

■ By the arithmetic-geometric mean inequality,

1

𝑛
≥

1

𝑛
෍

1≤𝑣≤𝑛

2−𝑚𝑣 ≥ ෑ

1≤𝑣≤𝑛

2−𝑚𝑣

1/𝑛

= 2−
1
𝑛⋅
σ1≤𝑣≤𝑛𝑚𝑣 .

This implies that  2
1

𝑛
⋅σ1≤𝑣≤𝑛𝑚𝑣 ≥ 𝑛,  and   σ1≤𝑣≤𝑛𝑚𝑣 ≥ 𝑛 ⋅ log2 𝑛 .



Some Useful Tools & Bounds

Common tools for upper- / lower- bounding the probabilities.



Some Useful Tools & Bounds

𝐴1

𝐴2

𝐴3
■ Union Bound.

Let 𝐴1, 𝐴2, … , 𝐴𝑛 be events. Then

Pr ራ

1≤𝑖≤𝑛

𝐴𝑖 ≤ ෍

1≤𝑖≤𝑛

Pr 𝐴𝑖 .



Some Useful Tools & Bounds

■ Two useful inequalities.

– For any 𝑡 ≠ 0, 

1 + 𝑡 < 𝑒𝑡 .

– For any 0 < 𝑡 < 0.6838…, 

1 − 𝑡 > 𝑒−𝑡−𝑡
2
.

By Taylor’s expansion on 𝑒𝑡.

By Taylor’s expansion on ln 1 − 𝑡 .

See the jamboard for further details.



■ Stirling’s Approximation for 𝒏!.

𝑛! =
𝑛

𝑒

𝑛

⋅ 2𝜋𝑛 ⋅ 𝑒𝛼𝑛 , where
1

12𝑛 + 1
< 𝛼𝑛 <

1

12𝑛
.

■ The Stirling formula is a very tight approximation for 𝑛!.

– It leads to the following formula for 𝑘𝑡ℎ factorial.

𝑛 𝑘 ≔ 𝑛 ⋅ 𝑛 − 1 ⋅ ⋯ ⋅ 𝑛 − 𝑘 + 1

= 𝑛𝑘 ⋅ 𝑒
−
𝑘2

2𝑛−
𝑘3

6𝑛2
+𝑜 1

, ∀ 𝑘 = 𝑜 𝑛
3
4 .



■ Convex Function.

A real-valued function 𝑓 𝑥 is convex between 𝑎, 𝑏 , if 

𝑓 𝜆𝑎 + 1 − 𝜆 𝑏 ≤ 𝜆 ⋅ 𝑓 𝑎 + 1 − 𝜆 ⋅ 𝑓 𝑏 , ∀ 0 ≤ 𝜆 ≤ 1 .

𝑎 𝑏𝜆𝑎 +
1 − 𝜆 𝑏

𝑓 𝑎

𝑓 𝑏

The curve always falls under

the linear function between 

𝑎, 𝑓 𝑎 and 𝑏, 𝑓 𝑏 .



■ Jensen’s Inequality for Convex Functions.

If  𝜆𝑖 ≥ 0,  σ1≤𝑖≤𝑛 𝜆𝑖 = 1, and 𝑓 is a real-valued convex function, 

then

𝑓 ෍

1≤𝑖≤𝑛

𝜆𝑖 ⋅ 𝑥𝑖 ≤ ෍

1≤𝑖≤𝑛

𝜆𝑖 ⋅ 𝑓 𝑥𝑖 .

– Refer to the jamboard for the proof.

■ The Jensen’s inequality is a very useful tool for obtaining bounds 

that “behaves linearly” for convex functions.



■ Arithmetic-Geometric Mean Inequality.

For any 𝑎𝑖 ≥ 0, we have

1

𝑛
⋅ ෍

1≤𝑖≤𝑛

𝑎𝑖 ≥ ෑ

1≤𝑖≤𝑛

𝑎𝑖

1
𝑛

.

– Refer to the jamboard for the proof.

■ This is yet another fundamental & useful inequality 

(for obtaining nontrivial lower-bounds).


