Combinatorial Mathematics

Mong-Jen Kao (5 £§8)

Monday 18:30 — 20:20

Theorem 19.2 (The Lovasz Local Lemma — Asymmetric version).

Let ¢ = (V,E) be a dependency graph of events 44, 4,, ..., A,,.

Suppose that there exists real numbers x4, x5, ..., x, With 0 < x; < 1
such that, for all i,

Pr[4;] < «x;- 1_[(1—xj).

J:(Lj))EE

Then

Pr[AlAz"‘An] 2 l_[(l—xl)
1<isn

In particular, with positive probability, no A; occurs.

Q: Can we actually construct the object ?

e ———————— e ————————————————————————————————————_—_——————_————_E—_—_E———_E————_———_——————————

We will show In this lecture that,

Xi

the object can be constructed in expected);; number of resamples,

1—xi
assuming the prerequisite conditions of the local lemma,

under a common algorithmic variable setting.

S S e o o e o e o o o e e) e) Y)) 3 o o 5) e e))))) e o e 3)) e o o)))) 3 e e 1 0) e e o)))))) 0 e e e)) e o 3)))) e 3 e e 1 3 3) e o)))) e 3 0 e e 3 0) e o o)))) e 3 1 e e 3 3 e e D e))) 3 5 e e e e e e e e e

Some Notes

m The result is from the following award-winning paper.

- Robin A. Moser, Gabor Tardos,
“A constructive proof of the general Lovasz local lemma.”
Journal of ACM 57(2): 11:1 — 11:15, 2010.

The result is described
using only 4 pages !

m [t answers a general & fundamental problem,
with a surprisingly simple algorithm and analysis, and beautiful ideas.

m This paper was awarded the GdOdel prize by the European Association
for Theoretical Computer Science (EATCS) in 2020.

Outline

m Algorithmic Lovasz Local Lemma

(A constructive proof for the Lovasz Local Lemma)

- The Variable Setting Assumption
- A Simple Randomized Algorithm

- The Analysis

m Notations & Definitions
m The Galton-Watson branching process

m Coupling the execution & evaluation

The Variable Setting Assumption

m We assume the following setting,
which is common in algorithmic context.

- The object to compute is described by

a set of random variables, 74, 7,, ..., Z,,,

that are mutually independent in a fixed probability space.

- Each bad event 4; is determined by
a subset of variables in {Z;, ..., Z,,}, denoted by vbl(A4;).

A Simple & Elegant Randomized Algorithm

m The following algorithm is due to [Moser & Tardos, 2010 |.

1. Pick an independent random assignment for Z;, 1 < j < n.
2. Repeat until none of the bad events A4; holds.

m Pick a violated event, say 4; .

m Resample the value of Z; for all Z; € vbl(A;).

Roughly Speaking...

m The algorithm keeps refreshing the variables in the violating event

until all the events are avoided.

Ej> Th_e Iinitial
assignment

The Algorithm

//:

Refresh the variables
in the bad event (Press F5)

N4

:> s it good? > |

U ‘NO’

YES’

»
Vi
L\ \
s

Tz

IS THAT IT ?

m Clearly,
when the algorithm stops, we have a feasible set of assignments.

m The question is,

Is the ‘seemingly inefficient’algorithm efficient?

We can always come up with all sorts of algorithms.
The question is always, how do we be sure that it's a good one?

The Dependency Graph

m Define the dependency graph for the events as follows.

- Forany i,j,
there Is an edge between A; and 4; if and only if
vbl(A;) Nvbl(A;) = 0.

m Foranyi,
let D; be the neighbors of 4; in the dependency graph.

The Algorithmic Lovasz Local Lemma

Theorem 1 (Moser-Tardos 2010).

In the variable setting, if there exists x; € (0,1) such that
Pr|A;] Sxi-l_[(l—xj), Vi<i<n,
JED;

then the algorithm resamples an event A; at most an expected

Xi

number of times before it finds a feasible assignment.

1-x;

(Sketch)

Proof of Theorem 1

The Idea

m Forany1<i<m,
let N; denote the number of times the event 4; is resampled.

- We will show that,

0N
S

Sequence of events resampled by the algorithm

m To bound E[N;],
for any k = 1, consider the first k events resampled by the algorithm.

We will associate the sequence A, ,Ar,, ..., Ay, With a Proper Witness Tree.

i i Ary Am, Ar, Amy |, i
Seqguence of events @ _
resampled by the algorithm Proper witness tree
rooted at A,
ARVAN 4 A
A tree that “witnesses” the fact that
Constructed from “the resamol o A
the prefix sequence / / € TESaMPIES O Ay s Amgy
A A leads to “the resample of A, .”
Ty =) 2 T

\)

Seguence of events

resampled by the algorithm Consider the witness trees for all

possible prefixes of the sequence.

&
9
&
+
p—

T @ """ @ """"""E{é&]};@ """"" @ """""""""""""" |

1E 1A

z Pr[T occurs in the sequence |

possible proper
witness trees with root 4;

Lemma 2. (To be proved later)

For any proper witness tree T of the events, we have

Pr[T occurs | < 1_[Pr[A[v]] .
VET /k }

L Apy) denotes the event

m By Lemma 2, we have to which node v corresponds.

IA

E[N;] = z Pr[T occurs] Z l(x[v] 'ngl (1- Xj))

TET; TET; veT [v]

random branchinqg process.

We bound the sum using the “Galton-Watson” }

m Forany T €Ty, let p; be the probability that the random

Galton-Watson process generates T.

Lemma 3. (To be proved)

Forany T € T;, we have

by = - ;ix" | (x[v] - 1_[(1 —xj)> .

{ We will describe the random process later. }

Putting Things Together...

m By Lemma 2 and Lemma 3, we obtain

=S br{ T oceurs | < ZH(ﬂ(l—x»)

TET; TeT; veT JED
— ‘ Pt
1— Xi
TET;
x.
S l
1— Xi

It remains to prove the two Lemmas.

Outline

m Algorithmic Lovasz Local Lemma

(A constructive proof for the Lovasz Local Lemma)

- The Variable Setting Assumption
- A Simple Randomized Algorithm

- The Analysis

m Notations & Definitions
m The Galton-Watson branching process

m Coupling the execution & evaluation

Notations & Definitions

The Execution Sequence

m Forany k > 1,
let ;. denote the index of the event that is resampled by the
algorithm in the kt"-iteration.

0N
S

Sequence of events resampled by the algorithm

The Closed Neighborhood D;" of A4;

m Forany1<i<m,let
D = D; U {A;}

be the set of events that are connected to A4; in the dependency
graph and the event 4; itself.

The Withess Tree

m A withess tree Is a rooted tree T such that

- Each node v € T is labeled with an event in {44, ..., A4,,},

denoted Ay,.

- Ifvisachildof uinT, then A, € Dfy;.

m T is called proper, if for any node v,

all the events labeled on the children of v are distinct.

We use [v] to denote the index of the
event labeled with vertex v.

Constructing a Proper Witness Tree
for any Prefix of the Execution Sequence

m Forany k = 1, construct the tree T (k) as follows.
- Consider the execution sequence In a backward manner.

- For each event, say, A,,, attach a node labeled with A,

as a child node to the deepest node Iin the tree

that is labeled with some event in Dy..

< l

A Consider the events in a backward manner,
and construct the witness tree.

Consider the events in a backward manner,
< and construct the witness tree.

Ay

1 2 k

Hence,
the tree Is a withess tree.

Attach this node as a child to
the deepest node in the tree

that is labeled with some event in Dj{j

Consider the events in a backward manner,
and construct the witness tree.

Ay

k

Intuitively, the witness tree states that

“resamples of the non-root events in T (k)
jointly lead to the resample of A, .”

Resamples of the nodes in the bottom-up order
causes the resample of the root event.

Properties of

the Constructed Withess Trees

Proposition 1.

Forany k > 1,
T (k) Is a proper witness tree.

m T(k)Iis awitness tree by the way It is constructed. ‘
m If it is not proper, then @ @
some 4; Is labeled at least twice as children of some node.

By the construction rule, one of them should be attached deeper.
A contradiction.

m For any proper witness tree T,
we say that it occurs (in the execution sequence),
If T =T (k) forsome k > 1.

Lemma 2.

For any proper witness tree T of the events, we have

Pr[T occurs | < 1_[Pr[A[v]] .

VET

We will leave the proof of this lemma to the end of the slides.

Lemma 2.

For any proper witness tree T of the events, we have

Pr[T occurs | < 1_[Pr[A[v]] .

vET

m Let T; be the set of proper witness trees with root labeled with A;.

m By Lemma 2, we have

= z Pr[T occurs] < Z l l(1_[(1—x1)>

TET; TET; VET JED,

We bound the sum by relating it to a simple random process.

Outline

m Algorithmic Lovasz Local Lemma

(A constructive proof for the Lovasz Local Lemma)

- The Variable Setting Assumption
- A Simple Randomized Algorithm

- The Analysis

m Notations & Definitions
m The Galton-Watson branching process

m Coupling the execution & evaluation

The Multi-type

Galton-Watson Branching Process

The Galton-Watson Branching Process

m Consider the following simple random process for generating T € T;.

1. Generate the root node with label A;.

2. While at least one node was generated in the previous iteration,
do

= For each of these newly-generated nodes, say, v, do

= For each event B € D[J;] ,

with probabllity x), generate a new child node for v with label B.

3. Return the tree generated.

™

(Let [B] denote the index of
L the event B in {4, 4,, ..., A, }.

For each 4, € D],
generate a new branch
node A, with probability x;,.
15t round

For each newly generated
branch node, say, v, and

+
riowa () ()Y () cach 4, € D},
generate a new branch

node A; with probability x;,.

kt" round
Repeat until

no vertices are newly generated.

The Process Generates a Proper Withess Tree

m We only branch for events in D*.

- So it is a withess tree.

m Each eventin D' is branched at most once.

- The witness tree Is proper.

The Galton-Watson Branching Process

m The speed for which the process terminates depends on the values
of x;, for all A; that is reachable from A; in the dependency graph.

- The process dies out quickly when the x; are small.

- On the contrary,
when x; are large, the branching process may not stop at all.

m Forany T € T;, let pr denote the probability that the Galton-Watson

process generates T.

Lemma 3.

Forany T € T;, we have

=[] (e [10-).

veT JED[y]

This lemma can be verified directly from the process.

Proof of Lemma 3

m Consider any vertex v € T.

Suppose that it has children set V,,.

..

Aly) This happens with probability

...

Which is equal to

1 i[l:c 1_[(1 B x])

m \We have

Pr = 1_[1—x 1_[(1_

VET uevy, JED[v

1-— Xi
— . — X

Xi 1_[])
VET]ED[U

1-— Xi

- x 1_[l l (1~ x])
' veT JED

m This proves the lemma.

Outline

m Algorithmic Lovasz Local Lemma

(A constructive proof for the Lovasz Local Lemma)

- The Variable Setting Assumption
- A Simple Randomized Algorithm

- The Analysis

m Notations & Definitions
m The Galton-Watson branching process

m Coupling the execution & evaluation

Strictly Proper Witness Trees

m LetT be awithess tree.

- Forany v €T, let depth(v) be its distance to the root.

- We say that T Is strictly proper,

If for any u, v € T with depth(u) = depth(v),

we always have

vbl(Ap) Nvbl(Apy) = 0.

Proposition 4.

If T occurs in the execution sequence, then T is strictly proper.

m The proof is straightforward, Q
by the way how witness trees are constructed .

from the execution seguence.

’
’ A}
4 -~
1 .
~
' .
"
’

v
‘
A

- If there exist u,v € T with the same depth @

and vbl(Ap,) N vbl(Ap)) # 0,

then one of them should be attached at a deeper level.

Lemma 2.

For any proper witness tree T of the events, we have

Pr| T occurs in execution | < 1_[Pr[A[v]] .

VET

m By Proposition 4, for witness trees that are not strictly proper,

Pr[T not strictly proper occurs | = 0 < 1_[Pr[A[v]] :

Hence, it suffices to prove the statement for strictly proper witness trees.

Proof of Lemma 2

It remains to prove the statement of Lemma 2.

This is the part for which the algorithmic variable-setting is truly involved.

To Prove :

For any strictly proper witness tree T of the events, we have

Pr[T occurs in execution | < 1_[Pr[A[v]] .

VET

m Consider the following evaluation process for T.

- Foreach v € T In a reversed-BFS order,

sample the values of the variables in vbl(Ap,)-

m Foreachv € T In areversed-BFS order,

sample the values of the variables in vbl(Ap,).

To Prove :

For any strictly proper witness tree T of the events, we have

Pr[T occurs in execution | < 1_[Pr[A[v]] .

VET

m Consider the following evaluation process for T.

- Foreach v € T In areversed-BFS order,

sample the values of the variables in vbl(Ap,).

- Furthermore, suppose that, in the evaluation process,
we use the same random source with the algorithm execution.

The Execution Coupling

m Imagine that, for each 1 < j < n, in the evaluation process,
we use an identical random source that is used in the algorithm

execution for variable Z;.

- Therefore, the evaluation process gets the same random
seguence with the algorithm execution when it samples Z;.

{ The randomized J \T

algorithm

[The evaluation }/

process for T

Use the same random source for Z;

m Consider the following evaluation process.

- For each veT in areversed-BFS order,
sample the values of the variables in vbl(A_[v]).

m \We say that the sample Iin v Is successful, if it makes Ay, true.

Clearly,
Y Pr| sample in v successful | = Pr[A[v]] .

m \We say that the evaluation process succeeds, if the samples in all
vertices are successful.

It follows that _
Pr| evaluation succeeds | = 1_[Pr[A[v]] .

It suffices to prove that, for strictly proper witness tree T,

Pr| T occurs in execution | < Pr| evaluation succeeds | .

m We show that, if we couple up (by using the same random sources)

- the execution of the algorithm and
- the evaluation process of the witness tree,

then, whenever T occurs in the execution sequence,

the evaluation process for T must succeed.

m Note that, this implies the conclusion we want.

A = B, then Pr[A4] < Pr[B].

m We couple up the execution sequence of the algorithm and

the evaluation process of the withess tree T € Ty.

m Consider anode v € T € T, and any Z; € vbl(Ap,)-

Suppose that it is the it"-item in the execution sequence, i.e., [v] = ;.

o o

AN
______ 2 d 1

T The number of times Z; is sampled at

level, other than v, contains Z;. {u€T : depth(u) > depth(v) }
| and

{ A, Any s Any_

are the same, since T is strictly proper.

All of these events that contain Z;
appear at depth deeper than depth(v).

nodes deeper than v

Consider anode v € T € Ty and any Z; € vbl(Ap,).
Suppose that it is the i*"*-item in the execution sequence, i.e., [v] = m;.

The number of times Z; is sampled at

{uerT : depth(u) > depth(v)} and {Anl,Anz, iy Ar, 1}

are the same, since T Is strictly proper.

Since the algorithm makes one more sampling on Z; initially,

the result the evaluation process gets at node v Is

the current value of Z; at the it"-iteration of the algorithm.

This argument holds for all variables in vbl(Ap,).

When the process samples vbl(Ay,) at v,

what it gets is the assignment the algorithm has for vbl(A[,,])

at the beginning of the it"*-iteration !

Since A, Is true (the algorithm resamples it),

the evaluation at v must be successful.

..

nodes deeper than v

