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Random Walks in Graphs

Let’s take a random stroll in the graph. 

Where will we be after a number of steps?



The Normalized Adjacency Matrix

■ Let 𝐺 = (𝑉, 𝐸) be an 𝑛-vertex 𝑑-regular graph.

■ Let 𝐴∗ be the adjacency matrix of 𝐺 and define 𝐴 ≔ 𝐴∗/𝑑.

– The sum of each row in 𝐴 is 1.

– Think 𝒂𝒊,𝒋 as the probability that

we move to vertex 𝑖 when we are at vertex 𝑗.
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■ Let 𝐴∗ be the adjacency matrix of 𝐺 and define 𝐴 ≔ 𝐴∗/𝑑.

– Think 𝒂𝒊,𝒋 as the probability that we move to vertex 𝑖 when we 

are at vertex 𝑗.

– Then, the 𝑖𝑡ℎ-row of 𝐴 describes the probability 

that we reach vertex 𝑖 from each vertex in 𝑉.
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■ Let 𝐴∗ be the adjacency matrix of 𝐺 and define 𝐴 ≔ 𝐴∗/𝑑.

– Think 𝒂𝒊,𝒋 as the probability that we move to vertex 𝑖 when we 

are at vertex 𝑗.

– Let 𝑣 = 𝑝1, 𝑝2, … , 𝑝𝑛
𝑇 be a probability distribution over 𝑉

that denotes our starting point.

– Then, 𝑨𝒗 gives the probability distribution of the location 

we will be in 𝟏-step of random walk.
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■ Let 𝐴∗ be the adjacency matrix of 𝐺 and define 𝐴 ≔ 𝐴∗/𝑑.

– Let 𝑣 = 𝑝1, 𝑝2, … , 𝑝𝑛
𝑇 be a probability distribution over 𝑉

that denotes our starting point.

– Then, 𝐴𝑣 gives the probability distribution of the location 

we will be in 1-step of random walk.

– Similarly, 𝐴𝑡𝑣 = 𝐴𝑡−1(𝐴𝑣) gives the probability distribution 

after 𝑡 steps.

■ Question:  Where will we be?

■ Intuitively,  when 𝑡 ≈ ∞, 

𝐴𝑡𝑣 should be close to uniform when 𝐺 is connected.

How fast does it converge?



Eigenvalue & Spectral Gap

It turns out that, 

eigenvalue plays an essential role in many important concepts.



The Eigenvalues of the Matrix 𝐴

■ Let 𝐺 = (𝑉, 𝐸) be an 𝑛-vertex 𝑑-regular graph and 

𝐴 be the normalized adjacency matrix of 𝐺.

– Clearly, 

1 is an eigenvalue of 𝐴 with eigenvector 𝟏 =
1

𝑛
, ⋯ ,

1

𝑛
∈ ℝ𝑛, 

i.e., 
𝐴𝟏 = 𝟏.

– Furthermore, 

it can be shown that  𝜆 ≤ 1 for any eigenvalue 𝜆 of 𝐴.

𝐴 is real symmetric. 

Hence, all the eigenvalues of 𝐴 are real numbers.

Uniform distribution.

In fact, 𝜆 ≤ 𝐦𝐚𝐱
𝒊

σ𝒋 𝑨𝒊,𝒋 ≤ 1

for any eigenvalue 𝜆 of 𝐴.



Eigenvalues & Spectral Gap

■ Let 𝐺 = (𝑉, 𝐸) be an 𝑛-vertex 𝑑-regular graph and 

𝐴 be the normalized adjacency matrix of 𝐺.

– Clearly, 1 is an eigenvalue of 𝐴 with eigenvector 𝟏 =
1

𝑛
, ⋯ ,

1

𝑛
, 

i.e., 𝐴𝟏 = 𝟏.

– Furthermore, 𝜆 ≤ 1 for any eigenvalue 𝜆 of 𝐴.

– Let 𝝀𝟐 be the 𝟐𝒏𝒅-largest eigenvalue of 𝐴.

■ The quantity 1 − 𝜆2 is called the spectral gap of 𝐴.

Spectral gap provides a lot of information

on the connectivity of the graph.



Eigenvalues & Spectral Gap

■ We have the following lemma.

Lemma 1.

Let 𝐺 = (𝑉, 𝐸) be a regular graph with 2𝑛𝑑-largest eigenvalue 𝜆2

and 𝒑 be a probability distribution over 𝑉. 

Then for any ℓ ∈ ℕ,  
𝐴ℓ𝒑 − 𝟏

2
≤ 𝜆2

ℓ .

𝐿2-norm



Proof of Lemma 1

■ Recall that, 𝟏 =
1

𝑛
, ⋯ ,

1

𝑛
is an eigenvector of 𝐴 with eigenvalue 1.

■ Furthermore, we can obtain a set of orthonormal eigenvectors of 𝐴, 

including 𝟏, that forms a basis of ℝ𝑛.

■ Consider the subspace 𝒞 ⊂ ℝ𝑛 that is orthogonal to 𝟏.

– 𝐶 is spanned by the remaining eigenvectors of 𝐴.

■ Rewrite the vector 𝑝 as 𝑝 = 𝑝′ + 𝛼𝟏,  

where 𝑝′ ∈ 𝐶 and 𝛼 ∈ ℝ.

𝟏

𝐶
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Proof of Lemma 1

■ Consider the subspace 𝒞 ⊂ ℝ𝑛 that is orthogonal to 𝟏.

– 𝐶 is spanned by the remaining eigenvectors of 𝐴.

■ Write 𝑝 = 𝑝′ + 𝛼𝟏,  where 𝑝′ ∈ 𝐶 and 𝛼 ∈ ℝ.

– It follows that

1

𝑛
⋅෍

𝑖

𝑝𝑖 = 𝑝 ⋅ 𝟏 = 𝑝′ + 𝛼𝟏 ⋅ 𝟏 =
1

𝑛
⋅ 𝛼 .

– Since 𝑝 is a probability distribution,

σ𝑖 𝑝𝑖 = 1 and hence 𝛼 = 1.

𝑝′ ∈ 𝐶, hence 𝑝′ ⊥ 𝟏.

𝟏

𝐶
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Proof of Lemma 1

■ Write 𝑝 = 𝑝′ + 𝛼𝟏,  where 𝑝′ ∈ 𝐶 and 𝛼 ∈ ℝ.

– It follows that 𝛼 = 1.

■ Hence, 

𝐴ℓ𝑝 − 𝟏
2
= 𝐴ℓ 𝑝′ + 𝟏 − 𝟏

2
= 𝐴ℓ𝑝′

2
.

■ Since 𝜆2 is the largest eigenvalue other than 1,

we obtain

𝐴ℓ𝑝′
2
≤ 𝜆2

ℓ 𝑝′ 2 ≤ 𝜆2
ℓ 𝑝 2 ≤ 𝜆2

ℓ 𝑝 1 = 𝜆2
ℓ .

𝑝 2 ≤ 𝑝 for any vector 𝑝.𝑝 ⋅ 𝑝 = 𝑝′ ⋅ 𝑝′ + 𝟏 ⋅ 𝟏.



Expander Graph

For any subset of vertices with size at most 𝑛/2, 

there are always a lot of edges “going out” from the subset.

𝑆



Expander Graph

■ Let 𝐺 = (𝑉, 𝐸) be an 𝑛-vertex 𝑑-regular graph 

with 2𝑛𝑑-largest eigenvalue 𝜆2.

– Then, 

𝐺 is called an 𝑛, 𝑑, 𝜆 -expander graph for any 𝜆2 ≤ 𝜆.

– We will show that, 

if 𝐺 is an expander graph, then for any 𝑆 ⊆ 𝑉 with 𝑆 ≤ 𝑛/2, 

there will be a lot of edges connecting 𝑆 and ҧ𝑆.

𝑆



■ In particular, when 𝑆 ≤ 𝑛/2, 

we have 𝑇 ≥ 𝑛/2 and 
𝐸 𝑆, 𝑇 ≥

𝑑

2
1 − 𝜆 |𝑆| .

𝑆

Lemma 2. (Expander Crossing Lemma)

Let 𝐺 = (𝑉, 𝐸) be an 𝑛, 𝑑, 𝜆 -expander and 𝑆 ⊆ 𝑉, 𝑇 = 𝑉 ∖ 𝑆. 

Then
𝐸 𝑆, 𝑇 ≥ 1 − 𝜆 ⋅

𝑑 𝑆 𝑇

𝑛
,

where 𝐸 𝑆, 𝑇 is the set of edges between 𝑆 and 𝑇.



Proof of Lemma 2

■ Define the vector 𝑥 ∈ ℝn as

𝑥𝑖 ≔ ቊ
𝑇 , if 𝑖 ∈ 𝑆,

− 𝑆 , if 𝑖 ∈ 𝑇.

Then, it follows that 𝑥 ⊥ 𝟏, and

𝑥 2
2 = 𝑆 𝑇 2 + 𝑇 𝑆 2 = 𝑛 ⋅ 𝑆 𝑇 .

𝑆 𝑇



■ Define the vector 𝑥 ∈ ℝn as 𝑥𝑖 ≔ ቊ
𝑇 , if 𝑖 ∈ 𝑆,

− 𝑆 , if 𝑖 ∈ 𝑇.

■ On the other hand, 

define
𝑍 ≔ ෍

𝑖,𝑗

𝐴𝑖,𝑗 𝑥𝑖 − 𝑥𝑗
2
.

Then

– Any 𝑖, 𝑗 ∈ 𝐸 with 𝑖 ∈ 𝑆, 𝑗 ∈ 𝑇 appears twice in the summation, 

each contributing 1

𝑑
𝑆 + 𝑇 2 =

1

𝑑
𝑛2 .

– For the remaining cases, 

𝑖, 𝑗 contributes zero.

𝑆 𝑇



■ On the other hand, 

define
𝑍 ≔ ෍

𝑖,𝑗

𝐴𝑖,𝑗 𝑥𝑖 − 𝑥𝑗
2
.

Then

– Any 𝑖, 𝑗 ∈ 𝐸 with 𝑖 ∈ 𝑆, 𝑗 ∈ 𝑇 appears twice in the summation, 

each contributing 1

𝑑
𝑆 + 𝑇 2 =

1

𝑑
𝑛2 .

– For the remaining cases, 

𝑖, 𝑗 contributes zero.

■ Hence, 
𝑍 =

2

𝑑
⋅ 𝐸 𝑆, 𝑇 ⋅ 𝑛2 .

𝑆 𝑇



■ On the other hand, 

define
𝑍 ≔ ෍

𝑖,𝑗

𝐴𝑖,𝑗 𝑥𝑖 − 𝑥𝑗
2
.

■ On the other hand, 

expanding the summation in the above definition, we have

𝑍 = ෍

𝑖,𝑗

𝐴𝑖,𝑗𝑥𝑖
2 − 2෍

𝑖,𝑗

𝐴𝑖,𝑗𝑥𝑖𝑥𝑗 + ෍

𝑖,𝑗

𝐴𝑖,𝑗𝑥𝑗
2

= 2 𝑥 2
2 − 2 ⋅ 𝑥 ⋅ 𝐴𝑥 .

■ Since 𝑥 ⊥ 𝟏, 

we obtain that  𝑥 ⋅ 𝐴𝑥 ≤ 𝜆 ⋅ 𝑥 2
2 .

𝑆 𝑇

The rows and columns of 𝐴
sum up to 1.



■ Hence, 
𝑍 =

2

𝑑
⋅ 𝐸 𝑆, 𝑇 ⋅ 𝑛2 .

■ On the other hand, we have

𝑍 = 2 𝑥 2
2 − 2 ⋅ 𝑥 ⋅ 𝐴𝑥 .

■ Since 𝑥 ⊥ 𝟏, we obtain that  𝑥 ⋅ 𝐴𝑥 ≤ 𝜆 ⋅ 𝑥 2
2 .

■ Hence, 1

𝑑
⋅ 𝐸 𝑆, 𝑇 ⋅ 𝑛2 ≥ 1 − 𝜆 ⋅ 𝑥 2

2 ,

and

𝐸 𝑆, 𝑇 ≥ 1 − 𝜆 ⋅
𝑑 𝑆 𝑇

𝑛
.

𝑆 𝑇

𝑥 2
2 = 𝑛 ⋅ 𝑆 𝑇 .



Connectivity of the Graph

■ The expander crossing lemma implies that

𝐺 = (𝑉, 𝐸) is connected if 𝜆2 < 1.

– Indeed, for any 𝑆 ⊂ 𝑉 and 𝑇 ≔ 𝑉 ∖ 𝑆, 

𝐸 𝑆, 𝑇 ≥ 1 − 𝜆 ⋅
𝑑 𝑆 𝑇

𝑛
> 0 .

– The converse is also true, 

i.e., 𝜆2 < 1 if the 𝐺 is connected.

𝑆



■ Suppose on the contrary that 𝐺 is connected but 𝜆2 = 1.

– Then, there exists 𝑥 ∈ ℝ𝑛 such that  

𝑥 ≠ 𝟎 , 𝑥 ⋅ 𝟏 = 0, and 𝐴 ⋅ 𝑥 = 𝑥.

– Pick 𝑖 and 𝑗 such that  

𝑥𝑖 = min
1≤𝑘≤𝑛

𝑥𝑘 and 𝑥𝑗 = max
1≤𝑘≤𝑛

𝑥𝑘 .

Lemma 3. 

Let 𝐺 = (𝑉, 𝐸) be a 𝑑-regular graph with 2𝑛𝑑-largest eigenvalue 𝜆2.

If 𝐺 is connected, then 𝜆2 < 1.

Then, 

𝑥𝑖 < 0 and 𝑥𝑗 > 0 .

Then, 

𝑥𝑖 < 0 and 𝑥𝑗 > 0 .



■ Suppose on the contrary that 𝐺 is connected but 𝜆2 = 1.

– Then, there exists 𝑥 ∈ ℝ𝑛 such that  

𝑥 ≠ 𝟎 , 𝑥 ⋅ 𝟏 = 0, and 𝐴 ⋅ 𝑥 = 𝑥.

– Pick 𝑖 and 𝑗 such that  

𝑥𝑖 = min
1≤𝑘≤𝑛

𝑥𝑘 and 𝑥𝑗 = max
1≤𝑘≤𝑛

𝑥𝑘 .

– Let 𝑐 ≔ −1/(𝑛 ⋅ 𝑥𝑖) and consider the vector 𝑦 ≔ 𝟏 + 𝑐𝑥.

Then 𝒚 ≥ 0, 𝑦𝑖 = 0, and 𝑦𝑗 > 0.

– Furthermore, 

𝐴 ⋅ 𝑦 = 𝐴 ⋅ 𝟏 + 𝑐𝐴 ⋅ 𝑥 = 𝟏 + 𝑐𝑥 = 𝑦.

Then, 

𝑥𝑖 < 0 and 𝑥𝑗 > 0 .

Then, 

𝑥𝑖 < 0 and 𝑥𝑗 > 0 .

Note that 𝑐 > 0

by definition.

Note that 𝑐 > 0

by definition.



■ Suppose on the contrary that 𝐺 is connected but 𝜆2 = 1.

– Furthermore, 

𝐴 ⋅ 𝑦 = 𝐴 ⋅ 𝟏 + 𝑐𝐴 ⋅ 𝑥 = 𝟏 + 𝑐𝑥 = 𝑦.

– Then,   𝐴𝑡 ⋅ 𝑦 = 𝑦 .

– Hence, 
𝐴𝑖,𝑗
𝑡 ⋅ 𝑦𝑗 ≤ ෍

𝑘

𝐴𝑖,𝑘
𝑡 ⋅ 𝑦𝑘 = 𝑦𝑖 = 0

which implies that 𝐴𝑖,𝑗
𝑡 = 0 for all 𝑡 ∈ ℕ.



■ The following lemma says that, for arbitrarily 𝑆, 𝑇 ⊆ 𝑉 that are 

sufficiently large, we have
𝐸 𝑆, 𝑇 ≈

𝑑

𝑛
𝑆 𝑇 .

Lemma 4. (Expander Mixing Lemma)

Let 𝐺 = (𝑉, 𝐸) be an 𝑛, 𝑑, 𝜆 -expander and 𝑆, 𝑇 ⊆ 𝑉. 

Then
𝐸 𝑆, 𝑇 −

𝑑

𝑛
𝑆 𝑇 ≤ 𝜆𝑑 𝑆 𝑇 ,

where 𝐸 𝑆, 𝑇 is the set of edges between 𝑆 and 𝑇.



■ Another interpretation of the expander mixing lemma is that,

– 𝜆 measures how close 𝑮 behaves like a random graph.

– To see this, observe that,

■ 𝐸 𝑆, 𝑇 is the number of edges between 𝑆 and 𝑇.

■
𝑑

𝑛
𝑆 𝑇 is the expected number of edges between 𝑆 and 𝑇

in a random graph, when the edge density is 𝑑/𝑛.

– Hence, when 𝜆 is small,

the connectivity of 𝐺 behaves like a random graph.
𝑆 𝑇

Connect each pair 

with probability 
𝑑

𝑛
.



Proof of Lemma 4

■ Let 𝜆1 ≥ 𝜆2 ≥ ⋯ ≥ 𝜆𝑛 be the eigenvalues of the normalized matrix 𝐴

and 𝑥1 = 𝑛𝟏, 𝑥2, … , 𝑥𝑛 be the corresponding orthonormal eigenvectors.

■ Let 𝑣𝑆 and 𝑣𝑇 be the characteristic vectors of 𝑆 and 𝑇, i.e., 

– The 𝑖𝑡ℎ-coordinate of 𝑣𝑆 is 1 if and only if 𝑖 ∈ 𝑆.

– Express 𝑣𝑆 and 𝑣𝑇 as

𝑣𝑆 =෍

𝑖

𝑎𝑖𝑥𝑖 and 𝑣𝑇 =෍

𝑖

𝑏𝑖𝑥𝑖 .

Since 𝑥𝑖 1≤𝑖≤𝑛 forms a basis of ℝ𝑛.



■ Let 𝜆1 ≥ 𝜆2 ≥ ⋯ ≥ 𝜆𝑛 be the eigenvalues of the normalized matrix 𝐴

and 𝑥1 = 𝑛𝟏, 𝑥2, … , 𝑥𝑛 the corresponding orthonormal eigenvectors.

■ Let 𝑣𝑆 and 𝑣𝑇 be the characteristic vectors of 𝑆 and 𝑇 with

𝑣𝑆 =෍

𝑖

𝑎𝑖𝑥𝑖 and 𝑣𝑇 =෍

𝑖

𝑏𝑖𝑥𝑖 .

■ It follows that

𝐸 𝑆, 𝑇

𝑑
= 𝑣𝑆

T𝐴𝑣𝑇 = ෍

𝑖

𝑎𝑖𝑥𝑖

T

𝐴 ෍

𝑖

𝑏𝑖𝑥𝑖 = ෍

𝑖

𝜆𝑖𝑎𝑖𝑏𝑖 .

𝑥𝑖 1≤𝑖≤𝑛 is an orthonormal basis.



■ Let 𝜆1 ≥ 𝜆2 ≥ ⋯ ≥ 𝜆𝑛 be the eigenvalues of the normalized matrix 𝐴

and 𝑥1 = 𝑛𝟏, 𝑥2, … , 𝑥𝑛 the corresponding orthonormal eigenvectors.

■ Let 𝑣𝑆 and 𝑣𝑇 be the characteristic vectors of 𝑆 and 𝑇 with

𝑣𝑆 = σ𝑖 𝑎𝑖𝑥𝑖 and 𝑣𝑇 = σ𝑖 𝑏𝑖𝑥𝑖 .

■ It follows that  𝐸 𝑆, 𝑇 = 𝑑 ⋅ σ𝑖 𝜆𝑖𝑎𝑖𝑏𝑖 .

– Furthermore, 𝑎1 = 𝑣𝑆 ⋅ 𝑥1 = 𝑆 / 𝑛 and 𝑏1 = 𝑇 / 𝑛 .

– Hence, 𝜆1𝑎1𝑏1 = 𝑆 𝑇 /𝑛.

– 𝜆𝑖 ≤ 𝜆 for all 𝑖 ≥ 2.

Hence
෍

𝑖≥2

𝜆𝑖𝑎𝑖𝑏𝑖 ≤ 𝜆 ⋅ ෍

𝑖≥2

𝑎𝑖𝑏𝑖 ≤ 𝜆 ⋅ 𝑎 2 ⋅ 𝑏 2 .

By the Cauchy-Schwarz inequality.



■ Let 𝑥1 = 𝑛𝟏, 𝑥2, … , 𝑥𝑛 be the orthonormal eigenvectors of 𝐴.

■ Let 𝑣𝑆 and 𝑣𝑇 be the characteristic vectors of 𝑆 and 𝑇 with

𝑣𝑆 = σ𝑖 𝑎𝑖𝑥𝑖 and 𝑣𝑇 = σ𝑖 𝑏𝑖𝑥𝑖 .

■ It follows that

𝑒 𝑆, 𝑇 −
𝑑 𝑆 𝑇

𝑛
= ෍

𝑖≥2

𝜆𝑖𝑎𝑖𝑏𝑖 ≤ 𝜆𝑑 ⋅ 𝑎 2 ⋅ 𝑏 2.

■ Since 𝑥𝑖 1≤𝑖≤𝑛 is orthonormal, 

𝑎 2 = 𝑣𝑆 2 = 𝑆 and   𝑏 2 = 𝑣𝑇 2 = 𝑇 ,   and

𝑒 𝑆, 𝑇 −
𝑑 𝑆 𝑇

𝑛
≤ 𝜆𝑑 𝑆 𝑇 .



Equivalent Notions

Edge expansion (Combinatorial expansion) is 

roughly equivalent to Algebraic expansion.

𝑆



■ The expander crossing lemma says that, 

an 𝑛, 𝑑, 𝜆 -expander is also an edge expander with 𝜌 = (1 − 𝜆)/2.

– The converse is roughly true as well.

Definition. (Edge Expander)

Let 𝐺 = (𝑉, 𝐸) be an 𝑛-vertex 𝑑-regular graph.

𝐺 is called an 𝑛, 𝑑, 𝜌 -edge expander graph, 

if for any vertex subset 𝑆 ⊆ 𝑉 with 𝑆 ≤ 𝑛/2, 

we always have

𝐸 𝑆, ҧ𝑆 ≥ 𝜌𝑑 𝑆 .

𝑆



Lemma 5. (Edge Expansion implies Algebraic Expansion)

Let 𝐺 = (𝑉, 𝐸) be an 𝑛, 𝑑, 𝜌 -edge expander.

Then, the 2𝑛𝑑-largest eigenvalue of 𝐺 is at most 

1 − 𝜌2/2 ,

i.e., 𝐺 is an 𝑛, 𝑑, 𝜆 -expander with 𝜆 = 1 − 𝜌2/2.

■ The proof, however, is beyond the scope of this course 

and is omitted here.



Expander Graph & 

Pseudo-Randomness


