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Random Walks in Graphs

Let's take a random stroll in the graph.
Where will we be after a number of steps?




The Normalized Adjacency Matrix

m Let G = (V,E) be an n-vertex d-regular graph.
m Let A" be the adjacency matrix of ¢ and define 4 := A*/d.

- Thesumofeachrowin4is 1.

- Think a;; as the probability that

we move to vertex i when we are at vertex j.




m Let A" be the adjacency matrix of ¢ and define 4 := A" /d.

- Think a;; as the probability that we move to vertex i when we

are at vertex j.

- Then, the i*"-row of 4 describes the probability
that we reach vertex i from each vertex in V.




m Let A" be the adjacency matrix of ¢ and define 4 := A" /d.

- Think a;; as the probability that we move to vertex i when we

are at vertex j.
- Letv = (py,py ..., 0,)! be a probability distribution over V
that denotes our starting point.

- Then, Av gives the probability distribution of the location
we will be in 1-step of random walk.
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m Let A" be the adjacency matrix of ¢ and define 4 := A" /d.

- Letv = (py,py, ..., p,)! be a probability distribution over V

that denotes our starting point.

- Then, Av gives the probability distribution of the location
we will be in 1-step of random walk.

- Similarly, A*v = A*~1(Av) gives the probability distribution
after t steps.

m Question: Where will we be?
How fast does it converge?

m Intuitively, when t = oo,
Atv should be close to uniform when G is connected.




Eigenvalue & Spectral Gap

It turns out that,
eigenvalue plays an essential role in many important concepts.




The Eigenvalues of the Matrix A

m Let G = (V,E) be an n-vertex d-regular graph and

A be the normalized adjacency matrix of .
mdistribution. }

- Clearly,
1 is an eigenvalue of A with eigenvector 1 = (% %) e R™,
l.e., AT _ i)

- Furthermore,
It can be shown that A <1 for any eigenvalue A of A.

Voo
In fact, 2 < max YilAi;| <1 [ A is real symmetric. }

for any eigenvalue A of A. Hence, all the eigenvalues of A are real numbers.




Eigenvalues & Spectral Gap

m LetG = (V,E) be an n-vertex d-regular graph and
A be the normalized adjacency matrix of .

1 1)
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- Clearly, 1 is an eigenvalue of A with eigenvector 1 = (

—

ie. A1 = 1.

- Furthermore, 4 < 1 for any eigenvalue A of A.

- Let 4, be the 2™?-largest eigenvalue of A.

m The quantity (1 — A,) is called the spectral gap of A.

Spectral gap provides a lot of information
on the connectivity of the graph.




Eigenvalues & Spectral Gap

m We have the following lemma.

Lemma 1.

Let G = (V, E) be a regular graph with 2"¢-largest eigenvalue A,
and p be a probability distribution over V.

Then for any £ € N,
|Afp — 1||2 < (1,)7.

N

ﬁLz-norm |




Proof of Lemma 1

m Recall that, 1 = ( - , 1) IS an eigenvector of A with eigenvalue 1.

n’  ’n
m Furthermore, we can obtain a set of orthonormal eigenvectors of A,

iIncluding 1, that forms a basis of R™.

m Consider the subspace ¢ c R™ that is orthogonal to 1.

- C I1s spanned by the remaining eigenvectors of A.

m Rewrite the vectorp asp = p’ + a1,
where p' € C and a € R.




Proof of Lemma 1

m Consider the subspace ¢ c R" that is orthogonal to 1.

- C Is spanned by the remaining eigenvectors of A.

m Writep =p’' + a1, wherep’ € C and a € R.
p' € C, hence p’ L 1. J
- It follows that

1
i

S| =

.

+

- Since p Is a probability distribution, ‘ i
Y.;p;i =1 and hence a = 1.
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Proof of Lemma 1

m Write p =p' 4+ al, wherep’' € C and a € R.

- It follows that a« = 1.

m Hence,
[Aap—1|, = [[A°G' +D -1, = [[4%"]],

m Since A, Is the largest eigenvalue other than 1,

we obtain
[4%p"||, < Alip'll, < Alpll, < Alply =

{ p-p=p - pﬁ llpll, < |p| for any vector p. }




Expander Graph

For any subset of vertices with size at most n/2,
there are always a lot of edges “going out” from the subset.




Expander Graph

m Let G = (V,E) be an n-vertex d-regular graph
with 2™¢-largest eigenvalue A,.

- Then,
G is called an (n,d, 1)-expander graph for any 1, < A.
- We will show that,

If G Is an expander graph, then for any S € V with |S| < n/2,
there will be a lot of edges connecting S and S.




Lemma 2. (Expander Crossing Lemma)

Let G = (V,E) bean (n,d,A)-expanderand SCSV, T =V \S.

Then dISIIT
BT 2 -2

where E(S,T) is the set of edges between S and T.

m In particular, when |S| < n/2,

we have |T| = n/2 and d
ES T = S (1=l .




Proof of Lemma 2

m Define the vector x € R! as

v IT|, ifi €5,
Ll —|S], ifieT.

Then, it follows that x L 1, and

Ixl3 = ISIITI* +ITIISI*? = n-ISIIT| .




m Define the vector x € R" as x; = {—llgll :;i g L;
S
m On the other hand,
define 5
Z = ZAi,j(xi - %)
L,J

Then

- Any (i,j) €e Ewithi € S,j € T appears twice in the summation,

each contributing

LASI+1TD? = <02

- For the remaining cases,
(i,j) contributes zero.




m On the other hand,
define 2 S
/ = ZAi,j(xi_xj) .
L]
Then

- Any (i,j) € Ewithi € S,j € T appears twice in the summation,
each contributing

LS+ ITD? = —n?

- For the remaining cases,
(i,j) contributes zero.

m Hence, 2
Z = a |E(S,T)| - n*.




m On the other hand,

define J = EAi'j(Xi _Xj)z '
L,j

m On the other hand,
expanding the summation in the above definition, we have

— 2 2
/ = ZAi,jxi — ZZAi,jxixj + zAi’ij
L,j L,j L,j

= 2lxlI5 — 2-x-Ax.

95
~3

m Sincex 11, sum up to 1.
we obtain that x - Ax < A-|[x]|5.

The rows and columns of A }




m Hence, 2
Z = i |E(S,T)| - n*.

m On the other hand, we have
Z =2|x|I5 — 2-x-Ax.

m Since x L 1, we obtainthat x-Ax < A-||x||5.

m Hence, 1
—EGDIn* 2 (1-2) - [Ixl3,

and
d|S||T|

n ,
lx|[z =n-[S]IT].

E(S,T) =2 (1-2)




Connectivity of the Graph

m The expander crossing lemma implies that
G = (V,E) Is connected if 1, < 1.

- Indeed, foranyScVandT:=V\S,

d|S||T]|
ES,T)] = (1—-2)- — > 0.

- The converse Is also true,
l.e., 1, < 1 if the G Is connected.




Lemma 3.

Let G = (V, E) be a d-regular graph with 2"¢-largest eigenvalue 2,.
If G Is connected, then 4, < 1.

m Suppose on the contrary that G Is connected but 4, = 1.

- Then, there exists x € R™ such that
x+0, x-1=0, and A-x = x. Then,

- Pick i and j such that 2 St eg =

X; = min x; and Xx; = max x
1<k=sn 1<k=n




m Suppose on the contrary that G Is connected but 4, = 1.

- Then, there exists x € R™ such that

x #+0, x-1=0, and A4 -x = x. h
Then,
- Pick i and j such that /| %<0 and x>0,
.= mj — /
- Letc:=-1/(n-x;) and consider the vector y := 1 + cx.
Then

y =0, y; = 0, and y; > 0.

. Notethat ¢ >0
by definition.

- Furthermore,
Ay = A-14+cA-x = 1+cx = y.




m Suppose on the contrary that G Is connected but 4, = 1.

- Furthermore,

Ay = A-1+cA-x = 1+cx = .

which implies that 4; ; = 0 for all t € N.




m The following lemma says that, for arbitrarily S,T € V that are
sufficiently large, we have

d
(S, )] ~ —ISIITI.

Lemma 4. (Expander Mixing Lemma)

Let G = (V,E) be an (n,d, 1)-expander and S, T C V.

Then d
ES, D) = —ISIITI | < 2dy/ISIITI.

where E(S,T) is the set of edges between S and T.




m Another interpretation of the expander mixing lemma is that,

- A measures how close G behaves like a random graph.

- To see this, observe that,
Connect each pair

m |E(S,T)|is the number of edges between S and T. | with probability %

n %|S||T| IS the expected number of edges between S and T

In a random graph, when the edge density is d/n.

- Hence, when 4 is small,
the connectivity of G behaves like a random graph.




Proof of Lemma 4

m LetA; = 1, =+ = A, be the eigenvalues of the normalized matrix A
and x; =+/n1,x,, ..., x, be the corresponding orthonormal eigenvectors.

m Let vg and v; be the characteristic vectors of S and T, I.e.,
- The it"-coordinate of vs is 1 if and only if i € S.

- EXxpress vg and vy as

Ve = z a;x; and wvp = Z b;ix; .
' i

l

Since {x;};<;<, forms a basis of R".




m LetA; = 4, = -+ = A,, be the eigenvalues of the normalized matrix A
and x; = +/nl,x,,...,x, the corresponding orthonormal eigenvectors.

m Let vs and v, be the characteristic vectors of S and T with

Vg = Z a;x; and vy = Z bix; .
i

I

m It follows that

E(S, T
| (d ) _ Ve Avy = Zaxl bel = Z)liaibi.
i

[ {x;}1<i<n, IS an orthonormal basis.




m LetA; = 4, = -+ = A,, be the eigenvalues of the normalized matrix A
and x; = +/nl,x,,...,x, the corresponding orthonormal eigenvectors.

m Let vs and v, be the characteristic vectors of S and T with
vs =2 apx; and  vp =) bix;.
m It follows that |E(S, T)l =d - Zi/ll-aibi :
- Furthermore, a; = vs-x; = |S|//n and b; = |T|/\/n .

- Hence, A;a,b; = |S||T|/n.

_ A, < Aforalli>2. By the Cauchy-Schwarz inequality. }

Hence
z Aia;b;

=2 =2

A
>
[
2
=

< A-llallz-1bll2 -




Let x; = +/n1, x5, ..., x, be the orthonormal eigenvectors of A.

Let v¢ and v, be the characteristic vectors of S and T with
vs = ;apx; and  vp = bix;.

It follows that

|€(S, T)l o

d|S||T]
" = Aiaib; | < Ad - ||all, - |[b]l,.

=2

Since {x;},<i<n IS Orthonormal,

lallz = llvsllz = vISI and [|bllz = llvrll; = /IT], and

d|S||T
b1 < Ad+|SI|IT| .

|€(S, T)l o




Equivalent Notions

Edge expansion (Combinatorial expansion) is
roughly equivalent to Algebraic expansion.




Definition. (Edge Expander)

Let G = (V,E) be an n-vertex d-regular graph.
G is called an (n, d, p)-edge expander graph,
If for any vertex subset S € V with |S| < n/2,

we always have
|E(S,S)| = pdlSI .

m The expander crossing lemma says that,
an (n,d, A)-expander is also an edge expander with p = (1 — 1)/2.

- The converse is roughly true as well.




Lemma 5. (Edge Expansion implies Algebraic Expansion)

Let G = (V,E) be an (n,d, p)-edge expander.
Then, the 2™%-largest eigenvalue of G is at most
1- p2/2 )

i.e., G is an (n,d, 1)-expander with A = 1 — p?/2.

m The proof, however, is beyond the scope of this course
and is omitted here.




Expander Graph &

Pseudo-Randomness




