Combinatorial Mathematics Mong-Jen Kao (高孟駿) Monday 18:30 – 21:20 #### Outline - The RMQ Problem - Cartesian Tree for Sequences - O(n) Time Construction - Binary Encodings - The Optimal Algorithm for the RMQ problem The Range Minimum Query (RMQ) Problem #### The RMQ Problem - Given a sequence of numbers $a_1, a_2, ..., a_n$, *preprocess* the sequence such that - For each $1 \le \ell \le r \le n$, the minimum within $[a_\ell, ..., a_r]$ can be answered quickly. - Two factors of concern - The time / space it takes to preprocess the sequence - The time it takes to answer the query. ### Existing Approaches for the RMQ Problem #### 1. **Precompute** the answer for all possible intervals. - $O(n^2)$ for preprocessing, O(1) for query - Simple, but not applicable when n is large. #### 2. Segment tree - O(n) for preprocessing, $O(\log n)$ for query - Support update in $O(\log n)$ time. - Simple to implement ### Existing Approaches for the RMQ Problem #### 3. Sparse table - Precompute the answer for $[i, i+2^k-1]$ and $[i-2^k+1, i]$ for all $1 \le i \le n$ and all $0 \le k \le \log n$. - $O(n \log n)$ time & space for preprocessing, O(1) for query. #### Existing Approaches for the RMQ Problem #### 4. Optimal algorithm - The optimal algorithm combines ideas from the above methods. - O(n) for preprocessing, O(1) for query. - Partition the sequence into groups of *small size*. - For each group, encode its structure and precompute the answer if it hasn't been computed before. - Precompute the min-value for all groups and apply Sparse table method on it. # Cartesian Tree & Binary Encoding #### Cartesian Tree Let $a_1, a_2, ..., a_n$ be a sequence. The <u>Cartesian Tree</u> for the sequence is defined as follows. The root of the tree is the element a_i that satisfies the property that $a_i < a_j$ for all $1 \le j < i$ and $a_i \le a_k$ for all $i < k \le n$. - The <u>left child</u> of a_i is the Cartesian tree for $a_1, ..., a_{i-1}$. - The <u>right child</u> of a_i is the Cartesian tree for $a_{i+1}, ..., a_n$. ### Building the Cartesian Tree in O(n) Time Let $a_1, a_2, ..., a_n$ be a sequence. - Consider the elements one by one, e.g., $a_1, a_2, ..., a_n$, in order. - Let T_i denote the Cartesian tree for a_1, \dots, a_i . - For each a_i considered, we will use T_{i-1} to build T_i in <u>amortized</u> O(1) time. ### Building the Cartesian Tree in O(n) Time Let $a_1, a_2, ..., a_n$ be a sequence. ■ Consider the tree T_i for $a_1, ..., a_i$. **A key property** for T_i is that a_i must be <u>at the end</u> of the <u>right-most path</u> from the root. Let $a_1, a_2, ..., a_n$ be a sequence. ■ Consider the tree T_i for $a_1, ..., a_i$. A key property for T_i is that a_i must be <u>at the end</u> of the <u>right-most path</u> from the root. To construct T_{i+1} , it suffices to **walk-up the tree from** a_i until we reach the place where a_{i+1} belongs in T_{i+1} . - To construct T_{i+1} , it suffices to walk-up the tree from a_i until we reach the place where a_{i+1} belongs in T_{i+1} . - Let a_j be the <u>first node</u> in T_i with $a_j \le a_{i+1}$ when we walk-up from a_i . - Then the subtree rooted at a_j should be the left-subtree of a_{i+1} , and a_{i+1} should be the right-child of $p(a_j)$. - To construct T_{i+1} , it suffices to walk-up the tree from a_i until we reach the place where a_{i+1} belongs in T_{i+1} . - Let a_j be the <u>first node</u> in T_i with $a_j \le a_{i+1}$ when we walk-up from a_i . - If there is no such node, i.e., $a_{i+1} < r$, then a_{i+1} should be the new root. # Building the Cartesian Tree in O(n) Time To describe the algorithm formally, - Let T be the current tree. - Let r be the root node of T. - Let last be the last node inserted into T. - Let p(v) denote the parent of v. - Let $\ell(v)$, r(v) denote the left- and right-child of v. - Initially, T = r = last = NiL. - For i = 1, 2, ..., n do the followings. - Create node v for a_i with $p(v) = \ell(v) = r(v) = NiL$. ■ $last \leftarrow p(last)$. ■ Set $p(r) \leftarrow v$, and $r \leftarrow v$. - Set $p(v) \leftarrow p(last)$, $p(last) \leftarrow v$, $r(p(last)) \leftarrow v$. - Set $\ell(v) \leftarrow last$ and $last \leftarrow v$. ### Binary Encoding of Cartesian Trees - It is not difficult to show that, - The number of possible Cartesian trees with k vertices is equal to the k^{th} -Catalan number, which is $\frac{1}{k+1}{2k \choose k} = O(4^k)$. - Hence, it is possible to encode the Cartesian trees with a binary string of length 2k. - The encodings can be used to uniquely identify a Cartesian tree. ### Binary Encoding of Cartesian Trees - Encoding a Cartesian tree T is fairly straightforward. - For any $v \in T$, distinguish the status of v with $\{0,1\}^2$. Simply dump the status of the nodes in a <u>fixed</u> and <u>consistent</u> order, e.g., the order given by DFS or BFS traversal. # Binary Encoding by DFS Traversal - Procedure DFS(v) - Print the status of v. - If $\ell(v) \neq NiL$, then DFS $(\ell(v))$. - If $r(v) \neq NiL$, then DFS(r(v)). - With the above procedure, - To the tree, we simply call DFS(r). ### Binary Encoding of Cartesian Trees - The way of encoding is not unique. - For example, the following procedure also gives a valid encoding. #### Procedure DFS'(v) - If $\ell(v) \neq NiL$, then print '1' and DFS $(\ell(v))$. Otherwise, print '0'. - If $r(v) \neq NiL$, then print '1' and DFS(r(v)). Otherwise, print '1'. # Optimal Algorithm for RMQ # Optimal RMQ - Preprocessing Let $A = a_1, a_2, ..., a_n$ be a sequence. - 1. Pick $s \approx \frac{\log n}{4}$. - W.L.O.G., assume that $n = M \cdot s$ for some integer M. (if not, add arbitrary numbers to make it so.) - 2. Divide *A* into *M* groups, i.e., $$A_i := [a_{is}, a_{is+1}, ..., a_{is+s-1}]$$ for all $0 \le i < M$. ### Optimal RMQ - Preprocessing Let $A = a_1, a_2, ..., a_n$ be a sequence. Pick $s \approx \frac{\log n}{4}$ and divide A into $A_1, A_2, ..., A_M$ where $n = M \cdot s$. - 3. Let $idx_i := enc(A_i)$ be the encoding of the Cartesian tree T_i for A_i . - 4. Precompute and store the answer for the RMQ query for T_i if it hasn't been computed yet. - 5. Let $B = b_1, b_2, ..., b_M$ be the minimum value in $A_1, A_2, ..., A_M$. Apply sparse table method on B. ### Optimal RMQ - Query Let $[\ell, r]$ be the query to be answered. We have two types of queries. Use the precomputed table, e.g., RMQ(idx_i, ℓ' , r') to answer this query directly in O(1) time. Let $[\ell, r]$ be the query to be answered. We have two types of queries. ### The Analysis Let $A = a_1, a_2, ..., a_n$ be a sequence and pick $s \approx \frac{\log n}{4}$. - Time & Space complexity for preprocessing - Sparse table $$O\left(\frac{n}{\log n} \cdot \log \frac{n}{\log n}\right) = O(n - \log \log n) = O(n).$$ Solution Table for all Cartesian trees $$O(4^{s} \cdot s^{2}) = O(\sqrt{n} \cdot \log^{2} n) = O(n).$$