
Combinatorial Mathematics

Mong-Jen Kao (高孟駿)

Monday 18:30 – 21:20

Outline

■ The RMQ Problem

■ Cartesian Tree for Sequences

– 𝑂 𝑛 Time Construction

– Binary Encodings

■ The Optimal Algorithm for the RMQ problem

The Range Minimum Query (RMQ)

Problem

■ Given a sequence of numbers 𝑎1, 𝑎2, … , 𝑎𝑛,

preprocess the sequence such that

– For each 1 ≤ ℓ ≤ 𝑟 ≤ 𝑛,

the minimum within 𝑎ℓ, … , 𝑎𝑟 can be answered quickly.

■ Two factors of concern

– The time / space it takes to preprocess the sequence

– The time it takes to answer the query.

The RMQ Problem

1. Precompute the answer for all possible intervals.

– 𝑂 𝑛2 for preprocessing, 𝑂 1 for query

– Simple, but not applicable when 𝑛 is large.

2. Segment tree

– 𝑂 𝑛 for preprocessing, 𝑂 log 𝑛 for query

– Support update in 𝑂 log 𝑛 time.

– Simple to implement

Existing Approaches for the RMQ Problem

3. Sparse table

– Precompute the answer for [𝑖, 𝑖 + 2𝑘 − 1] and [𝑖 − 2𝑘 + 1, 𝑖]

for all 1 ≤ 𝑖 ≤ 𝑛 and all 0 ≤ 𝑘 ≤ log 𝑛.

– 𝑂 𝑛 log 𝑛 time & space for preprocessing, 𝑂 1 for query.

Existing Approaches for the RMQ Problem

ℓ

𝑟
2𝑘

2𝑘

4. Optimal algorithm

– The optimal algorithm combines ideas from the above methods.

– 𝑂 𝑛 for preprocessing, 𝑂 1 for query.

– Partition the sequence into groups of small size.

■ For each group, encode its structure and precompute the answer if

it hasn’t been computed before.

■ Precompute the min-value for all groups and apply Sparse table

method on it.

Existing Approaches for the RMQ Problem

Cartesian Tree & Binary Encoding

Let 𝑎1, 𝑎2, … , 𝑎𝑛 be a sequence. The Cartesian Tree for the sequence

is defined as follows.

■ The root of the tree is the element 𝑎𝑖 that satisfies the property

that 𝑎𝑖 < 𝑎𝑗 for all 1 ≤ 𝑗 < 𝑖 and

𝑎𝑖 ≤ 𝑎𝑘 for all 𝑖 < 𝑘 ≤ 𝑛.

■ The left child of 𝑎𝑖 is the Cartesian tree for 𝑎1, … , 𝑎𝑖−1.

■ The right child of 𝑎𝑖 is the Cartesian tree for 𝑎𝑖+1, … , 𝑎𝑛.

Cartesian Tree

Let 𝑎1, 𝑎2, … , 𝑎𝑛 be a sequence.

■ Consider the elements one by one, e.g., 𝑎1, 𝑎2, … , 𝑎𝑛, in order.

– Let 𝑇𝑖 denote the Cartesian tree for 𝑎1, … , 𝑎𝑖.

– For each 𝑎𝑖 considered,

we will use 𝑇𝑖−1 to build 𝑇𝑖 in amortized 𝑂 1 time.

Building the Cartesian Tree in 𝑂 𝑛 Time

Let 𝑎1, 𝑎2, … , 𝑎𝑛 be a sequence.

■ Consider the tree 𝑇𝑖 for 𝑎1, … , 𝑎𝑖.

A key property for 𝑇𝑖 is that

𝑎𝑖 must be at the end of the right-most path from the root.

Building the Cartesian Tree in 𝑂 𝑛 Time

𝑟

𝑎𝑖
0

Let 𝑎1, 𝑎2, … , 𝑎𝑛 be a sequence.

■ Consider the tree 𝑇𝑖 for 𝑎1, … , 𝑎𝑖.

A key property for 𝑇𝑖 is that

𝑎𝑖 must be at the end of the right-most path from the root.

■ To construct 𝑇𝑖+1,

it suffices to walk-up the tree from 𝒂𝒊 until

we reach the place where 𝑎𝑖+1 belongs in 𝑇𝑖+1.

𝑟

𝑎𝑖
0

■ To construct 𝑇𝑖+1,

it suffices to walk-up the tree from 𝒂𝒊 until

we reach the place where 𝑎𝑖+1 belongs in 𝑇𝑖+1.

■ Let 𝑎𝑗 be the first node in 𝑇𝑖 with 𝒂𝒋 ≤ 𝒂𝒊+𝟏

when we walk-up from 𝑎𝑖.

– Then the subtree rooted at 𝑎𝑗 should be

the left-subtree of 𝑎𝑖+1, and

𝑎𝑖+1 should be the right-child of 𝑝 𝑎𝑗 .

𝑇′

𝑟

𝒂𝒊+𝟏

𝑟

𝑎𝑖
0

𝒂𝒋

𝑇′

■ To construct 𝑇𝑖+1,

it suffices to walk-up the tree from 𝒂𝒊 until

we reach the place where 𝑎𝑖+1 belongs in 𝑇𝑖+1.

■ Let 𝑎𝑗 be the first node in 𝑇𝑖 with 𝒂𝒋 ≤ 𝒂𝒊+𝟏

when we walk-up from 𝑎𝑖.

– If there is no such node,

i.e., 𝑎𝑖+1 < 𝑟,

then 𝑎𝑖+1 should be the new root.

𝑟

𝑎𝑖
0

𝑎𝑖+1
0

𝑇𝑖

To describe the algorithm formally,

■ Let 𝑇 be the current tree.

– Let 𝑟 be the root node of 𝑇.

– Let 𝑙𝑎𝑠𝑡 be the last node inserted into 𝑇.

■ For any 𝑣 ∈ 𝑇,

– Let 𝑝 𝑣 denote the parent of 𝑣.

– Let ℓ(𝑣), 𝑟(𝑣) denote the left- and right-child of 𝑣.

Building the Cartesian Tree in 𝑂 𝑛 Time

𝑟

𝑙𝑎𝑠𝑡
0

𝑣

ℓ 𝑣 𝑟 𝑣

𝑝 𝑣

■ Initially, 𝑇 = 𝑟 = 𝑙𝑎𝑠𝑡 = 𝑁𝑖𝐿.

■ For 𝑖 = 1,2,… , 𝑛 do the followings.

– Create node 𝑣 for 𝑎𝑖 with 𝑝 𝑣 = ℓ 𝑣 = 𝑟 𝑣 = 𝑁𝑖𝐿.

– While 𝑙𝑎𝑠𝑡 ≠ 𝑁𝑖𝐿 and val 𝑙𝑎𝑠𝑡 > 𝑎𝑖, do the following.

■ 𝑙𝑎𝑠𝑡 ⟵ 𝑝(𝑙𝑎𝑠𝑡).

– If 𝑙𝑎𝑠𝑡 is equal to 𝑁𝑖𝐿, then

■ Set 𝑝(𝑟) ⟵ 𝑣, and 𝑟 ⟵ 𝑣.

Else,

■ Set 𝑝(𝑣) ⟵ 𝑝(𝑙𝑎𝑠𝑡), 𝑝(𝑙𝑎𝑠𝑡) ⟵ 𝑣, 𝑟(𝑝 𝑙𝑎𝑠𝑡) ⟵ 𝑣.

– Set ℓ(𝑣) ⟵ 𝑙𝑎𝑠𝑡 and 𝑙𝑎𝑠𝑡 ⟵ 𝑣.

𝑟

𝑙𝑎𝑠𝑡
0

𝑎𝑖
0

𝑇𝑖−1

𝑇′

𝑟

𝒂𝒊

■ It is not difficult to show that,

– The number of possible Cartesian trees with 𝑘 vertices is equal

to the 𝑘𝑡ℎ-Catalan number, which is
1

k+1

2𝑘
𝑘

= 𝑂(4𝑘).

■ Hence, it is possible to encode the Cartesian trees with a binary

string of length 2𝑘.

– The encodings can be used to uniquely identify a Cartesian tree.

Binary Encoding of Cartesian Trees

■ Encoding a Cartesian tree 𝑇 is fairly straightforward.

– For any 𝑣 ∈ 𝑇, distinguish the status of 𝑣 with 0,1 2.

– Simply dump the status of the nodes in a fixed and consistent

order, e.g., the order given by DFS or BFS traversal.

Binary Encoding of Cartesian Trees

𝑣

11

𝑣

10

𝑣

01

𝑣

00

■ Procedure DFS(v)

– Print the status of 𝑣.

– If ℓ 𝑣 ≠ 𝑁𝑖𝐿, then DFS ℓ 𝑣 .

– If 𝑟 𝑣 ≠ 𝑁𝑖𝐿, then DFS 𝑟 𝑣 .

■ With the above procedure,

– To the tree, we simply call DFS 𝑟 .

Binary Encoding by DFS Traversal

𝑣

11

𝑣

10

𝑣

01

𝑣

00

■ The way of encoding is not unique.

■ For example, the following procedure also gives a valid encoding.

Procedure DFS’(v)

– If ℓ 𝑣 ≠ 𝑁𝑖𝐿, then print ‘1’ and DFS ℓ 𝑣 .

Otherwise, print ‘0’.

– If 𝑟 𝑣 ≠ 𝑁𝑖𝐿, then print ‘1’ and DFS 𝑟 𝑣 .

Otherwise, print ‘1’.

Binary Encoding of Cartesian Trees

Optimal Algorithm for RMQ

Let 𝐴 = 𝑎1, 𝑎2, … , 𝑎𝑛 be a sequence.

1. Pick 𝑠 ≈
log 𝑛

4
.

– W.L.O.G., assume that 𝑛 = 𝑀 ⋅ 𝑠 for some integer 𝑀.

(if not, add arbitrary numbers to make it so.)

2. Divide 𝐴 into 𝑀 groups,

i.e., 𝐴𝑖 ≔ [𝑎𝑖𝑠, 𝑎𝑖𝑠+1, … , 𝑎𝑖𝑠+𝑠−1] for all 0 ≤ 𝑖 < 𝑀.

Optimal RMQ - Preprocessing

Let 𝐴 = 𝑎1, 𝑎2, … , 𝑎𝑛 be a sequence.

Pick 𝑠 ≈
log 𝑛

4
and divide 𝐴 into 𝐴1, 𝐴2, … , 𝐴𝑀 where 𝑛 = 𝑀 ⋅ 𝑠.

3. Let idx𝑖 ≔ enc 𝐴𝑖 be the encoding of the Cartesian tree 𝑇𝑖 for 𝐴𝑖.

4. Precompute and store the answer for the RMQ query for 𝑇𝑖

if it hasn’t been computed yet.

5. Let 𝐵 = 𝑏1, 𝑏2, … , 𝑏𝑀 be the minimum value in 𝐴1, 𝐴2, … , 𝐴𝑀.

Apply sparse table method on 𝐵.

Optimal RMQ - Preprocessing

Let [ℓ, 𝑟] be the query to be answered.

■ We have two types of queries.

Optimal RMQ - Query

𝐴𝑖

ℓ 𝑟

Use the precomputed table, e.g., RMQ idx𝑖 , ℓ
′, 𝑟′

to answer this query directly in 𝑂 1 time.

Let [ℓ, 𝑟] be the query to be answered.

■ We have two types of queries.

𝐴𝑖

ℓ 𝑟

Use the precomputed tables RMQ idx𝑖 , ? , ? and RMQ idx𝑗 , ? , ?

to answer this query directly in 𝑂 1 time.

𝐴𝑗

Use the precomputed tables RMQ idx𝑖 , ? , ? and RMQ idx𝑗 , ? , ?

to find the minimum within these two parts in 𝑂 1 time.

Use the sparse table precomputed for 𝑏1, … , 𝑏M
to find the minimum within this part in 𝑂 1 time.

Let 𝐴 = 𝑎1, 𝑎2, … , 𝑎𝑛 be a sequence and pick 𝑠 ≈
log 𝑛

4
.

■ Time & Space complexity for preprocessing

– Sparse table

𝑂
𝑛

log 𝑛
⋅ log

𝑛

log 𝑛
= 𝑂 𝑛 − log log 𝑛 = 𝑂 𝑛 .

– Solution Table for all Cartesian trees

𝑂 4𝑠 ⋅ 𝑠2 = 𝑂 𝑛 ⋅ log2 𝑛 = 𝑂 𝑛 .

The Analysis

