Combinatorial Mathematics

Mong-Jen Kao (高孟駿)

Monday 18:30 – 21:20

Outline

- The RMQ Problem
- Cartesian Tree for Sequences
 - O(n) Time Construction
 - Binary Encodings
- The Optimal Algorithm for the RMQ problem

The Range Minimum Query (RMQ)

Problem

The RMQ Problem

- Given a sequence of numbers $a_1, a_2, ..., a_n$, *preprocess* the sequence such that
 - For each $1 \le \ell \le r \le n$, the minimum within $[a_\ell, ..., a_r]$ can be answered quickly.
- Two factors of concern
 - The time / space it takes to preprocess the sequence
 - The time it takes to answer the query.

Existing Approaches for the RMQ Problem

1. **Precompute** the answer for all possible intervals.

- $O(n^2)$ for preprocessing, O(1) for query
- Simple, but not applicable when n is large.

2. Segment tree

- O(n) for preprocessing, $O(\log n)$ for query
- Support update in $O(\log n)$ time.
- Simple to implement

Existing Approaches for the RMQ Problem

3. Sparse table

- Precompute the answer for $[i, i+2^k-1]$ and $[i-2^k+1, i]$ for all $1 \le i \le n$ and all $0 \le k \le \log n$.

- $O(n \log n)$ time & space for preprocessing, O(1) for query.

Existing Approaches for the RMQ Problem

4. Optimal algorithm

- The optimal algorithm combines ideas from the above methods.
- O(n) for preprocessing, O(1) for query.
- Partition the sequence into groups of *small size*.
 - For each group, encode its structure and precompute the answer if it hasn't been computed before.
 - Precompute the min-value for all groups and apply Sparse table method on it.

Cartesian Tree & Binary Encoding

Cartesian Tree

Let $a_1, a_2, ..., a_n$ be a sequence. The <u>Cartesian Tree</u> for the sequence is defined as follows.

The root of the tree is the element a_i that satisfies the property that $a_i < a_j$ for all $1 \le j < i$ and $a_i \le a_k$ for all $i < k \le n$.

- The <u>left child</u> of a_i is the Cartesian tree for $a_1, ..., a_{i-1}$.
- The <u>right child</u> of a_i is the Cartesian tree for $a_{i+1}, ..., a_n$.

Building the Cartesian Tree in O(n) Time

Let $a_1, a_2, ..., a_n$ be a sequence.

- Consider the elements one by one, e.g., $a_1, a_2, ..., a_n$, in order.
 - Let T_i denote the Cartesian tree for a_1, \dots, a_i .
 - For each a_i considered, we will use T_{i-1} to build T_i in <u>amortized</u> O(1) time.

Building the Cartesian Tree in O(n) Time

Let $a_1, a_2, ..., a_n$ be a sequence.

■ Consider the tree T_i for $a_1, ..., a_i$.

A key property for T_i is that

 a_i must be <u>at the end</u> of the <u>right-most path</u> from the root.

Let $a_1, a_2, ..., a_n$ be a sequence.

■ Consider the tree T_i for $a_1, ..., a_i$.

A key property for T_i is that a_i must be <u>at the end</u> of the <u>right-most path</u> from the root.

To construct T_{i+1} ,

it suffices to **walk-up the tree from** a_i until

we reach the place where a_{i+1} belongs in T_{i+1} .

- To construct T_{i+1} ,

 it suffices to walk-up the tree from a_i until

 we reach the place where a_{i+1} belongs in T_{i+1} .
- Let a_j be the <u>first node</u> in T_i with $a_j \le a_{i+1}$ when we walk-up from a_i .
 - Then the subtree rooted at a_j should be the left-subtree of a_{i+1} , and a_{i+1} should be the right-child of $p(a_j)$.

- To construct T_{i+1} ,

 it suffices to walk-up the tree from a_i until

 we reach the place where a_{i+1} belongs in T_{i+1} .
- Let a_j be the <u>first node</u> in T_i with $a_j \le a_{i+1}$ when we walk-up from a_i .
 - If there is no such node, i.e., $a_{i+1} < r$,

then a_{i+1} should be the new root.

Building the Cartesian Tree in O(n) Time

To describe the algorithm formally,

- Let T be the current tree.
 - Let r be the root node of T.
 - Let last be the last node inserted into T.

- Let p(v) denote the parent of v.
- Let $\ell(v)$, r(v) denote the left- and right-child of v.

- Initially, T = r = last = NiL.
- For i = 1, 2, ..., n do the followings.
 - Create node v for a_i with $p(v) = \ell(v) = r(v) = NiL$.

■ $last \leftarrow p(last)$.

■ Set $p(r) \leftarrow v$, and $r \leftarrow v$.

- Set $p(v) \leftarrow p(last)$, $p(last) \leftarrow v$, $r(p(last)) \leftarrow v$.
- Set $\ell(v) \leftarrow last$ and $last \leftarrow v$.

Binary Encoding of Cartesian Trees

- It is not difficult to show that,
 - The number of possible Cartesian trees with k vertices is equal to the k^{th} -Catalan number, which is $\frac{1}{k+1}{2k \choose k} = O(4^k)$.
- Hence, it is possible to encode the Cartesian trees with a binary string of length 2k.
 - The encodings can be used to uniquely identify a Cartesian tree.

Binary Encoding of Cartesian Trees

- Encoding a Cartesian tree T is fairly straightforward.
 - For any $v \in T$, distinguish the status of v with $\{0,1\}^2$.

Simply dump the status of the nodes in a <u>fixed</u> and <u>consistent</u>
 order, e.g., the order given by DFS or BFS traversal.

Binary Encoding by DFS Traversal

- Procedure DFS(v)
 - Print the status of v.
 - If $\ell(v) \neq NiL$, then DFS $(\ell(v))$.
 - If $r(v) \neq NiL$, then DFS(r(v)).
- With the above procedure,
 - To the tree, we simply call DFS(r).

Binary Encoding of Cartesian Trees

- The way of encoding is not unique.
- For example, the following procedure also gives a valid encoding.

Procedure DFS'(v)

- If $\ell(v) \neq NiL$, then print '1' and DFS $(\ell(v))$.
 Otherwise, print '0'.
- If $r(v) \neq NiL$, then print '1' and DFS(r(v)).
 Otherwise, print '1'.

Optimal Algorithm for RMQ

Optimal RMQ - Preprocessing

Let $A = a_1, a_2, ..., a_n$ be a sequence.

- 1. Pick $s \approx \frac{\log n}{4}$.
 - W.L.O.G., assume that $n = M \cdot s$ for some integer M. (if not, add arbitrary numbers to make it so.)
- 2. Divide *A* into *M* groups,

i.e.,
$$A_i := [a_{is}, a_{is+1}, ..., a_{is+s-1}]$$
 for all $0 \le i < M$.

Optimal RMQ - Preprocessing

Let $A = a_1, a_2, ..., a_n$ be a sequence.

Pick $s \approx \frac{\log n}{4}$ and divide A into $A_1, A_2, ..., A_M$ where $n = M \cdot s$.

- 3. Let $idx_i := enc(A_i)$ be the encoding of the Cartesian tree T_i for A_i .
- 4. Precompute and store the answer for the RMQ query for T_i if it hasn't been computed yet.
- 5. Let $B = b_1, b_2, ..., b_M$ be the minimum value in $A_1, A_2, ..., A_M$. Apply sparse table method on B.

Optimal RMQ - Query

Let $[\ell, r]$ be the query to be answered.

We have two types of queries.

Use the precomputed table, e.g., RMQ(idx_i, ℓ' , r') to answer this query directly in O(1) time.

Let $[\ell, r]$ be the query to be answered.

We have two types of queries.

The Analysis

Let $A = a_1, a_2, ..., a_n$ be a sequence and pick $s \approx \frac{\log n}{4}$.

- Time & Space complexity for preprocessing
 - Sparse table

$$O\left(\frac{n}{\log n} \cdot \log \frac{n}{\log n}\right) = O(n - \log \log n) = O(n).$$

Solution Table for all Cartesian trees

$$O(4^{s} \cdot s^{2}) = O(\sqrt{n} \cdot \log^{2} n) = O(n).$$