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The Double Counting Principle

If the elements of a set are counted in two different ways,
the answers are the same.




Lemma 1.

In any graph ¢ = (V,E),
the number of vertices with odd degrees is even.

- Foreachv eV, let d(v) denote the degree of v.

Then, we have

Ed(v) = 2. |E|. { 2 - |E| is an even number. }

vev \

Hence, the number of vertices
Each edge is counted exactly twice. with odd degree must be even.




Handshaking Lemma.

At a party, the number of guests who shake hands an odd number
of times is even.

m Consider the graph ¢ = (V, E) defined on the guests,
where (u,v) € E if and only if guest u and v have shaken hands.




m Let F be aset family on a ground set X, I.e., F Is a collection of
subsets of X.

- Forany x € X, let d(x) be the number of sets in F that
contain the element x, I.e., the degree of x In F.

The sets in F The ground set X

of elements
Ay = {ey, e4} Az = {e3,e,, €6} ® ¢
® e
Az = ey, €5,€7} Ay ={eq, 63,6667} . .

® e,




m The previous identity, )., deg(v) = 2|E|, in Lemma 1 is a special
case of the following general identity.

Proposition 2.

Let F be a family of subsets of some ground set X. Then

Zd(x) = z 4] .

xXeX

A€EF

m Consider the |X| x |F| incidence matrix M = (my 4), x

where

ifx € A4,
otherwise.

X2

X|x|

The matrix M




Proposition 2.

Let F be a family of subsets of some ground set X. Then

Zd(x) = Z 4] .

xeX A€F

m Consider the |X| x |F| incidence matrix M = (m, 4),

where _
N 1, if x € A, X4
x40, otherwise. »

m Then,
- The d(x) is the number of 1s in the x-th row.

X| x|

- |A| Is the number of 1s in the A-th column.

m Theidentity counts the number of 1s in the matrix M.

The matrix M




m Note that, the concept of set family is equivalent to
hypergraphs, where

- The elements in X are the set vertices, and

- The subsets in F are the set of hyperedges.




Average Number of Divisors




The Number of Divisors

m How many numbers from {1, 2, ..., n} is a divisor of n ?
- Foranyn =1, let t(n) be the number of divisors of n.
m EX
t(p) = 2 for any prime number p.

t(2™) = m + 1 for any integer m > 1.




Average Number of Divisors

m How many numbers from {1, 2, ..., n} is a divisor of n ?

- Foranyn =1, let t(n) be the number of divisors of n.

- While t(n) varies a lot for different choices of n, we will see that,
the average number of divisors,

T(n) = % Z 0

1<i<n

IS quite stable and is roughly Inn for all n.




Proposition 1.10.

Foranyn =1,
|T(n) —Inn| < 1.

m Consider the n x n 0-1 matrix M = (m; ;), where

m;; =1 Ifand only iis a divisor of j.

1 2 3 4 5 6 7 8 |9
111 14 1 1 1 1 1 1 |1
\
2 1 1 1 1 The number of 1s
3 1 1 1 in the i-th column is
4 1 1 exactly t(i).
/




m Consider the n x n 0-1 matrix M = (m; ;), where

m;; =1 1fandonly iisadivisor of j.

\
The number of 1s
1 2 3 4 5 6 7 8|9 in the i-th column is
111 1 1 1 1 1 1 1 |1 exactly t(i).
2 1 1 1 1 /
3 1 1 1
. | 1 The number of 1s
In the i-th row is |[n/i].

m Counting the number of 1s in the matrix,

we have 1;71{?‘ _ 12 t(i) = n-T(n).

sisn i by the definition of T(n). }




We have Z H‘ — Z t(i) = n-T(n).

<i<n

Since x —1 < |x] < x holds for every real number x,
we obtain

1 1
n-ZY—n < n-T) Sn'ZY'

1<i<n 1<i<n

. 1 N
The nt"-harmonic number, H,, == Y1 ;< = satisfies

H,=Inn+y, forsome0 <y, <1.

Hence, we obtain Inn—1 < T(n) < Inn+1.



Turan Number




Turan Number T'(n, k, I)

m Consider any ground set X with n elements.

m Foranyl <k <n,
the Turan number T(n, k, 1) is the smallest number of [-element

subsets of X such that

every k-element subset of X contains
at least one of these l-element subsets.

How many [-element subsets do we need?




Turan Number T'(n, k, I)

m Foranyn=3,k=2,l=1, we have

One way to achieve this

T(3,2,1) = 2.

Any 2-element subset
must contain {x;} or {x,}.

It won't suffice,
If only one 1-element subset was chosen.



Turan Number T'(n, k, I)

m Foranyn =4,k =3,l=2,we have

T(4,3,2) =2.
o Any 3-element subset
must contain {x;, x,} or {x3, x,}.
It won’t suffice,

If only one 2-element subset was chosen.
One way to achieve this




Proposition 1.9.

For all positive integers [ < k < n,

Tk, 1) > (?)/(f) |

m Let F be a smallest [-uniform family over X such that
every k-element subset of X contains at least one member of F.

- In the following,
we derive a lower-bound on |F].




m Consider a 0-1 matrix M = (m, ) with size |F| x (), where

- The rows are indexed by sets A in F and

- The columns are indexed by all possible k-element subsets of X,

and
My p =

For each [-element subset 4,

the number of k-element
subsets that contains A Is

exactly (7_}).

if A C B,
otherwise.

B, B, By - By

The matrix M

Since every k-element subset
of X contains at least one
member of F,

there is at least one 1
in each column.



I B, B, By - B(Z)

Aq Since every k-element subset of X
For each [-element subset 4, A, contains at least one member of F,
the number of k-element subsets : there exists at least one 1
containing the set A4 is exactly (’;j : in each column.
Ajr|
The matrix M

m Letr, be the number of 1s in row A and cg the number of 1s in column B.

m Counting the number of 1s in M, we have

(10 - - See ()

A€EF B

oo == (/7 = (/%)

and




The Pascal Triangle

& Binomial Identities




The Pascal’s Triangle

k=0
Y
m Consider the pyramid of nodes, o (0 / e =1
formed by L /
the binomial coefficients. n= 1 ———— ((1))/ 1 k=2




The Pascal’s Triangle ,/

k" diagonal

/

.

We place the binomial coefficient (7, ) 3>
in the cell at the nt" row, k" diagonal. \

nt" row




The Pascal’s Triangle

Consider any downward path
from (0,0) to (n, k).

- Only ‘L' or ‘R’ is allowed.

It must use -{ k ‘R’s
n—k ‘Ls.

The number of such paths is

exactly ().




Lemma 3.

For any n, k € N with n > k, we have

=" )+ (o

)

m Any downward path to (n, k)
mustpass(n—1,k)or(n—1,k—1).

m The number of downward paths
to (n, k) equals the sum of number of
pathsto(n—1,k)and (n— 1,k — 1).




Lemma 4.

For any n € Z3°, we have Z (n) _on

m Consider the number of all possible downward paths to the nt* row.
- Itis the sum of the number of possible paths to each cell,
which is Y o<r<n( 7 )-

- lItis also the number of possible arrangements (permutations)
with a total number of n ‘L's or ‘R’s, and is hence 2".

- By the double-counting principle, they are equal.




Lemma b.

Forany n,r € Z%°, n >,

> (7)=05)

0<ksn-r

m Consider the set of all possible downward pathsto (n + 1,7 + 1).
- There are (1) such paths.

- Any of such paths must go to some cell at the rt*-diagonal,
then followed by exactly one ‘R’ and then some ‘L’s.




Lemma b.

rth diagonal
)

Forany n,r € Z®°, n>r,

S (- ()

0<sksn-r

/

one ‘R’

A downward pathto (n + 1,7 + 1)
(n,7) some ‘L's

R/ L L - L

\ ) \ )
1 1

A downward path Zero or more ‘L's ‘
to (¢,r)

forsomer <f<n The last ‘R’ in the path_ }

n+1,r+1)




m Consider the set of all possible downward pathsto (n + 1,7 + 1).
- There are (717 such paths.

- Any of such paths must go to some cell at the rt*-diagonal,
then followed by exactly one ‘R’ and then some ‘L’s.

m ldentify such paths by its last ‘R’.

L r+k
— h paths.
m Then, there are z (r) z ( Ny ) such paths

r<f<n 0sksn-r

- By double counting principle, they are equal.




Lemma 6.

For any n € Z3Y,

m Consider the set of all possible downward paths to (2n,n).
- There are ("} ) such paths.

- ldentify any of such paths by the cell it reaches at the nt"*-row.

m Suppose thatitis (n, k).

m Let's count the number of such paths.




Lemma 6.
(0,0)
For any n € 720 This part uses
-{ k ‘R’s
n\2 m n—kLs.
Z (k) - (n) '
0<k=n 3
Tlth F'Oow ——- ’ (n, k)
m The upper-part uses k ‘R'sand n — k ‘L’s.
- There are (} ) such paths. This part uses
-i n—k‘R’s
m The lower-part usesn —k ‘R'sand k ‘L’s. ./ kK ‘Us.
(2n,n)

- Thereare (" ) = () such paths.




m Consider the set of all possible downward paths to (2n,n).
- There are ("} ) such paths.
- ldentify any of such paths by the cell it reaches at the nt"*-row.
m Suppose thatitis (n, k).

m By the above argument, there are (’,;‘)2 such paths.

- Taking summation over the cells at the nt"-row,

there are z (2)2 such paths.

0<k=n

m By the double-counting principle, they are equal.




The Catalan Numbers




The Catalan Number C,

m Consider the n X n grid points and
any path from (0,0) to (n,n) that uses only ‘up’ and ‘right’.

(n,0) (n,n)

A

o>

(0,n)




The Catalan Number C,

m Consider the n X n grid points and
any path from (0,0) to (n,n) that uses only ‘up’ and ‘right’.

m Define the Catalan number C,, to be the number of possible paths
that never cross the diagonal connecting (0,0) and (n,n).

m We will prove that (n,0) (n,n)
2n 2n 1+
«= ()62 S
gt
N,
(0,0) (0,n)




(n,0)

gn, n)

m We will prove that

S

- (-2 ;
n n — :l\l/

|+
. . o (0,0) -
m It is clear that without extra restrictions,

the set of all possible paths that go from (0,0) to (n,n) is ().

m [t suffices to prove that,

the number of paths that have crossed the diagonal is exactly (°").

(0,n)



m It suffices to prove that,

the number of paths that have crossed the diagonal is (nzfl .

m Consider any of such path and the first time that it crosses the
diagonal, say, at the node (i, i).

(n,n)

a I
The 1°¢ part of the path (i+1,0) \/The 2™ part of the path
uses i+ 1 ‘up’s and usesn —i— 1 ‘up’s and
i ‘right’s. ) n —iN‘right’s. y

N
[ One ‘up’ more than ‘right’ (0,0)

[ One ‘right’ more than ‘up’ }




m It suffices to prove that,

the number of paths that have crossed the diagonal is (nzfl .

m Consider any of such path and the first time that it crosses the

diagonal, say, at the node (i, i).

~

Exchange ‘up’s with ‘right’s
for the 2™¢ part of the path.

-

The 15t part of the path (i+1,0)

/

\

The 24 part of the path

usesi+ 1 ‘up’s and

i ‘right’s. y
_—7

-
[ One ‘up’ more than ‘right’ (0,0)

usesn—i—1‘up’s and

n — i ‘right’s. )

[ One ‘right’ more than ‘up’ }




m Consider any of such path and the first time that it crosses the

diagonal, say, at the node (i, i).

The new path has n —i ‘up’s and

n—1i—1 ‘right’s.

Hence, it will reach (n + 1,n — 1). }

n+1,n-—1)

{ One ‘up’ more than ‘right’ ]

e
The 15¢ part of the path

usesi+ 1 ‘up’s and
i ‘right’s.

[ One ‘up’ more than ‘right’

_—7 e

Exchange ‘up’s with ‘right’s
for the 2™¢ part of the path.

~

)

The 24 part of the path
usesn—i—1‘up’s and
n — i ‘right’s.

NX—

\

/

[ One ‘right’ more than ‘up’ }




m Observe that, this Is a one-to-one correspondence between

paths that cross the diagonal and paths that reach (n + 1,n — 1).

[ Hence, it willreach (n + 1,n — 1). J
The new path has n — i ‘up’s and

n—1i—1 ‘right’s.

n+1,n—-1) Y

(n,n) Exchange ‘up’s with ‘right’s

[ One ‘up’ more than ‘right’ J
for the 2™¢ part of the path.

—— \_ J
/ N
~
The 1°* part of the path Gi+1,0) \/The 2™ part of the path
uses i+ 1 ‘up’s and - usesn—i—1‘up’s and
\i right’s. e n —iN‘right’s. y

{ One ‘up’ more than ‘right’ } (0,0) [ One ‘right’ more than ‘up’ }




m It suffices to prove that,

the number of paths that have crossed the diagonal is (nzfl .

m Consider any of such path and the first time that it crosses the
diagonal, say, at the node (i, i).

- There Is a one-to-one correspondence between
paths that cross the diagonal and paths that reach (n + 1,n — 1).

- Hence,

the number of paths that have crossed the diagonal is (nzfl .




The Density of 0-1 Matrices




m LetHbeanm X n0-1 matrixand 0 < a <1 be areal number.

- We say that H Is a-dense,

If at least an a-fraction of its entries are 1s,
l.e.,

#oflsinH > a-mn.

- Similarly, a row (column) is a-dense,
If at least an a-fraction of its entries are 1s.




Lemma 2.13 (Grigni and Sipser 1995). Note that, vVa = «
when a < 1.

If H IS 2a-dense, then either

1. There exists a row which is v/a-dense, or

2. Atleast /a - m of the rows are a-dense.

m If H Is dense, then either
- There exists a row that is very dense, or

- A certain fraction of rows must be dense enough.

m Intuitively,
If the first condition does not hold, then the second must hold.




Lemma 2.13 (Grigni and Sipser 1995).

If H Is 2a-dense, then either
1. There exists a row which is +/a-dense, or

2. Atleast \/a - m of the rows are a-dense.

m Suppose that both of the cases do not hold.
- By 2, less than +/a - m rows are a-dense.

- By 1, each of the above rows has less than \/a - n 1s.

- Hence, the total number of 1s in these a-dense rows Is
less than a -+a-mn=a«a-mn.




m Suppose that both of the cases do not hold.
- By 2, less than \/a - m rows are a-dense.

- By 1, each of the above rows has less than \/a - n 1s.

- Hence, the total number of 1s in these a-dense rows IS
less than a -+a-mn=a«a-mn.

m Consider the remaining non-a-dense rows.

- The number of 1s in these rows Is less than a - mn.

m Hence, the total number of 1s in H is strictly less than 2a - mn,
a contradiction.




The Number of Sufficiently Dense Rows

(Columns) in a Dense Matrix.




Q: How many rows or columns of an a-dense matrix
will be "dense enough?”

m In the following,
let's use a general setting to answer this question!

m LetA, A, ..., A be finite sets, and

consider the Cartesian product of 4; Then, the Cartesian product
A={(,j)):1<i<ml1<j<n}

IS the coordinates of the entries.

To relate the two concepts, for m X n 0-1 matrix,
we have A, ={1,2,..,m}, A, = {1,2, ...,n}.




To relate the two concepts,
m Let A4,A4,, ..., A, be finite sets, and for an m x n 0-1 matrix, we have

consider the Cartesian product of 4; A ={1,2,..,m}, A; ={1,2, ..., n}.

A =A1 XAZ X“'XAk.
1 The set of entries that are 1.

m Let D C A be the set of elements of interests.

- Forany b € A4;,

' ' ber of 1s |
define the degree of b in D as & "
the b™-row (column).

dp(b) = |[ta € D:a; = b},

l.e., the number of elements of interests
whose it"-coordinate is b.




0 number of 1s (or, density)
In that row (column)
D] IS at least 1/4 of
dp(b) = TRVE the average.

m We say that a point b € A4; is popular in D, if

l.e., the degree of b is at least 1/2k times the average degree
of the elements in 4;.

m Let P; € A; be the set of all popular elements in 4;, and let

P =Py XP; XX Py. €= The entries formed by
popular rows and columns.

Lemma 2.14 (Hastad).
|P| > |D|/2.




} 4 (et Since
emma 2.14 (Hastad). |P|>|PnD|=|D|—-|D\P|

IP| > |D|/2. 1 |

m It suffices to prove that |D \ P| < |D|/2.

- For every non-popular point b € A4;, we have

1 D RREE

dp(b) = [{a € D:a; = b}| < 2k.|Ai|'

- Counting the elementsin |D \ P|, we have

IDAPI < Z Z dp(b) < Z Z zlk'||j1)il|

1<i<k b€A;\P; 1<i<k b€A;\P;

Any elementin |D \ P| is counted < i - |D| = 1 D]
at least once in the summation. A; \ Pi| < |4;] | — z 2k 2 '
1<i<k




Q: How many rows or columns of an a-dense matrix
will be “dense enough®?”

m Interpret D as the entries with 1 in the matrix M.

- Lemma 2.14 says that,
the size of |P| = |P4| - |P,| is lower-bounded by [D|/2.

- Provided that |D] is large, at least one of |P;|, |P,| must be large.

Corollary 2.15.

In any 2a-dense 0-1 matrix H, either a \/a-fraction of its rows or
a +/a-fraction of its columns (or both) are a/2-dense.




Corollary 2.15.

In any 2a-dense 0-1 matrix H, either a \/a-fraction of its rows or
a +/a-fraction of its columns (or both) are a/2-dense.

m Let H be an m X n matrix and D be the set of entries of 1.
m Let P, and P, be the set of popular rows and columns, respectively.

- Foranyi € P;, we have

1 |D] - 1 2a-mn
2k Al — 4 m

a
degD(l) = = E'n;

which implies that i is a/2-dense.

- Similarly, any j € P, is also a/2-dense.




m Let H be an m X n matrix and D be the set of entries of 1.
m Let P, and P, be the set of popular rows and columns, respectively.

- Any row/column b € P, UP, is a/2-dense.

m BylLemma2.14, |Py|-|P,| = |D|/2 = a - mn,

which implies that  |[P1| [P
m n

a .

P, P,
|1_\/_0r||

m Hence, either > Ja must hold.

n

m This proves the statement of this corollary.




Principle of Inclusion and Exclusion




The Inclusion-Exclusion Principle

m Letd, A, ..., A4, € X be given sets.
Forany I € {1,2,...,n},

define A; = ﬂAi with the convention that Ay = X .

LEI

®




Let A4, A,, ..., A,, € X be given sets. Forany I € {1,2, ...,n},

define A, = ﬂAi with the convention that Ay = X .

LEI

Theorem 3. (The inclusion-exclusion principle)

Let A4, A4,, ..., A,, be a sequence of sets. We have

LJa|= ) o
1<isn

1€{1,2,...,n},
1EX0)

= > ) D4l

0<k=n I<{1,2,..n},
|I|=k

Let’s first derive |N;<j<n 4il-



Proposition 1.13 (Inclusion-Exclusion Principle).

Let A4, ..., A,, be subsets of X.
Then the number of elements of X which lie in none of the subsets 4; is

> D4y

1S€{1,2,...,n}

m Rewrite the sum as

D EDiqal = ) Y (=i = H M (=l
I I

XEA] x L:x€A;

m For each x € X, consider the contribution of x to the above summation.

- If x € A; for all i, then the only term in the sum to which x contributesis I = @,
and the contribution is 1.




m Rewrite the sum as

Z( DI |4, = ZZ< DI = )" N (=nh

XEA] x I:x€Aj

m For each x € X, consider the contribution of x to the above summation.

- If x € A; for all i, define
J={i:x€A; }#0.

Thenx € A;ifandonly if I < J.

— Thus, the contribution is

D=y (”') (1) = A-DV = 0.

=) O<is<|J]

- So, the overall sum is the number of points lying in none of the sets.




Proposition 1.14 (Inclusion-Exclusion Principle).

Let A4, ..., A,, be subsets of X. Then

Ay U UA,| = z (D14, .
@#IS{1,2,...,n}

m We have [A; U UA,| = |4g| = [A1nn4,]|.

m By Proposition 1.13, we obtain

A Uudl= Y (D)
G=IC{1,2,..,n}




