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The Double Counting Principle

If the elements of a set are counted in two different ways, 

the answers are the same.



Lemma 1.

In any graph 𝐺 = (𝑉, 𝐸), 

the number of vertices with odd degrees is even.

– For each 𝑣 ∈ 𝑉, let 𝑑(𝑣) denote the degree of 𝑣.

Then, we have

෍

𝑣∈𝑉

𝑑(𝑣) = 2 ⋅ 𝐸 .

Each edge is counted exactly twice.

2 ⋅ 𝐸 is an even number.

Hence, the number of vertices 

with odd degree must be even.



■ Consider the graph 𝐺 = (𝑉, 𝐸) defined on the guests, 

where 𝑢, 𝑣 ∈ 𝐸 if and only if guest 𝑢 and 𝑣 have shaken hands.

Handshaking Lemma.

At a party, the number of guests who shake hands an odd number

of times is even.

𝑢 𝑣



■ Let 𝐹 be a set family on a ground set 𝑋, i.e., 𝐹 is a collection of 

subsets of 𝑋.

– For any 𝑥 ∈ 𝑋, let 𝑑(𝑥) be the number of sets in 𝐹 that 

contain the element 𝑥, i.e., the degree of 𝑥 in 𝐹.

𝐴1 = 𝑒2, 𝑒4

𝐴2 = 𝑒1, 𝑒5, 𝑒7

𝐴3 = 𝑒3, 𝑒2, 𝑒6

𝐴4 = 𝑒1, 𝑒2, 𝑒6, 𝑒7

The sets in 𝑭

𝑒1

The ground set 𝑿

of elements

𝑒2

𝑒𝑛

…



■ The previous identity, σ𝑣 deg(𝑣) = 2 𝐸 , in Lemma 1 is a special 

case of the following general identity.

Proposition 2.

Let 𝐹 be a family of subsets of some ground set 𝑋.  Then

෍

𝑥∈𝑋

𝑑(𝑥) = ෍

𝐴∈𝐹

|𝐴| .

■ Consider the 𝑋 × 𝐹 incidence matrix 𝑀 = 𝑚𝑥,𝐴 , 

where

𝑚𝑥,𝐴 = ቊ
1, if 𝑥 ∈ 𝐴,
0, otherwise.

𝐴1 𝐴2 𝐴|𝐹|𝐴3 ⋯

𝑥1

𝑥2

𝑥|𝑋|

⋮

The matrix 𝑀



■ Consider the 𝑋 × 𝐹 incidence matrix 𝑀 = 𝑚𝑥,𝐴 , 

where

𝑚𝑥,𝐴 = ቊ
1, if 𝑥 ∈ 𝐴,
0, otherwise.

■ Then, 

– The 𝑑(𝑥) is the number of 1s in the 𝑥-th row.

– |𝐴| is the number of 1s in the 𝐴-th column.

■ The identity counts the number of 1s in the matrix 𝑴.

Proposition 2.

Let 𝐹 be a family of subsets of some ground set 𝑋.  Then

෍

𝑥∈𝑋

𝑑(𝑥) = ෍

𝐴∈𝐹

|𝐴| .

𝐴1 𝐴2 𝐴|𝐹|𝐴3 ⋯

𝑥1

𝑥2

𝑥|𝑋|

⋮

The matrix 𝑀



■ Note that, the concept of set family is equivalent to

hypergraphs, where

– The elements in 𝑋 are the set vertices, and 

– The subsets in 𝐹 are the set of hyperedges.



Average Number of Divisors



The Number of Divisors

■ How many numbers from 1, 2,… , 𝑛 is a divisor of 𝑛 ?

– For any 𝑛 ≥ 1, let 𝑡(𝑛) be the number of divisors of 𝑛.

■ Ex. 

𝑡 𝑝 = 2 for any prime number 𝑝.

𝑡 2𝑚 = 𝑚 + 1 for any integer 𝑚 ≥ 1.



Average Number of Divisors

■ How many numbers from 1, 2,… , 𝑛 is a divisor of 𝑛 ?

– For any 𝑛 ≥ 1, let 𝑡(𝑛) be the number of divisors of 𝑛.

– While 𝑡(𝑛) varies a lot for different choices of 𝑛, we will see that, 

the average number of divisors, 

Τ 𝑛 ≔
1

𝑛
⋅ ෍

1≤𝑖≤𝑛

𝑡(𝑖)

is quite stable and is roughly ln 𝑛 for all 𝑛.



■ Consider the 𝑛 × 𝑛 0-1 matrix 𝑀 = 𝑚𝑖,𝑗 , where 

𝑚𝑖,𝑗 = 1 if and only 𝑖 is a divisor of 𝑗.

Proposition 1.10.

For any 𝑛 ≥ 1,
Τ 𝑛 − ln 𝑛 ≤ 1 .

1 2 3 4 5 6 7 8 9

1 1 1 1 1 1 1 1 1 1

2 1 1 1 1

3 1 1 1

4 1 1

The number of 1s 

in the 𝑖-th column is 

exactly 𝑡(𝑖).



■ Consider the 𝑛 × 𝑛 0-1 matrix 𝑀 = 𝑚𝑖,𝑗 , where 

𝑚𝑖,𝑗 = 1 if and only 𝑖 is a divisor of 𝑗.

■ Counting the number of 1s in the matrix, 

we have
෍

1≤𝑖≤𝑛

𝑛

𝑖
= ෍

1≤𝑖≤𝑛

𝑡(𝑖) = 𝑛 ⋅ Τ 𝑛 .

1 2 3 4 5 6 7 8 9

1 1 1 1 1 1 1 1 1 1

2 1 1 1 1

3 1 1 1

4 1 1
The number of 1s 

in the 𝑖-th row is Τ𝑛 𝑖 .

The number of 1s 

in the 𝑖-th column is 

exactly 𝑡(𝑖).

by the definition of Τ(𝑛).



■ We have
෍

1≤𝑖≤𝑛

𝑛

𝑖
= ෍

1≤𝑖≤𝑛

𝑡(𝑖) = 𝑛 ⋅ Τ 𝑛 .

■ Since  𝑥 − 1 ≤ 𝑥 ≤ 𝑥 holds for every real number 𝑥, 

we obtain

𝑛 ⋅ ෍

1≤𝑖≤𝑛

1

𝑖
− 𝑛 ≤ 𝑛 ⋅ Τ 𝑛 ≤ 𝑛 ⋅ ෍

1≤𝑖≤𝑛

1

𝑖
.

■ The 𝑛𝑡ℎ-harmonic number, 𝐻𝑛 ≔ σ1≤𝑖≤𝑛
1

𝑖
, satisfies 

𝐻𝑛 = ln 𝑛 + 𝛾𝑛 for some 0 ≤ 𝛾𝑛 ≤ 1.

■ Hence, we obtain   ln 𝑛 − 1 ≤ Τ 𝑛 ≤ ln 𝑛 + 1 .



Turán Number



Turán Number 𝑇(𝑛, 𝑘, 𝑙)

■ Consider any ground set 𝑋 with 𝑛 elements.

■ For any 𝑙 ≤ 𝑘 ≤ 𝑛, 

the Turán number 𝑻(𝒏, 𝒌, 𝒍) is the smallest number of 𝑙-element 

subsets of 𝑋 such that 

every 𝑘-element subset of 𝑋 contains 

at least one of these 𝒍-element subsets.

How many 𝑙-element subsets do we need?



Turán Number 𝑇(𝑛, 𝑘, 𝑙)

■ For any 𝑛 = 3, 𝑘 = 2, 𝑙 = 1, we have

𝑇 3,2,1 = 2 .

𝑥1

𝑥2

𝑥3

Any 2-element subset 

must contain 𝑥1 or 𝑥2 .

It won’t suffice, 

if only one 1-element subset was chosen.
One way to achieve this



Turán Number 𝑇(𝑛, 𝑘, 𝑙)

■ For any 𝑛 = 4, 𝑘 = 3, 𝑙 = 2, we have

𝑇 4,3,2 = 2 .

𝑥1 𝑥2 Any 3-element subset 

must contain 𝑥1, 𝑥2 or 𝑥3, 𝑥4 .

It won’t suffice, 

if only one 2-element subset was chosen.

𝑥3 𝑥4

One way to achieve this



■ Let 𝐹 be a smallest 𝑙-uniform family over 𝑋 such that 

every 𝑘-element subset of 𝑋 contains at least one member of 𝐹. 

– In the following, 

we derive a lower-bound on 𝐹 .

Proposition 1.9.

For all positive integers 𝑙 ≤ 𝑘 ≤ 𝑛,

𝑇 𝑛, 𝑘, 𝑙 ≥ ൘
𝑛

𝑙

𝑘

𝑙
.



■ Consider a 0-1 matrix 𝑀 = 𝑚𝐴,𝐵 with size 𝐹 × 𝑛
𝑘

, where 

– The rows are indexed by sets 𝐴 in 𝐹 and 

– The columns are indexed by all possible 𝑘-element subsets of 𝑋,

and 
𝑚𝐴,𝐵 = ቊ

1, if 𝐴 ⊆ 𝐵,
0, otherwise.

𝐵1 𝐵2 𝐵 𝑛
𝑘𝐵3 ⋯

𝐴1

𝐴2

𝐴|𝐹|

⋮

The matrix 𝑀

For each 𝑙-element subset 𝐴, 

the number of 𝑘-element 

subsets that contains 𝐴 is 

exactly 𝑛−𝑙
𝑘−𝑙

.

Since every 𝑘-element subset 

of 𝑋 contains at least one 

member of 𝐹,

there is at least one 1 

in each column.



■ Let 𝑟𝐴 be the number of 1s in row 𝐴 and 𝑐𝐵 the number of 1s in column 𝐵.

■ Counting the number of 1s in 𝑀, we have

𝐹 ⋅
𝑛 − 𝑙

𝑘 − 𝑙
= ෍

𝐴∈𝐹

𝑟𝐴 = ෍

𝐵

𝑐𝐵 ≥ 1 ⋅
𝑛

𝑘
,

and 

𝑇 𝑛, 𝑘, 𝑙 = 𝐹 ≥ ൘
𝑛

𝑘

𝑛 − 𝑙

𝑘 − 𝑙
= ൘

𝑛

𝑙

𝑘

𝑙
.

𝐵1 𝐵2 𝐵 𝑛
𝑘𝐵3 ⋯

𝐴1

𝐴2

𝐴|𝐹|

⋮

The matrix 𝑀

Since every 𝑘-element subset of 𝑋

contains at least one member of 𝐹,

there exists at least one 1 

in each column.

For each 𝑙-element subset 𝐴, 

the number of 𝑘-element subsets 

containing the set 𝐴 is exactly 𝑛−𝑙
𝑘−𝑙

.



The Pascal Triangle 

& Binomial Identities



The Pascal’s Triangle

0

0

1

1

1

0

2

1

2

2

2

0

3

1

3

2

3

0

3

3

𝑘 = 0

𝑘 = 1

𝑘 = 2

𝑘 = 3

𝑛 = 0

𝑛 = 1

𝑛 = 2

𝑛 = 3

… … … … …

■ Consider the pyramid of nodes,

formed by 

the binomial coefficients.



0

0

1

1

1

0

2

1

2

2

2

0

𝑘 = 0

𝑘 = 1
𝑛 = 0

𝑛 = 1

𝑛 = 2

… … … …

𝑛𝑡ℎ row

𝑘𝑡ℎ diagonal

We place the binomial coefficient 𝑛
𝑘

in the cell at the 𝑛𝑡ℎ row, 𝑘𝑡ℎ diagonal.

𝒏

𝒌

The Pascal’s Triangle

We place the binomial coefficient 𝑛
𝑘

in the cell at the 𝑛𝑡ℎ row, 𝑘𝑡ℎ diagonal.

𝑘𝑡ℎ diagonal

We place the binomial coefficient 𝑛
𝑘

in the cell at the 𝑛𝑡ℎ row, 𝑘𝑡ℎ diagonal.



The Pascal’s Triangle

0

0

1

1

1

0

2

1

2

2

2

0

3

1

3

2

3

0

3

3

𝑘 = 0

𝑘 = 1

𝑘 = 2

𝑘 = 3

𝑛 = 0

𝑛 = 1

𝑛 = 2

… … … … …

■ Consider any downward path

from 0,0 to 𝑛, 𝑘 .

– Only ‘L’ or ‘R’ is allowed.

■ It must use         𝑘 ‘R’s 

𝑛 − 𝑘 ‘L’s .

■ The number of such paths is 

exactly 𝑛
𝑘

.



𝑛 − 1

𝑘 − 1

𝑛 − 1

𝑘

𝑛

𝑘

Lemma 3.

For any 𝑛, 𝑘 ∈ ℕ with 𝑛 > 𝑘, we have

𝑛

𝑘
=

𝑛 − 1

𝑘
+

𝑛 − 1

𝑘 − 1
.

■ Any downward path to (𝑛, 𝑘)

must pass (𝑛 − 1, 𝑘) or (𝑛 − 1, 𝑘 − 1).

■ The number of downward paths 

to (𝑛, 𝑘) equals the sum of number of 

paths to (𝑛 − 1, 𝑘) and (𝑛 − 1, 𝑘 − 1).



Lemma 4.

For any 𝑛 ∈ ℤ≥0, we have
෍

0≤𝑘≤𝑛

𝑛

𝑘
= 2𝑛.

■ Consider the number of all possible downward paths to the 𝑛𝑡ℎ row.

– It is the sum of the number of possible paths to each cell, 

which is σ0≤𝑘≤𝑛
𝑛
𝑘

.

– It is also the number of possible arrangements (permutations) 

with a total number of 𝑛 ‘L’s or ‘R’s, and is hence 2𝑛.

– By the double-counting principle, they are equal.



Lemma 5.

For any 𝑛, 𝑟 ∈ ℤ≥0, 𝑛 ≥ 𝑟, 

෍

0≤𝑘≤𝑛−𝑟

𝑟 + 𝑘

𝑟
=

𝑛 + 1

𝑟 + 1
.

■ Consider the set of all possible downward paths to 𝑛 + 1, 𝑟 + 1 .

– There are 𝑛+1
𝑟+1

such paths.

– Any of such paths must go to some cell at the 𝒓𝒕𝒉-diagonal, 

then followed by exactly one ‘R’ and then some ‘L’s.



R L L L⋯

A downward path 

to ℓ, 𝑟

for some 𝑟 ≤ ℓ ≤ 𝑛

Lemma 5.

For any 𝑛, 𝑟 ∈ ℤ≥0, 𝑛 ≥ 𝑟, 

෍

0≤𝑘≤𝑛−𝑟

𝑟 + 𝑘

𝑟
=

𝑛 + 1

𝑟 + 1
.

𝑟, 𝑟

𝑛 − 1, 𝑟

𝑛, 𝑟

𝑛 + 1, 𝑟 + 1

𝑟𝑡ℎ diagonal

one ‘R’

some ‘L’s

A downward path to 𝑛 + 1, 𝑟 + 1

The last ‘R’ in the path.

Zero or more ‘L’s



■ Consider the set of all possible downward paths to 𝑛 + 1, 𝑟 + 1 .

– There are 𝑛+1
𝑟+1

such paths.

– Any of such paths must go to some cell at the 𝒓𝒕𝒉-diagonal, 

then followed by exactly one ‘R’ and then some ‘L’s.

■ Identify such paths by its last ‘R’.

■ Then, there are                                                   such paths.෍

𝑟≤ℓ≤𝑛

ℓ

𝑟
= ෍

0≤𝑘≤𝑛−𝑟

𝑟 + 𝑘

𝑟

– By double counting principle, they are equal.



Lemma 6.

For any 𝑛 ∈ ℤ≥0, 
෍

0≤𝑘≤𝑛

𝑛

𝑘

2

=
2𝑛

𝑛
.

■ Consider the set of all possible downward paths to 2𝑛, 𝑛 .

– There are 𝑛+1
𝑟+1

such paths.

– Identify any of such paths by the cell it reaches at the 𝑛𝑡ℎ-row.

■ Suppose that it is (𝑛, 𝑘).

■ Let’s count the number of such paths.



2𝑛, 𝑛

𝑛, 𝑘

0,0
This part uses 

𝑘 ‘R’s 

𝑛 − 𝑘 ‘L’s.

Lemma 6.

For any 𝑛 ∈ ℤ≥0, 

෍

0≤𝑘≤𝑛

𝑛

𝑘

2

=
2𝑛

𝑛
.

𝑛𝑡ℎ row

■ The upper-part uses 𝑘 ‘R’s and 𝑛 − 𝑘 ‘L’s.

– There are 𝑛
𝑘

such paths.

■ The lower-part uses 𝑛 − 𝑘 ‘R’s and 𝑘 ‘L’s.

– There are 𝑛
𝑛−𝑘

= 𝑛
𝑘

such paths.

This part uses 

𝑛 − 𝑘 ‘R’s 

𝑘 ‘L’s.



■ Consider the set of all possible downward paths to 2𝑛, 𝑛 .

– There are 𝑛+1
𝑟+1

such paths.

– Identify any of such paths by the cell it reaches at the 𝑛𝑡ℎ-row.

■ Suppose that it is (𝑛, 𝑘).

■ By the above argument, there are 𝑛
𝑘

2
such paths.

– Taking summation over the cells at the 𝑛𝑡ℎ-row, 

there are                       such paths.෍

0≤𝑘≤𝑛

𝑛

𝑘

2

■ By the double-counting principle, they are equal.



The Catalan Numbers



The Catalan Number 𝐶𝑛

■ Consider the 𝑛 × 𝑛 grid points and 

any path from 0,0 to 𝑛, 𝑛 that uses only ‘up’ and ‘right’.

0, 𝑛0,0

𝑛, 𝑛(𝑛, 0)



The Catalan Number 𝐶𝑛

■ Consider the 𝑛 × 𝑛 grid points and 

any path from 0,0 to 𝑛, 𝑛 that uses only ‘up’ and ‘right’.

■ Define the Catalan number 𝐶𝑛 to be the number of possible paths

that never cross the diagonal connecting 0,0 and 𝑛, 𝑛 .

■ We will prove that

𝐶𝑛 =
2𝑛

𝑛
−

2𝑛

𝑛 − 1
.

0, 𝑛0,0

𝑛, 𝑛(𝑛, 0)



■ We will prove that

𝐶𝑛 =
2𝑛

𝑛
−

2𝑛

𝑛 − 1
.

■ It is clear that without extra restrictions,

the set of all possible paths that go from 0,0 to 𝑛, 𝑛 is 2𝑛
𝑛

.

■ It suffices to prove that,

the number of paths that have crossed the diagonal is exactly 2𝑛
𝑛−1

.

0, 𝑛0,0

𝑛, 𝑛(𝑛, 0)



■ It suffices to prove that,

the number of paths that have crossed the diagonal is 2𝑛
𝑛−1

.

■ Consider any of such path and the first time that it crosses the 

diagonal, say, at the node 𝑖, 𝑖 .

0,0

𝑖, 𝑖

𝑖 + 1, 𝑖

𝑛, 𝑛

The 1𝑠𝑡 part of the path

uses 𝑖 + 1 ‘up’s and 

𝑖 ‘right’s.

The 2𝑛𝑑 part of the path

uses 𝑛 − 𝑖 − 1 ‘up’s and 

𝑛 − 𝑖 ‘right’s.

One ‘up’ more than ‘right’ One ‘right’ more than ‘up’



■ It suffices to prove that,

the number of paths that have crossed the diagonal is 2𝑛
𝑛−1

.

■ Consider any of such path and the first time that it crosses the 

diagonal, say, at the node 𝑖, 𝑖 .

0,0

𝑖, 𝑖

𝑖 + 1, 𝑖

𝑛, 𝑛

The 1𝑠𝑡 part of the path

uses 𝑖 + 1 ‘up’s and 

𝑖 ‘right’s.

The 2𝑛𝑑 part of the path

uses 𝑛 − 𝑖 − 1 ‘up’s and 

𝑛 − 𝑖 ‘right’s.

One ‘up’ more than ‘right’ One ‘right’ more than ‘up’

Exchange ‘up’s with ‘right’s 

for the 2𝑛𝑑 part of the path.



■ Consider any of such path and the first time that it crosses the 

diagonal, say, at the node 𝑖, 𝑖 .

The 1𝑠𝑡 part of the path

uses 𝑖 + 1 ‘up’s and 

𝑖 ‘right’s.

The 2𝑛𝑑 part of the path

uses 𝑛 − 𝑖 − 1 ‘up’s and 

𝑛 − 𝑖 ‘right’s.

One ‘up’ more than ‘right’ One ‘right’ more than ‘up’

Exchange ‘up’s with ‘right’s 

for the 2𝑛𝑑 part of the path.

0,0

𝑖, 𝑖

𝑖 + 1, 𝑖

𝑛, 𝑛

𝑛 + 1, 𝑛 − 1

The new path has 𝑛 − 𝑖 ‘up’s and

𝑛 − 𝑖 − 1 ‘right’s.

One ‘up’ more than ‘right’

Hence, it will reach 𝑛 + 1, 𝑛 − 1 .



■ Observe that, this is a one-to-one correspondence between 

paths that cross the diagonal and paths that reach 𝑛 + 1, 𝑛 − 1 .

The 1𝑠𝑡 part of the path

uses 𝑖 + 1 ‘up’s and 

𝑖 ‘right’s.

The 2𝑛𝑑 part of the path

uses 𝑛 − 𝑖 − 1 ‘up’s and 

𝑛 − 𝑖 ‘right’s.

One ‘up’ more than ‘right’ One ‘right’ more than ‘up’

Exchange ‘up’s with ‘right’s 

for the 2𝑛𝑑 part of the path.

0,0

𝑖, 𝑖

𝑖 + 1, 𝑖

𝑛, 𝑛

𝑛 + 1, 𝑛 − 1

The new path has 𝑛 − 𝑖 ‘up’s and

𝑛 − 𝑖 − 1 ‘right’s.

One ‘up’ more than ‘right’

Hence, it will reach 𝑛 + 1, 𝑛 − 1 .



■ It suffices to prove that,

the number of paths that have crossed the diagonal is 2𝑛
𝑛−1

.

■ Consider any of such path and the first time that it crosses the 

diagonal, say, at the node 𝑖, 𝑖 .

– There is a one-to-one correspondence between 

paths that cross the diagonal and paths that reach 𝑛 + 1, 𝑛 − 1 .

– Hence, 

the number of paths that have crossed the diagonal is 2𝑛
𝑛−1

.



The Density of 0-1 Matrices



■ Let 𝐻 be an 𝑚 × 𝑛 0-1 matrix and 0 ≤ 𝛼 ≤ 1 be a real number.

– We say that 𝐻 is 𝜶-dense, 

if at least an 𝛼-fraction of its entries are 1s,

i.e., # of 1s in 𝐻 ≥ 𝛼 ⋅ 𝑚𝑛 .

– Similarly, a row (column) is 𝜶-dense,

if at least an 𝛼-fraction of its entries are 1s.



■ If 𝐻 is dense, then either

– There exists a row that is very dense, or

– A certain fraction of rows must be dense enough.

■ Intuitively, 

if the first condition does not hold, then the second must hold.

Lemma 2.13 (Grigni and Sipser 1995).

If 𝐻 is 2𝛼-dense, then either

1. There exists a row which is 𝛼-dense, or

2. At least 𝛼 ⋅ 𝑚 of the rows are 𝛼-dense.

Note that, 𝛼 ≥ 𝛼

when 𝛼 ≤ 1.



■ Suppose that both of the cases do not hold.

– By 2, less than 𝛼 ⋅ 𝑚 rows are 𝛼-dense.

– By 1, each of the above rows has less than 𝛼 ⋅ 𝑛 1s.

– Hence, the total number of 1s in these 𝜶-dense rows is 

less than  𝛼 ⋅ 𝛼 ⋅ 𝑚𝑛 = 𝛼 ⋅ 𝑚𝑛.

Lemma 2.13 (Grigni and Sipser 1995).

If 𝐻 is 2𝛼-dense, then either

1. There exists a row which is 𝛼-dense, or

2. At least 𝛼 ⋅ 𝑚 of the rows are 𝛼-dense.



■ Suppose that both of the cases do not hold.

– By 2, less than 𝛼 ⋅ 𝑚 rows are 𝛂-dense.

– By 1, each of the above rows has less than 𝛼 ⋅ 𝑛 1s.

– Hence, the total number of 1s in these 𝜶-dense rows is 

less than  𝛼 ⋅ 𝛼 ⋅ 𝑚𝑛 = 𝛼 ⋅ 𝑚𝑛.

■ Consider the remaining non-𝜶-dense rows.

– The number of 1s in these rows is less than 𝛼 ⋅ 𝑚𝑛.

■ Hence, the total number of 1s in 𝐻 is strictly less than 2𝛼 ⋅ 𝑚𝑛, 

a contradiction.



The Number of Sufficiently Dense Rows 

(Columns) in a Dense Matrix.



Q: How many rows or columns of an 𝛼-dense matrix 

will be “dense enough?”

■ In the following, 

let’s use a general setting to answer this question!

■ Let 𝐴1, 𝐴2, … , 𝐴𝑘 be finite sets, and 

consider the Cartesian product of 𝐴𝑖

𝐴 = 𝐴1 × 𝐴2 ×⋯× 𝐴𝑘 .

To relate the two concepts, for 𝑚 × 𝑛 0-1 matrix, 

we have 𝐴1 = 1,2, … ,𝑚 , 𝐴2 = 1,2,… , 𝑛 . 

Then, the Cartesian product

𝐴 = 𝑖, 𝑗 ∶ 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛

is the coordinates of the entries.



■ Let 𝐴1, 𝐴2, … , 𝐴𝑘 be finite sets, and 

consider the Cartesian product of 𝐴𝑖

𝐴 = 𝐴1 × 𝐴2 ×⋯× 𝐴𝑘 .

■ Let 𝐷 ⊆ 𝐴 be the set of elements of interests.

– For any 𝑏 ∈ 𝐴𝑖, 

define the degree of 𝒃 in 𝐷 as

𝑑𝐷 𝑏 ≔ 𝑎 ∈ 𝐷: 𝑎𝑖 = 𝑏 ,

i.e., the number of elements of interests                                

whose 𝑖𝑡ℎ-coordinate is 𝑏.

The set of entries that are 1.

To relate the two concepts, 

for an 𝑚 × 𝑛 0-1 matrix, we have

𝐴1 = 1,2,… ,𝑚 , 𝐴2 = 1,2, … , 𝑛 . 

number of 1s in 

the 𝑏𝑡ℎ-row (column).



■ We say that a point 𝑏 ∈ 𝐴𝑖 is popular in 𝐷, if 

𝑑𝐷 𝑏 ≥
1

2𝑘
⋅
𝐷

𝐴𝑖
,

i.e., the degree of 𝑏 is at least Τ1 2𝑘 times the average degree

of the elements in 𝐴𝑖.

■ Let 𝑃𝑖 ⊆ 𝐴𝑖 be the set of all popular elements in 𝐴𝑖, and let

𝑃 ≔ 𝑃1 × 𝑃2 ×⋯× 𝑃𝑘 .

number of 1s (or, density) 

in that row (column) 

is at least 1/4 of 

the average.

Lemma 2.14 (Håstad).

𝑃 > 𝐷 /2.

The entries formed by

popular rows and columns.



■ It suffices to prove that  𝐷 ∖ 𝑃 < 𝐷 /2.

– For every non-popular point 𝑏 ∈ 𝐴𝑖, we have

𝑑𝐷 𝑏 = 𝑎 ∈ 𝐷: 𝑎𝑖 = 𝑏 <
1

2𝑘
⋅
𝐷

𝐴𝑖
.

– Counting the elements in 𝐷 ∖ 𝑃 , we have

𝐷 ∖ 𝑃 ≤ ෍

1≤𝑖≤𝑘

෍

𝑏∈𝐴𝑖∖𝑃𝑖

𝑑𝐷 𝑏 < ෍

1≤𝑖≤𝑘

෍

𝑏∈𝐴𝑖∖𝑃𝑖

1

2𝑘
⋅
𝐷

𝐴𝑖

≤ ෍

1≤𝑖≤𝑘

1

2𝑘
⋅ 𝐷 =

1

2
𝐷 .

Lemma 2.14 (Håstad).

𝑃 > 𝐷 /2.

Any element in 𝐷 ∖ 𝑃 is counted 

at least once in the summation. 𝐴𝑖 ∖ 𝑃𝑖 ≤ 𝐴𝑖

Since 

𝑃 ≥ 𝑃 ∩ 𝐷 = 𝐷 − 𝐷 ∖ 𝑃



Q: How many rows or columns of an 𝛼-dense matrix 

will be “dense enough?”

■ Interpret 𝐷 as the entries with 1 in the matrix 𝑀.

– Lemma 2.14 says that, 

the size of  𝑃 = 𝑃1 ⋅ 𝑃2 is lower-bounded by Τ𝐷 2.

– Provided that |𝐷| is large, at least one of 𝑃1 , 𝑃2 must be large.

Corollary 2.15.

In any 2𝛼-dense 0-1 matrix 𝐻, either a 𝛼-fraction of its rows or 

a 𝛼-fraction of its columns (or both) are Τ𝛼 2-dense.



■ Let 𝐻 be an 𝑚 × 𝑛 matrix and 𝐷 be the set of entries of 1.

■ Let 𝑃1 and 𝑃2 be the set of popular rows and columns, respectively.

– For any 𝑖 ∈ 𝑃1, we have 

deg𝐷 𝑖 ≥
1

2𝑘
⋅
𝐷

𝐴1
≥

1

4
⋅
2𝛼 ⋅ 𝑚𝑛

𝑚
≥

𝛼

2
⋅ 𝑛 ,

which implies that 𝑖 is Τ𝛼 2-dense. 

– Similarly, any 𝑗 ∈ 𝑃2 is also Τ𝛼 2-dense.

Corollary 2.15.

In any 2𝛼-dense 0-1 matrix 𝐻, either a 𝛼-fraction of its rows or 

a 𝛼-fraction of its columns (or both) are Τ𝛼 2-dense.



■ Let 𝐻 be an 𝑚 × 𝑛 matrix and 𝐷 be the set of entries of 1.

■ Let 𝑃1 and 𝑃2 be the set of popular rows and columns, respectively.

– Any row / column 𝑏 ∈ 𝑃1 ∪ 𝑃2 is Τ𝛼 2-dense.

■ By Lemma 2.14, 𝑃1 ⋅ 𝑃2 ≥ 𝐷 / 2 ≥ 𝛼 ⋅ 𝑚𝑛, 

which implies that 𝑃1
𝑚

⋅
𝑃2
𝑛

≥ 𝛼 .

■ Hence, either                                                      must hold.𝑃1
𝑚

≥ 𝛼 or
𝑃2
𝑛

≥ 𝛼

■ This proves the statement of this corollary.



Principle of Inclusion and Exclusion



The Inclusion-Exclusion Principle

■ Let 𝐴1, 𝐴2, … , 𝐴𝑛 ⊆ 𝑋 be given sets. 

For any 𝐼 ⊆ 1,2, … , 𝑛 , 

define                         with the convention that                .

𝐴 𝐵

𝐶

𝐴𝐼 ≔ሩ

𝑖∈𝐼

𝐴𝑖 𝐴𝜙 = 𝑋



Theorem 3. (The inclusion-exclusion principle)

Let 𝐴1, 𝐴2, … , 𝐴𝑛 be a sequence of sets. We have

ራ

1≤𝑖≤𝑛

𝐴𝑖 = ෍

𝐼⊆ 1,2,…,𝑛 ,
𝐼≠∅

−1 𝐼 +1 ⋅ 𝐴𝐼

= ෍

0<𝑘≤𝑛

෍

𝐼⊆ 1,2,…,𝑛 ,
𝐼 =𝑘

−1 𝑘+1 ⋅ 𝐴𝐼 .

■ Let 𝐴1, 𝐴2, … , 𝐴𝑛 ⊆ 𝑋 be given sets. For any 𝐼 ⊆ 1,2,… , 𝑛 , 

define                         with the convention that                .𝐴𝐼 ≔ሩ

𝑖∈𝐼

𝐴𝑖 𝐴𝜙 = 𝑋

Let’s first derive 1ځ≤𝑖≤𝑛𝐴𝑖 .



Proposition 1.13 (Inclusion-Exclusion Principle).

Let 𝐴1, … , 𝐴𝑛 be subsets of 𝑋. 

Then the number of elements of 𝑋 which lie in none of the subsets 𝐴𝑖 is

෍

𝐼⊆{1,2,…,𝑛}

−1 𝐼 ⋅ |𝐴𝐼| .

■ Rewrite the sum as

෍

𝐼

−1 𝐼 ⋅ 𝐴𝐼 = ෍

𝐼

෍

𝑥∈𝐴𝐼

−1 𝐼 = ෍

𝑥

෍

𝐼:𝑥∈𝐴𝐼

−1 𝐼 .

■ For each 𝑥 ∈ 𝑋, consider the contribution of 𝑥 to the above summation.

– If 𝑥 ∉ 𝐴𝑖 for all 𝑖, then the only term in the sum to which 𝑥 contributes is 𝐼 = ∅, 

and the contribution is 1.



■ Rewrite the sum as

෍

𝐼

−1 𝐼 ⋅ 𝐴𝐼 = ෍

𝐼

෍

𝑥∈𝐴𝐼

−1 𝐼 = ෍

𝑥

෍

𝐼:𝑥∈𝐴𝐼

−1 𝐼 .

■ For each 𝑥 ∈ 𝑋, consider the contribution of 𝑥 to the above summation.

– If 𝑥 ∈ 𝐴𝑖 for all 𝑖, define 
𝐽 = 𝑖 ∶ 𝑥 ∈ 𝐴𝑖 ≠ ∅ .

Then 𝑥 ∈ 𝐴𝐼 if and only if 𝐼 ⊆ 𝐽.

– Thus, the contribution is

෍

𝐼⊆𝐽

−1 𝐼 = ෍

0≤𝑖≤ 𝐽

𝐽

𝑖
⋅ −1 𝑖 = 1 − 1 𝐽 = 0 .

– So, the overall sum is the number of points lying in none of the sets.



Proposition 1.14 (Inclusion-Exclusion Principle).

Let 𝐴1, … , 𝐴𝑛 be subsets of 𝑋. Then

𝐴1 ∪⋯∪ 𝐴𝑛 = ෍

∅≠𝐼⊆{1,2,…,𝑛}

−1 𝐼 +1 ⋅ |𝐴𝐼| .

■ We have 𝐴1 ∪⋯∪ 𝐴𝑛 = 𝐴∅ − 𝐴1 ∩⋯∩ 𝐴𝑛 .

■ By Proposition 1.13, we obtain 

𝐴1 ∪⋯∪ 𝐴𝑛 = ෍

∅≠𝐼⊆ 1,2,…,𝑛

−1 𝐼 +1 ⋅ 𝐴𝐼 .


