
I2 Approximation Algorithms (Mong-Jen Kao): Homework #2 Due: November 22nd, 2024

There are 4 problems, accounting for 100% in total.

Problem 1 (25%). Given an undirected graph G = (V,E) with edge weight function
w : E → Q+ and a set of k terminals S = {v1, v2, . . . , vk} ⊆ V , the multiway cut prob-
lem is to compute a set of edges A with minimum weight such that the removal of A will
disconnect the terminals in S from each other.

For each 1 ≤ i ≤ k, define the isolating cut for vi to be a set of edges whose removal
disconnects vi from other terminals in S.

Consider the following greedy algorithm for multiway cut.

1. For 1 ≤ i ≤ k, compute the minimum-cost isolating cut for vi, by the max-flow min-cut
algorithm. Let the cut be Ai.

2. Output
⋃

1≤i≤k Ai.

Show that the above algorithm computes a 2-approximation for the multiway cut problem.
Describe how the algorithm can be modified to compute a 2(1−1/k)-approximation. Justify
the approximation guarantee.

Problem 2 (25%). Let G = (V,E) be a graph. Consider the following algorithm for the
vertex cover problem.

Algorithm 1 Greedy-Algo-4-VC

1: U ←− ∅, E ′ ←− E.
2: while E ′ is not empty do
3: Pick an arbitrary e = (u, v) from E ′.
4: Add u and v to U .
5: Remove all incident edges of u and v from E ′.
6: end while
7: Output U .

1. Prove that the above algorithm produces a 2-approximation for vertex cover on G.

2. Consider the following dual LP for the natural LP of the vertex cover problem.

max
∑
e∈E

ye LP-(*)

s.t.
∑

e∈E : e∋v

ye ≤ 1, ∀v ∈ V,

ye ≥ 0, ∀e ∈ E.

Interpret the above greedy algorithm as a dual-fitting process for LP-(*). Justify your
answer.
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Problem 3 (25%). Recall that, in the separation problem for a linear polytope Q ⊆ Rn,
we are given a point q ∈ Rn, and the goal is either to confirm that q ∈ Q or to produce a
separating hyperplane for q and Q.

Let G = (V,E) be an undirected graph with edge weight function w : E → Q+ and S =
{v1, v2, . . . , vk} ⊆ V be a set of k terminals. For any A ⊆ V , define δ(A) to be the set of
edges running between A and V \ A, i.e., the cut edges of A and V \ A.
For any A ⊆ V , define the connectivity requirement function f(A) as follows.

f(A) :=

{
1, if ∅ ≠ A ∩ S ⊊ S,

0, otherwise.

Consider the following LP relaxation for the Steiner tree problem.

min
∑
e∈E

we · xe LP-(*)

s.t.
∑

e∈δ(A)

xe ≥ f(A), ∀A ⊆ V,

xe ≥ 0, ∀e ∈ E.

Derive a separation oracle that can be used to answer the separation problem for this LP.
Justify the correctness of your algorithm.

Problem 4 (25%). In the partial vertex cover (PVC) problem, we are given a graph G =
(V,E) and a nonnegative integer k ∈ Z≥0, and the goal is to compute a minimum size subset
U ⊆ V that covers at least k edges. Define ℓ := |E| − k. We have the following natural LP.

min
∑
v∈V

xv LP-(PVC)

s.t. xu + xv + pe ≥ 1, ∀e = (u, v) ∈ E,∑
e∈E

pe ≤ ℓ,

xv, pe ≥ 0, ∀v ∈ V, e ∈ E.

1. Prove that, in any extreme point (basic feasible) solution (x,p) for LP-(PVC), at least
one of the following two conditions must hold.

(a) xv = 0 for some v ∈ V or pe ∈ {0, 1} for some e ∈ E.

(b) xv ≥ 1/2 holds for some v ∈ V .

2. Based on the above property, design an iterative rounding algorithm that produces a
2-approximation for the PVC problem. Justify your answer.
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