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LP Duality

Dual LP as a systematic process to bounding the primal LP.




Deriving Bounds for the LP

m Consider the following minimization LP.

min 7x; + X, + 5x3 (*) Let’s denote the objective by Obj.

S. t. X1 — Xy + 3x3 = 10,

5x1 + 2x, — x3 = 6,

m How can we derive a lower-bound on 0bj (and hence OPT(x)) ?

How small can the value of this LP be?




Lower-Bound Ver. 1

min 7x; + X, + 5x3 (*) Let’s denote the objective by Obj.
s.t. x;— x,+3x3 =10,

le + sz — X3 = 6,

m How can we derive a lower-bound on 0bj (and hence OPT(x)) ?

: W t
Since xq,x3,x3 =0, we have €geta
lower-bound
Ob] — 7x1 + X2 + SX3 = X1 — Xy + 3X3 > 10. of 10.
7x1 = x4 By (1)
xz 2 _xz

S5x3 = 3x3 How small can the value of this LP be?




Lower-Bound Ver. 2

min 7x; + X, + 5x3 (*) Let’s denote the objective by Obj.
s.t. x;— x,+3x3 =10,

le + sz — X3 = 6,

m How can we derive a lower-bound on 0bj (and hence OPT(x)) ?

Since x4,x,x3 = 0, we have We get a
By (1) + (2) lower-bound
Ob] = 7X1 -4 X9 - SX3 of 16.
7, 2 63y > (x;— X +3x3) + (5x; +2x, —x3) = 10+6 = 16.
X2 > Xy
S5x3 = 2x3

How small can the value of this LP be?




What is the best value we can get ? We ask.

Lower-Bound Ver. 3

min 7x; + X, + 5x3 (*) Let’s denote the objective by Obj.

s.t. x;— x,+3x3 =10,

le + sz — X3 = 6,

m How can we derive a lower-bound on 0bj (and hence OPT(x)) ?

Since x4,x,,x3 = 0, we have This time,
By 2*(1) + (2) -
. we get !
Obj = 7x1+ x5 + 5x; °

7x1 = 7% > 2:-(x; —x5+3x3) + (5x; +2x, —x3) = 20+ 6 = 26.

Xy = 0x,

5x3 = 5x3 _
How small can the value of this LP be?




Obtaining the Best Lower-Bound for ()

i Multiply by y; = 0

min 7X1 + X9 + 5x3 (*) i
s.t.  x; — x, + 3x3 > 10, |

5x1 + 2xy — x3 = 6, |

We get a new LP (*x).

Any feasible solution for (xx)
gives a valid lower-bound
on the value of (*)!

Xq1,%X7,%3 = 0. Multiply by y, = 0
e (1,0) -» 10
max 10y; + 6y, (++) 21) > 26
s.t. y; + 5y, <7, We want to maximize the lower-bound obtained!
—y1 +2y; =1,
The combined coefficient
3y1 — Y2 = 5 cannot exceed the

coefficient of Obj.



Obtaining the Best Upper-Bound for (xx*)

Apply the same idea on (x*)

s.t. y, + 5y, £7, ' and we get the LP (x) !
Multiply by x; = 0

1+ 2y; =1, 5 Moreover, the two LPs have
Multiply by x, = 0 :
3y, — y, < 5, Py iy 2 the same optimal value.
: 7 11
yl’yz 2 O' MUItlpIy by X3 = 0 (x1)x2)x3) = ZJ O;T - 26

e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e S e e e e e e e e e e e e e e e

-------------------------------------------------------------- (uy2) = 21) > 26

min 7X1 + X + SX3 (*)
o ) .
S.t. X, — X, + 3x3 = 10, We want to minimize the upper-bound obtained!
Sx1 + 2X; — X3 2 6, The combined coefficient
> 0. must be at least the
coefficient of Obj.



Primal and Dual LPs

m In general, the following two LPs are called primal- and dual- LPs to each other.

E 1sjsn E
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i 1sjsn i
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Primal and Dual LPs

m In general, the following two LPs, (P) and (D), are
called primal- and dual- LPs to each other.

mln z C] : x] (P) - -
1<jsn /-_ ___________ _-\
S. t. Zai,j-xJZbl Vi<i<m __A_ """
1<jsn —_— s — e — .. — .. —
xj =0 Vi<j<n N —/
max ' by, (D)
1<ism /‘

S. L. z aj " Yi < Cj, V1 <j<n,
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Primal and Dual LPs

m In short, we also write
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Primal and Dual LPs

m In general, the following two LPs, (P) and (D), are
called primal- and dual- LPs to each other.

————————————————————————————————————————————————————————————————————————————

m Inshort, we also write | ™min €% B 1 max y-b @)
i s.t. Ax = b i i s.t. yA < c i
E x=0 E E y = 0. E




Weak Duality of LPs

The primal and the dual LPs are in fact bounding each other.




The Weak Duality Theorem

min c-x (P) max y-b (D)
s.t. Ax = b, s.t. yA < c
x=0 y=0

______________________________________________________________________________________

m We have seen that, any feasible solution of (D) corresponds to
a valid way of combining the inequalities of (P), and
hence gives a lower-bound for the optimal value of (P), and vice versa.

- This is the weak duality theorem.




The Weak Duality Theorem

min c-x (P) max y-b (D)
s.t. Ax = b, s.t. yA < ¢,

i x=0 i i y=0
Theorem 1.

Let xo and y, be feasible solutions for LP-(P) and LP-(D), respectively.

Then, we have
C- Xy > Yo b.

By the feasibility of xo, and y, for LP-(P) and LP(D), we have

Yo'b < yo-(Axg) = (yod) -x9 < ¢ Xxp.




Deriving the Dual LP




DenV' ng the Dual LP Each variable in (P) corresponds to a constraint in (D),

l.e., a constraint bounding the combined coefficient.

min z G X (P) Each constraint in (P) corresponds to a variable in (D),
1 1<j< : p . . . -
i =" A7 l.e., the multiplier of the constraints.
i s.t z a;j-xj = by VI i, | e
E 1<jsn | -
| | s — [
x;20, Vi<j<n i S _
e — A - |y
ey e —J .

max > by, (D) ¥

1<ism

S. t. Z Cli'j Vi < Cj, V1 S] <n, i




The Natural LP for Vertex Cover

Vv eV, |
a constraint forv
_____________________________ - ’_____________________7#;' xvl xUZ xU3 nEs mas xvn
; - % Ve = (u’ 17) € E, % V1 Uy V3 ... .. Un
min Wy * Xy | |

s.t. oxy+x,>1 V(u,v) EE, € 1y
| — T — ez

x, >0,  VvEeV. es B D Uy N PG 1y
| es

For each row e = (u,v) € E in the matrix A4,

only column u and v are 1, and the remainings are O. Wi Wy W3 .. .. Wy,
00..010..010..0 e=(uvVv) Vv € V, we get a constraint
u % 1, ifvee,
Ale,v) _{ 0, otherwise. z Yo = Wp.

eeE:vee




The Dual Natural LP of Vertex Cover

m In conclusion, we get

x, = 0, Vv eV.

e€EE:vee

>0 Ve € E Vv € V, we get a constraint
ye — e .

1, if vee,
L VA(e’ v) - { 0, Otherwise_ Z Ye < Wy .

e€eE:vee

| S. t. Z Vo < Wy, Vv eV,




Examples of

Natural Primal-Dual Problems




Minimum Vertex Cover & Maximum Matching

m Givenagraph ¢ = (V, E), the (cardinality) vertex cover problem is to compute a
minimum vertex subset U € V such that, for any edge (u,v) € E,uorvisin U.

eeE:vee

. min Z Xy (P) E . max z Ve (D)
i vEV | | eckE i
i s.t. x,+x,2>1, V(u,v) € E, E<:;[>i s. t. z Ye < 1, Vv eV, i

______________________________________________________________

m The (cardinality) maximum matching problem is to compute a maximum size edge
subset M € E such that each vertex u € V is incident to at most edge in M.




Minimum Vertex Cover & Maximum Matching

m Givenagraph ¢ = (V,E), the (weighted) vertex cover problem is to compute a
minimum vertex subset U € V such that, for any edge (u,v) € E,uorvisin U.

eeE:vee

' min Z Wy, * Xy (P) E ' max z Ve (D) E
| VEV i i e€E |
st oxutx, =21, V(wv)EE, | <:;> i s. t. z Ve < Wy, Vv EV, |

m The (weighted) maximum matching problem is to compute a maximum size edge
multi-subset M € E such that each vertex u € V is incident to at most w,, edges in M.




Max-Flow & MIin-Cut | max Y &£ ® |
i vEV:(s,v)EE i
m The natural LPs for maximum flow st Z fuw — Z fow=0, YveV-—{st}
and minimum cut i uev:(u,v)€E wevV:(v,w)€EE i
i 0 < fur < Cuwr V(u,v) € E. ;

min z Cuv " Yuv (C)

(uv)EE
s. t. Yuv T2y = 1, Vv e V:(s,v) EE,

Yup — Zu + 2, 20, Vu,veV —{s,t}: (u,v) EE,

yu,v 2 0; v(u, U) E E

| Wy — o 2 (0 vv eV:(v,t) EE,
z, € R, vv eV —{s,t}.




2-Approximation for Vertex Cover

via the Dual-Fitting Technique




The Dual-Fitting Technigue

m Consider the primal and dual LPs for vertex cover.

__________________________________________________________ r
min z Wy © Xy (P) max z Ve (D)
] c€E
s.t. x, +x, =1, V(u,v) EE, | i s. L. z Ye = Wy, Vv eV,
i i e€E:vEe
vaO, YvEevV. i i yez(), Ve € E.

__________________________________________________________
__________________________________________________________

- By the weak duality theorem,
any feasible solution for LP-(D) gives a lower-bound on LP-(P).

- In this part, we present a simple process that computes a feasible
solution for LP-(D) that also corresponds to a 2-approximation for VC.




The Dual-Fitting Technigue

m The ideais to compute a (maximal) feasible solution of LP-(D).

- We start with a trivial solution y = 0 and gradually increase its value.

- When a vertex inequality becomes tight,
the cost of that vertex can be paid by the dual values of its incident edges.

m During the process, a feasible integral solution for LP-(P) is also formed.

s.t. oxy +x, 21, V(U,U) €EE, i i s.t. z Ye = Wy, Vv eV,

x, =0, Vv eV. i i Yo = 0, Ve € E.

__________________________________________________________



The Dual-Fitting Process for LP-(D)

m The simple process goes as follows.

. O eeE
— y — )
E' « E, V'« V. e€E:vEe

st z y. <w, VvEeV, |

- While E" # @, do
m Raise the variable y, for all e € E' simultaneously at the same rate
until the inequality Y .cz.pee Vo < W, for some v € V' holds with equality.

Let U € V' denote the set of vertices whose inequalities are tight
and E[U] denote the set of incident edges of U.

m V<V -U.
E' « E' — E[U].
- Output C:==V —-V". This process greedily pack the values into the dual variables

until the constraints are tight.




Example

m Consider the following example.

eEeE:vee

i s. L. z Ye = Wy, Vv eV, i



Example st Y ysw

m Consider the following example.
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eeF

4 7 i E e€E i
- @ I:I_ | | E
I:I/ ,'\\\ ,| N\ i st z Ye < W, VVEV, |
4 J : E eeFE:vee E
e 7 : | |
8 i m\\ , ’ i | y. >0, Ve€E |
X /___ __\_., P i e
5 7 ;
____________________________________________ ‘ ‘___________ i m For each v selected,
i we have ZeEE:vEe Ye = Wy.
A v j_‘l> m Each edge pays for at most two
Q// - N i vertices.
I\ |
P / \ | :
g @ L m o7 i m So, the total cost of the selected
i \\ ! i vertices is at most
N . = /’ :
5 7 i




7 i |

" —1]--0N - [ 15 layer | max z Ve (D)
I:I/ I\ Y i | e€E
7/ [ D J i nd i

g Q/ I—l,——l |:| @7 ! 1 2" layer i s. t. 2 Ye < Wy, Vv eV,
N ' i | :

/ N - [ 3" Jayer | pervee

5 - 7 i | ye. = 0, Ve € E

m We can also observe that,
the process of raising the dual variables is equivalent to
defining the “degree-weighted functions” in the layering algorithm.

m The layering algorithm is in fact a dual-fitting algorithm.

- Its behavior become much simpler when we look at it
from the perspective of LP duality.




The Analysis — Feasibility

m During the process,
the following invariant holds in the beginning of each while loop.

- Foranye = (u,v) € E', we have u,v € I/".

m Consider each while loop.

- When the value of y, is raised for each e € E’,
the inequality of each v € IV’ is becoming tighter and
some inequality will hold with equality.

- S0, at least one vertex along with its incident edges will be removed.

- The invariant holds after each loop.

m Hence, when it ends, E’ is empty and we have a feasible vertex cover.




The Analysis — Approximation Guarantee

m For the guarantee of the output,
observe that y is a feasible solution for LP-(D).

- By the weak duality, we have Y,cg 9. < OPT(LP—(P)) < OPT.

m \We have
w(C) = Z ) = Z Z 9, < Z-Zye < 2.0PT.
vev-v' vev-V' e€E:veEe eEE
By the dual-fitting process, Eache€E is By the weak duality.
eachv eV —V' hasits counted at most twice

Inequality hold with equality. In the summation.




Implementing the Dual-Fitting Process to Run
in Polypomial-tfime ...

m The simple process goes as follows. | |
_ e st Z Yo < w,, VYvEV,
E'—E, V' V. i i

- While E' # @, do

m Let t « min,.,» W (v)/degg (V).

m ForeachveV' setw'(v) « w(v)—t-degg(v).
LletU:={veV' : w{w) =0}

m V<V -U.
E' « E' — E[U].

- Output C =V — 48 This is exactly the layering algorithm,
interpreted in the language of LP dual-fitting.




