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LP Duality

Dual LP as a systematic process to bounding the primal LP.



Deriving Bounds for the LP

■ Consider the following minimization LP.

■ How can we derive a lower-bound on 𝑂𝑏𝑗 (and hence OPT(∗)) ?

min 7𝑥1 + 𝑥2 + 5𝑥3 (∗)

s. t. 𝑥1 − 𝑥2 + 3𝑥3 ≥ 10,

5𝑥1 + 2𝑥2 − 𝑥3 ≥ 6,

𝑥1, 𝑥2, 𝑥3 ≥ 0.

How small can the value of this LP be?

Let’s denote the objective by 𝑶𝒃𝒋.



Lower-Bound  Ver. 1

■ How can we derive a lower-bound on 𝑂𝑏𝑗 (and hence OPT(∗)) ?

Since  𝒙𝟏, 𝒙𝟐, 𝒙𝟑 ≥ 𝟎,  we have  

𝑂𝑏𝑗 = 7𝑥1 + 𝑥2 + 5𝑥3 ≥ 𝑥1 − 𝑥2 + 3𝑥3 ≥ 10.

min 7𝑥1 + 𝑥2 + 5𝑥3 (∗)

s. t. 𝑥1 − 𝑥2 + 3𝑥3 ≥ 10,

5𝑥1 + 2𝑥2 − 𝑥3 ≥ 6,

𝑥1, 𝑥2, 𝑥3 ≥ 0.

How small can the value of this LP be?

Let’s denote the objective by 𝑶𝒃𝒋.

(1)

By (1)
𝟕𝑥1 ≥ 𝑥1

𝑥2 ≥ −𝑥2

𝟓𝑥3 ≥ 𝟑𝑥3

We get a

lower-bound 

of 10.



Lower-Bound  Ver. 2

■ How can we derive a lower-bound on 𝑂𝑏𝑗 (and hence OPT(∗)) ?

Since  𝒙𝟏, 𝒙𝟐, 𝒙𝟑 ≥ 𝟎,  we have  

𝑂𝑏𝑗 = 7𝑥1 + 𝑥2 + 5𝑥3

≥ 𝑥1 − 𝑥2 + 3𝑥3 + 5𝑥1 + 2𝑥2 − 𝑥3 ≥ 10 + 6 = 16.

min 7𝑥1 + 𝑥2 + 5𝑥3 (∗)

s. t. 𝑥1 − 𝑥2 + 3𝑥3 ≥ 10,

5𝑥1 + 2𝑥2 − 𝑥3 ≥ 6,

𝑥1, 𝑥2, 𝑥3 ≥ 0.

How small can the value of this LP be?

Let’s denote the objective by 𝑶𝒃𝒋.

(1)

By (1) + (2)

𝟕𝑥1 ≥ 𝟔𝑥1

𝑥2 ≥ 𝑥2

𝟓𝑥3 ≥ 𝟐𝑥3

We get a

lower-bound 

of 16.

(2)



Lower-Bound  Ver. 3

■ How can we derive a lower-bound on 𝑂𝑏𝑗 (and hence OPT(∗)) ?

Since  𝒙𝟏, 𝒙𝟐, 𝒙𝟑 ≥ 𝟎,  we have  

𝑂𝑏𝑗 = 7𝑥1 + 𝑥2 + 5𝑥3

≥ 2 ⋅ 𝑥1 − 𝑥2 + 3𝑥3 + 5𝑥1 + 2𝑥2 − 𝑥3 ≥ 20 + 6 = 26.

min 7𝑥1 + 𝑥2 + 5𝑥3 (∗)

s. t. 𝑥1 − 𝑥2 + 3𝑥3 ≥ 10,

5𝑥1 + 2𝑥2 − 𝑥3 ≥ 6,

𝑥1, 𝑥2, 𝑥3 ≥ 0.

How small can the value of this LP be?

Let’s denote the objective by 𝑶𝒃𝒋.

(1)

By 2*(1) + (2)

𝟕𝑥1 ≥ 𝟕𝑥1

𝑥2 ≥ 𝟎𝑥2

𝟓𝑥3 ≥ 𝟓𝑥3

This time, 

we get 26!

(2)

What is the best value we can get ? We ask.



Obtaining the Best Lower-Bound for (∗)

min 7𝑥1 + 𝑥2 + 5𝑥3 (∗)

s. t. 𝑥1 − 𝑥2 + 3𝑥3 ≥ 10,

5𝑥1 + 2𝑥2 − 𝑥3 ≥ 6,

𝑥1, 𝑥2, 𝑥3 ≥ 0.

Multiply by 𝑦1 ≥ 0

Multiply by 𝑦2 ≥ 0

max 10𝑦1 + 6𝑦2 (∗∗)

s. t. 𝑦1 + 5𝑦2 ≤ 7,

−𝑦1 + 2𝑦2 ≤ 1,

3𝑦1 − 𝑦2 ≤ 5,

𝑦1, 𝑦2 ≥ 0.

The combined coefficient 

cannot exceed the 

coefficient of Obj.

We get a new LP (∗∗).

Any feasible solution for (∗∗)

gives a valid lower-bound 

on the value of (∗)!

1,0 → 10

1,1 → 16

2,1 → 26

We want to maximize the lower-bound obtained!



Obtaining the Best Upper-Bound for (∗∗)

min 7𝑥1 + 𝑥2 + 5𝑥3 (∗)

s. t. 𝑥1 − 𝑥2 + 3𝑥3 ≥ 10,

5𝑥1 + 2𝑥2 − 𝑥3 ≥ 6,

𝑥1, 𝑥2, 𝑥3 ≥ 0.

max 10𝑦1 + 6𝑦2 (∗∗)

s. t. 𝑦1 + 5𝑦2 ≤ 7,

−𝑦1 + 2𝑦2 ≤ 1,

3𝑦1 − 𝑦2 ≤ 5,

𝑦1, 𝑦2 ≥ 0.

The combined coefficient 

must be at least the 

coefficient of Obj.

Apply the same idea on ∗∗

and we get the LP ∗ !

We want to minimize the upper-bound obtained!

Multiply by 𝑥3 ≥ 0

Multiply by 𝑥1 ≥ 0

Multiply by 𝑥2 ≥ 0
Moreover, the two LPs have 

the same optimal value.

𝑥1, 𝑥2, 𝑥3 =
7

4
, 0,

11

4
→ 26

𝑦1, 𝑦2 = 2,1 → 26



Primal and Dual LPs

■ In general, the following two LPs are called primal- and dual- LPs to each other.

min ෍

1≤𝑗≤𝑛

𝑐𝑗 ⋅ 𝑥𝑗 (P)

s. t. ෍

1≤𝑗≤𝑛

𝑎𝑖,𝑗 ⋅ 𝑥𝑗 ≥ 𝑏𝑖 , ∀1 ≤ 𝑖 ≤ 𝑚,

𝑥𝑗 ≥ 0, ∀1 ≤ 𝑗 ≤ 𝑛.

max ෍

1≤𝑖≤𝑚

𝑏𝑖 ⋅ 𝑦𝑖 (D)

s. t. ෍

1≤𝑖≤𝑚

𝑎𝑖,𝑗 ⋅ 𝑦𝑖 ≤ 𝑐𝑗 , ∀1 ≤ 𝑗 ≤ 𝑛,

𝑦𝑖 ≥ 0, ∀1 ≤ 𝑖 ≤ 𝑚.

𝐴

𝑐1 𝑐2 𝑐3 … … 𝑐𝑛

𝑏1

𝑏2

𝑏3

…

𝑏𝑚



Primal and Dual LPs

■ In general, the following two LPs, (P) and (D), are 

called primal- and dual- LPs to each other.

min ෍

1≤𝑗≤𝑛

𝑐𝑗 ⋅ 𝑥𝑗 (P)

s. t. ෍

1≤𝑗≤𝑛

𝑎𝑖,𝑗 ⋅ 𝑥𝑗 ≥ 𝑏𝑖 , ∀1 ≤ 𝑖 ≤ 𝑚,

𝑥𝑗 ≥ 0, ∀1 ≤ 𝑗 ≤ 𝑛.

max ෍

1≤𝑖≤𝑚

𝑏𝑖 ⋅ 𝑦𝑖 (D)

s. t. ෍

1≤𝑖≤𝑚

𝑎𝑖,𝑗 ⋅ 𝑦𝑖 ≤ 𝑐𝑗 , ∀1 ≤ 𝑗 ≤ 𝑛,

𝑦𝑖 ≥ 0, ∀1 ≤ 𝑖 ≤ 𝑚.

𝐴 𝑥

𝐴𝑦

𝑐

𝑏≥

≤ 𝑐



Primal and Dual LPs

■ In short, we also write

min 𝒄 ⋅ 𝒙 (P)

s. t. 𝐴𝒙 ≥ 𝒃,

𝒙 ≥ 0.

max 𝒚 ⋅ 𝒃 (D)

s. t. 𝒚𝐴 ≤ 𝒄,

𝒚 ≥ 0.

𝐴 𝑥

𝑐

𝑏≥

𝐴𝑦 ≤ 𝑐



Primal and Dual LPs

■ In general, the following two LPs, (P) and (D), are 

called primal- and dual- LPs to each other.

■ In short, we also write

min ෍

1≤𝑗≤𝑛

𝑐𝑗 ⋅ 𝑥𝑗 (P)

s. t. ෍

1≤𝑗≤𝑛

𝑎𝑖,𝑗 ⋅ 𝑥𝑗 ≥ 𝑏𝑖 , ∀1 ≤ 𝑖 ≤ 𝑚,

𝑥𝑗 ≥ 0, ∀1 ≤ 𝑗 ≤ 𝑛.

max ෍

1≤𝑖≤𝑚

𝑏𝑖 ⋅ 𝑦𝑖 (D)

s. t. ෍

1≤𝑖≤𝑚

𝑎𝑖,𝑗 ⋅ 𝑦𝑖 ≤ 𝑐𝑗 , ∀1 ≤ 𝑗 ≤ 𝑛,

𝑦𝑖 ≥ 0, ∀1 ≤ 𝑖 ≤ 𝑚.

min 𝒄 ⋅ 𝒙 (P)

s. t. 𝐴𝒙 ≥ 𝒃,

𝒙 ≥ 0.

max 𝒚 ⋅ 𝒃 (D)

s. t. 𝒚𝐴 ≤ 𝒄,

𝒚 ≥ 0.



Weak Duality of LPs

The primal and the dual LPs are in fact bounding each other.



The Weak Duality Theorem

■ We have seen that, any feasible solution of (D) corresponds to 

a valid way of combining the inequalities of (P), and 

hence gives a lower-bound for the optimal value of (P), and vice versa.

– This is the weak duality theorem.

min 𝒄 ⋅ 𝒙 (P)

s. t. 𝐴𝒙 ≥ 𝒃,

𝒙 ≥ 0.

max 𝒚 ⋅ 𝒃 (D)

s. t. 𝒚𝐴 ≤ 𝒄,

𝒚 ≥ 0.



The Weak Duality Theorem

min 𝒄 ⋅ 𝒙 (P)

s. t. 𝐴𝒙 ≥ 𝒃,

𝒙 ≥ 0.

max 𝒚 ⋅ 𝒃 (D)

s. t. 𝒚𝐴 ≤ 𝒄,

𝒚 ≥ 0.

Theorem 1.

Let 𝒙𝟎 and 𝒚𝟎 be feasible solutions for LP-(P) and LP-(D), respectively. 

Then, we have

𝒄 ⋅ 𝒙𝟎 ≥ 𝒚𝟎 ⋅ 𝒃 .

By the feasibility of 𝒙𝟎 and 𝒚𝟎 for LP-(P) and LP(D), we have

𝒚𝟎 ⋅ 𝒃 ≤ 𝒚𝟎 ⋅ 𝐴𝒙𝟎 = 𝒚𝟎𝐴 ⋅ 𝒙𝟎 ≤ 𝒄 ⋅ 𝒙𝟎.



Deriving the Dual LP



Deriving the Dual LP

min ෍

1≤𝑗≤𝑛

𝑐𝑗 ⋅ 𝑥𝑗 (P)

s. t. ෍

1≤𝑗≤𝑛

𝑎𝑖,𝑗 ⋅ 𝑥𝑗 ≥ 𝑏𝑖 , ∀1 ≤ 𝑖 ≤ 𝑚,

𝑥𝑗 ≥ 0, ∀1 ≤ 𝑗 ≤ 𝑛.

max ෍

1≤𝑖≤𝑚

𝑏𝑖 ⋅ 𝑦𝑖 (D)

s. t. ෍

1≤𝑖≤𝑚

𝑎𝑖,𝑗 ⋅ 𝑦𝑖 ≤ 𝑐𝑗 , ∀1 ≤ 𝑗 ≤ 𝑛,

𝑦𝑖 ≥ 0, ∀1 ≤ 𝑖 ≤ 𝑚.

Each constraint in (P) corresponds to a variable in (D), 

i.e., the multiplier of the constraints.

Each variable in (P) corresponds to a constraint in (D),

i.e., a constraint bounding the combined coefficient.

𝐴 𝑥

𝐴𝑦



The Natural LP for Vertex Cover

min ෍

𝑣∈𝑉

𝑤𝑣 ⋅ 𝑥𝑣 (P)

s. t. 𝑥𝑢 + 𝑥𝑣 ≥ 1, ∀ 𝑢, 𝑣 ∈ 𝐸,

𝑥𝑣 ≥ 0, ∀𝑣 ∈ 𝑉. 𝐴

∀𝑒 = (𝑢, 𝑣) ∈ 𝐸, 

a variable 𝑦𝑒

∀𝑣 ∈ 𝑉, 

a constraint for 𝑣 𝑥𝑣1 𝑥𝑣2 𝑥𝑣3 …… 𝑥𝑣𝑛

𝑒1

𝑒2

𝑒3

…

𝑒𝑚

𝑦𝑒1

𝑦𝑒2

𝑦𝑒3

…

𝑦𝑒𝑚

1

1

1

…

1

𝐴(𝑒, 𝑣) = ቊ
1, if 𝑣 ∈ 𝑒,
0, otherwise.

𝑤1 𝑤2 𝑤3 … … 𝑤𝑛

0 0…0 𝟏 0…0 𝟏 0…0 e = u, v

u           v

𝑣1 𝑣2 𝑣3 … … 𝑣𝑛

For each row 𝑒 = 𝑢, 𝑣 ∈ 𝐸 in the matrix 𝐴, 

only column 𝑢 and 𝑣 are 1, and the remainings are 0.

∀𝑣 ∈ 𝑉, we get a constraint

෍

𝑒∈𝐸∶𝑣∈𝑒

𝑦𝑒 ≤ 𝑤𝑣 .



The Dual Natural LP of Vertex Cover

min ෍

𝑣∈𝑉

𝑤𝑣 ⋅ 𝑥𝑣 (P)

s. t. 𝑥𝑢 + 𝑥𝑣 ≥ 1, ∀ 𝑢, 𝑣 ∈ 𝐸,

𝑥𝑣 ≥ 0, ∀𝑣 ∈ 𝑉. 𝐴

𝑥𝑣1 𝑥𝑣2 𝑥𝑣3 …… 𝑥𝑣𝑛

𝑒1

𝑒2

𝑒3

…

𝑒𝑚

𝑦𝑒1

𝑦𝑒2

𝑦𝑒3

…

𝑦𝑒𝑚

1

1

1

…

1

𝑣1 𝑣2 𝑣3 … … 𝑣𝑛

∀𝑣 ∈ 𝑉, we get a constraint

෍

𝑒∈𝐸∶𝑣∈𝑒

𝑦𝑒 ≤ 𝑤𝑣 .

■ In conclusion, we get

max ෍

𝑒∈𝐸

𝑦𝑒 (D)

s. t. ෍

𝑒∈𝐸∶𝑣∈𝑒

𝑦𝑒 ≤ 𝑤𝑣 , ∀𝑣 ∈ 𝑉,

𝑦𝑒 ≥ 0, ∀𝑒 ∈ 𝐸.
∀𝐴(𝑒, 𝑣) = ቊ

1, if 𝑣 ∈ 𝑒,
0, otherwise.

𝑤1 𝑤2 𝑤3 … … 𝑤𝑛



Examples of 

Natural Primal-Dual Problems



Minimum Vertex Cover & Maximum Matching

■ Given a graph 𝐺 = (𝑉, 𝐸), the (cardinality) vertex cover problem is to compute a 

minimum vertex subset 𝑈 ⊆ 𝑉 such that, for any edge 𝑢, 𝑣 ∈ 𝐸, 𝑢 or 𝑣 is in 𝑈.

■ The (cardinality) maximum matching problem is to compute a maximum size edge 

subset 𝑀 ⊆ 𝐸 such that each vertex 𝑢 ∈ 𝑉 is incident to at most edge in 𝑀.

min ෍

𝑣∈𝑉

𝑥𝑣 P

s. t. 𝑥𝑢 + 𝑥𝑣 ≥ 1, ∀ 𝑢, 𝑣 ∈ 𝐸,

𝑥𝑣 ≥ 0, ∀𝑣 ∈ 𝑉.

max ෍

𝑒∈𝐸

𝑦𝑒 (D)

s. t. ෍

𝑒∈𝐸∶𝑣∈𝑒

𝑦𝑒 ≤ 1, ∀𝑣 ∈ 𝑉,

𝑦𝑒 ≥ 0, ∀𝑒 ∈ 𝐸.



Minimum Vertex Cover & Maximum Matching

■ Given a graph 𝐺 = (𝑉, 𝐸), the (weighted) vertex cover problem is to compute a 

minimum vertex subset 𝑈 ⊆ 𝑉 such that, for any edge 𝑢, 𝑣 ∈ 𝐸, 𝑢 or 𝑣 is in 𝑈.

■ The (weighted) maximum matching problem is to compute a maximum size edge 

multi-subset 𝑀 ⊆ 𝐸 such that each vertex 𝑢 ∈ 𝑉 is incident to at most 𝑤𝑣 edges in 𝑀.

min ෍

𝑣∈𝑉

𝑤𝑣 ⋅ 𝑥𝑣 P

s. t. 𝑥𝑢 + 𝑥𝑣 ≥ 1, ∀ 𝑢, 𝑣 ∈ 𝐸,

𝑥𝑣 ≥ 0, ∀𝑣 ∈ 𝑉.

max ෍

𝑒∈𝐸

𝑦𝑒 (D)

s. t. ෍

𝑒∈𝐸∶𝑣∈𝑒

𝑦𝑒 ≤ 𝑤𝑣, ∀𝑣 ∈ 𝑉,

𝑦𝑒 ≥ 0, ∀𝑒 ∈ 𝐸.



Max-Flow & Min-Cut

■ The natural LPs for maximum flow

and minimum cut.

max ෍

𝑣∈𝑉: 𝑠,𝑣 ∈𝐸

𝑓𝑠,𝑣 F

s. t. ෍

𝑢∈𝑉: 𝑢,𝑣 ∈𝐸

𝑓𝑢,𝑣 − ෍

𝑤∈𝑉: 𝑣,𝑤 ∈𝐸

𝑓𝑣,𝑤 = 0, ∀𝑣 ∈ 𝑉 − 𝑠, 𝑡 ,

0 ≤ 𝑓𝑢,𝑣 ≤ 𝑐𝑢,𝑣, ∀ 𝑢, 𝑣 ∈ 𝐸.

min ෍

(𝑢,𝑣)∈𝐸

𝑐𝑢,𝑣 ⋅ 𝑦𝑢,𝑣 (C)

s. t. 𝑦𝑢,𝑣 + 𝑧𝑣 ≥ 1, ∀𝑣 ∈ 𝑉: 𝑠, 𝑣 ∈ 𝐸,

𝑦𝑢,𝑣 − 𝑧𝑣 ≥ 0, ∀𝑣 ∈ 𝑉: 𝑣, 𝑡 ∈ 𝐸,

𝑦𝑢,𝑣 − 𝑧𝑢 + 𝑧𝑣 ≥ 0, ∀𝑢, 𝑣 ∈ 𝑉 − {𝑠, 𝑡}: 𝑢, 𝑣 ∈ 𝐸,

𝑦𝑢,𝑣 ≥ 0, ∀ 𝑢, 𝑣 ∈ 𝐸.

𝑧𝑣 ∈ ℝ, ∀𝑣 ∈ 𝑉 − 𝑠, 𝑡 .

𝑠 𝑡

𝑧𝑣 = 1 𝑧𝑣 = 0

𝑦𝑢,𝑣 = 1 iff

𝑢, 𝑣 ∈ 𝐶. 



2-Approximation for Vertex Cover 

via the Dual-Fitting Technique



The Dual-Fitting Technique

■ Consider the primal and dual LPs for vertex cover.

– By the weak duality theorem, 

any feasible solution for LP-(D) gives a lower-bound on LP-(P).

– In this part, we present a simple process that computes a feasible 

solution for LP-(D) that also corresponds to a 2-approximation for VC.

min ෍

𝑣∈𝑉

𝑤𝑣 ⋅ 𝑥𝑣 (P)

s. t. 𝑥𝑢 + 𝑥𝑣 ≥ 1, ∀ 𝑢, 𝑣 ∈ 𝐸,

𝑥𝑣 ≥ 0, ∀𝑣 ∈ 𝑉.

max ෍

𝑒∈𝐸

𝑦𝑒 (D)

s. t. ෍

𝑒∈𝐸∶𝑣∈𝑒

𝑦𝑒 ≤ 𝑤𝑣, ∀𝑣 ∈ 𝑉,

𝑦𝑒 ≥ 0, ∀𝑒 ∈ 𝐸.



The Dual-Fitting Technique

■ The idea is to compute a (maximal) feasible solution of LP-(D).

– We start with a trivial solution 𝒚 = 0 and gradually increase its value.

– When a vertex inequality becomes tight, 

the cost of that vertex can be paid by the dual values of its incident edges.

■ During the process, a feasible integral solution for LP-(P) is also formed.

min ෍

𝑣∈𝑉

𝑤𝑣 ⋅ 𝑥𝑣 (P)

s. t. 𝑥𝑢 + 𝑥𝑣 ≥ 1, ∀ 𝑢, 𝑣 ∈ 𝐸,

𝑥𝑣 ≥ 0, ∀𝑣 ∈ 𝑉.

max ෍

𝑒∈𝐸

𝑦𝑒 (D)

s. t. ෍

𝑒∈𝐸∶𝑣∈𝑒

𝑦𝑒 ≤ 𝑤𝑣 , ∀𝑣 ∈ 𝑉,

𝑦𝑒 ≥ 0, ∀𝑒 ∈ 𝐸.



The Dual-Fitting Process for LP-(D)

■ The simple process goes as follows.

– ෝ𝒚 ← 𝟎,

𝐸′ ← 𝐸, 𝑉′ ← 𝑉.

– While 𝐸′ ≠ ∅, do

■ Raise the variable ෝ𝒚𝒆 for all 𝒆 ∈ 𝑬′ simultaneously at the same rate

until the inequality σ𝑒∈𝐸∶𝑣∈𝑒 ො𝑦𝑒 ≤ 𝑤𝑣 for some 𝑣 ∈ 𝑉′ holds with equality.

Let 𝑈 ⊆ 𝑉′ denote the set of vertices whose inequalities are tight

and 𝐸 𝑈 denote the set of incident edges of 𝑈.

■ 𝑉′ ← 𝑉′ − 𝑈 .

𝐸′ ← 𝐸′ − 𝐸 𝑈 .

– Output  𝒞 ≔ 𝑉 − 𝑉′.

max ෍

𝑒∈𝐸

𝑦𝑒 (D)

s. t. ෍

𝑒∈𝐸∶𝑣∈𝑒

𝑦𝑒 ≤ 𝑤𝑣, ∀𝑣 ∈ 𝑉,

𝑦𝑒 ≥ 0, ∀𝑒 ∈ 𝐸.

This process greedily pack the values into the dual variables

until the constraints are tight.



Example

■ Consider the following example.
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𝑒∈𝐸∶𝑣∈𝑒

𝑦𝑒 ≤ 𝑤𝑣, ∀𝑣 ∈ 𝑉,

𝑦𝑒 ≥ 0, ∀𝑒 ∈ 𝐸.
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■ Consider the following example.
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𝐸′ ≔ 𝐸, 𝑉′ ≔ 𝑉.
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■ For each 𝑣 selected,

we have  σ𝑒∈𝐸∶𝑣∈𝑒 𝑦𝑒 = 𝑤𝑣.

■ Each edge pays for at most two 

vertices.

■ So, the total cost of the selected 

vertices is at most

2 ⋅෍

𝑒∈𝐸

𝑦𝑒 ≤ 2 ⋅ 𝑂𝑃𝑇𝑓 .



max ෍

𝑒∈𝐸

𝑦𝑒 (D)

s. t. ෍

𝑒∈𝐸∶𝑣∈𝑒

𝑦𝑒 ≤ 𝑤𝑣, ∀𝑣 ∈ 𝑉,

𝑦𝑒 ≥ 0, ∀𝑒 ∈ 𝐸.
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■ We can also observe that, 

the process of raising the dual variables is equivalent to 

defining the “degree-weighted functions” in the layering algorithm.

■ The layering algorithm is in fact a dual-fitting algorithm.

– Its behavior become much simpler when we look at it 

from the perspective of LP duality.

1𝑠𝑡 layer

2𝑛𝑑 layer

3𝑟𝑑 layer



The Analysis – Feasibility 

■ During the process, 

the following invariant holds in the beginning of each while loop. 

– For any 𝑒 = (𝑢, 𝑣) ∈ 𝐸′, we have 𝑢, 𝑣 ∈ 𝑉′.

■ Consider each while loop.

– When the value of ො𝑦𝑒 is raised for each 𝑒 ∈ 𝐸′, 

the inequality of each 𝑣 ∈ 𝑉′ is becoming tighter and 

some inequality will hold with equality.

– So, at least one vertex along with its incident edges will be removed.

– The invariant holds after each loop.

■ Hence, when it ends, 𝐸′ is empty and we have a feasible vertex cover.



The Analysis – Approximation Guarantee

■ For the guarantee of the output,

observe that ො𝑦 is a feasible solution for LP-(D).

– By the weak duality, we have σ𝑒∈𝐸 ො𝑦𝑒 ≤ 𝑂𝑃𝑇 LP− P ≤ 𝑂𝑃𝑇.

■ We have

𝑤 𝒞 = ෍

𝑣∈𝑉−𝑉′

𝑤(𝑣) = ෍

𝑣∈𝑉−𝑉′

෍

𝑒∈𝐸∶𝑣∈𝑒

ො𝑦𝑒 ≤ 2 ⋅෍

𝑒∈𝐸

ො𝑦𝑒 ≤ 2 ⋅ 𝑂𝑃𝑇 .

By the dual-fitting process, 

each 𝑣 ∈ 𝑉 − 𝑉′ has its 

inequality hold with equality.

Each e ∈ 𝐸 is 

counted at most twice

in the summation.

By the weak duality.



Implementing the Dual-Fitting Process to Run 

in Polynomial-Time

■ The simple process goes as follows.

– 𝒘′ ← 𝒘,

𝐸′ ← 𝐸, 𝑉′ ← 𝑉.

– While 𝐸′ ≠ ∅, do

■ Let 𝑡 ← min𝑣∈𝑉′ 𝑤′(𝑣)/ deg𝐸′(𝑣).

■ For each 𝑣 ∈ 𝑉′, set 𝑤′ 𝑣 ← 𝑤′ 𝑣 − 𝑡 ⋅ deg𝐸′ 𝑣 .

Let 𝑈 ≔ 𝑣 ∈ 𝑉′ ∶ 𝑤′ 𝑣 = 0 .

■ 𝑉′ ← 𝑉′ − 𝑈 .

𝐸′ ← 𝐸′ − 𝐸 𝑈 .

– Output  𝒞 ≔ 𝑉 − 𝑉′.

max ෍

𝑒∈𝐸

𝑦𝑒 (D)

s. t. ෍

𝑒∈𝐸∶𝑣∈𝑒

𝑦𝑒 ≤ 𝑤𝑣, ∀𝑣 ∈ 𝑉,

𝑦𝑒 ≥ 0, ∀𝑒 ∈ 𝐸.

This is exactly the layering algorithm, 

interpreted in the language of LP dual-fitting.


