Introduction to Approximation Algorithms

Mong-Jen Kao (高孟駿)

Friday 13:20 – 15:10

Outline

- Introduction to Linear Programming Duality
 - The Weak Duality Theorem
 - Deriving the Dual LP
 - Examples of Natural Primal and Dual Problems
- 2-Approximation for Vertex Cover via the Dual-Fitting Technique

LP Duality

Deriving Bounds for the LP

Consider the following minimization LP.

min
$$7x_1 + x_2 + 5x_3$$
 (*)
s.t. $x_1 - x_2 + 3x_3 \ge 10$,
 $5x_1 + 2x_2 - x_3 \ge 6$,
 $x_1, x_2, x_3 \ge 0$.

Let's denote the objective by Obj.

■ How can we derive a lower-bound on Obj (and hence OPT(*))?

Lower-Bound Ver. 1

min
$$7x_1 + x_2 + 5x_3$$
 (*)
s.t. $x_1 - x_2 + 3x_3 \ge 10$,
 $5x_1 + 2x_2 - x_3 \ge 6$,
 $x_1, x_2, x_3 \ge 0$.

Let's denote the objective by *Obj*.

■ How can we derive a lower-bound on Obj (and hence OPT(*))?

Since $x_1, x_2, x_3 \ge 0$, we have

$$Obj = 7x_1 + x_2 + 5x_3 \ge x_1 - x_2 + 3x_3 \ge 10.$$

We get a lower-bound of **10**.

$$7x_1 \ge x_1$$

$$x_2 \ge -x_2$$

$$5x_3 \ge 3x_3$$

By (1)

Lower-Bound Ver. 2

min
$$7x_1 + x_2 + 5x_3$$
 (*)
s.t. $x_1 - x_2 + 3x_3 \ge 10$,
 $5x_1 + 2x_2 - x_3 \ge 6$,
 $x_1, x_2, x_3 \ge 0$. (2)

Let's denote the objective by *Obj*.

■ How can we derive a lower-bound on Obj (and hence OPT(*))?

Since $x_1, x_2, x_3 \ge 0$, we have

$$Obj = 7x_1 + x_2 + 5x_3$$

By
$$(1) + (2)$$

We get a lower-bound of **16**.

$$7x_1 \ge 6x_1$$
$$x_2 \ge x_2$$
$$5x_3 \ge 2x_3$$

$$\geq (x_1 - x_2 + 3x_3) + (5x_1 + 2x_2 - x_3) \geq 10 + 6 = 16.$$

What is the best value we can get? We ask.

Lower-Bound Ver. 3

min
$$7x_1 + x_2 + 5x_3$$
 (*)
s.t. $x_1 - x_2 + 3x_3 \ge 10$,
 $5x_1 + 2x_2 - x_3 \ge 6$,
 $x_1, x_2, x_3 \ge 0$. (2)

Let's denote the objective by *Obj*.

■ How can we derive a lower-bound on Obj (and hence OPT(*))?

Since $x_1, x_2, x_3 \ge 0$, we have

$$Obj = 7x_1 + x_2 + 5x_3$$

By
$$2^*(1) + (2)$$

This time, we get **26**!

$$7x_1 \ge 7x_1$$
$$x_2 \ge 0x_2$$
$$5x_3 \ge 5x_3$$

$$\geq 2 \cdot (x_1 - x_2 + 3x_3) + (5x_1 + 2x_2 - x_3) \geq 20 + 6 = 26.$$

Obtaining the Best Lower-Bound for (*)

We get a new LP (**).

Any feasible solution for (**) gives a valid lower-bound on the value of (*)!

 $(1,0) \rightarrow 10$

 $(1,1) \rightarrow 16$

 $(2,1) \rightarrow 26$

$$\max 10y_1 + 6y_2$$
 (**)

s.t.
$$y_1 + 5y_2 \le 7$$
,
 $-y_1 + 2y_2 \le 1$,
 $3y_1 - y_2 \le 5$,
 $y_1, y_2 \ge 0$.

We want to maximize the lower-bound obtained!

The combined coefficient cannot exceed the coefficient of Obj.

Obtaining the Best Upper-Bound for (**)

Apply the same idea on (**) and we get the LP (*)!

Moreover, the two LPs have the same optimal value.

$$(x_1, x_2, x_3) = \left(\frac{7}{4}, 0, \frac{11}{4}\right) \rightarrow 26$$

$$(y_1, y_2) = (2,1) \rightarrow 26$$

$$\min \ 7x_1 + x_2 + 5x_3 \tag{*}$$

s.t.
$$x_1 - x_2 + 3x_3 \ge 10$$
,

$$5x_1 + 2x_2 - x_3 \ge 6,$$

$$x_1, x_2, x_3 \ge 0.$$

We want to minimize the upper-bound obtained!

The combined coefficient must be at least the coefficient of Obj.

■ In general, the following two LPs are called primal- and dual- LPs to each other.

min
$$\sum_{1 \le j \le n} c_j \cdot x_j$$
 (P)
s. t.
$$\sum_{1 \le j \le n} a_{i,j} \cdot x_j \ge b_i, \quad \forall 1 \le i \le m,$$

$$x_j \ge 0, \quad \forall 1 \le j \le n.$$

$$\max \sum_{1 \le i \le m} b_i \cdot y_i \qquad (D)$$
s.t.
$$\sum_{1 \le i \le m} a_{i,j} \cdot y_i \le c_j, \quad \forall 1 \le j \le n,$$

$$y_i \ge 0, \quad \forall 1 \le i \le m.$$

■ In general, the following two LPs, (P) and (D), are called primal- and dual- LPs to each other.

min
$$\sum_{1 \le j \le n} c_j \cdot x_j$$
 (P)
s. t. $\sum_{1 \le j \le n} a_{i,j} \cdot x_j \ge b_i$, $\forall 1 \le i \le m$, $x_j \ge 0$, $\forall 1 \le j \le n$.

$$\max \sum_{1 \le i \le m} b_i \cdot y_i \tag{D}$$
 s.t.
$$\sum_{1 \le i \le m} a_{i,j} \cdot y_i \le c_j, \quad \forall 1 \le j \le n,$$

$$y_i \ge 0, \quad \forall 1 \le i \le m.$$

■ In short, we also write

min
$$c \cdot x$$
 (P)
s.t. $Ax \ge b$,
 $x \ge 0$.

$$\max \quad \boldsymbol{y} \cdot \boldsymbol{b} \qquad \text{(D)}$$
s. t. $yA \leq c$,
$$y \geq 0$$
.

■ In general, the following two LPs, (P) and (D), are called primal- and dual- LPs to each other.

min
$$\sum_{1 \le j \le n} c_j \cdot x_j$$
 (P)
s.t. $\sum_{1 \le j \le n} a_{i,j} \cdot x_j \ge b_i$, $\forall 1 \le i \le m$, $x_j \ge 0$, $\forall 1 \le j \le n$.

$$\max \sum_{1 \le i \le m} b_i \cdot y_i \qquad (D)$$
s.t.
$$\sum_{1 \le i \le m} a_{i,j} \cdot y_i \le c_j, \quad \forall 1 \le j \le n,$$

$$y_i \ge 0, \quad \forall 1 \le i \le m.$$

■ In short, we also write

min
$$c \cdot x$$
 (P)
s.t. $Ax \ge b$,
 $x \ge 0$.

$$\max \quad \boldsymbol{y} \cdot \boldsymbol{b} \tag{D}$$
s. t. $\boldsymbol{y} A \leq \boldsymbol{c}$,
$$\boldsymbol{y} \geq 0$$
.

Weak Duality of LPs

The Weak Duality Theorem

min
$$c \cdot x$$
 (P)
s.t. $Ax \ge b$,
 $x \ge 0$.

max
$$y \cdot b$$
 (D)
s.t. $yA \leq c$,
 $y \geq 0$.

- We have seen that, any feasible solution of (D) corresponds to a valid way of combining the inequalities of (P), and hence gives a <u>lower-bound</u> for the optimal value of (P), and <u>vice versa</u>.
 - This is the weak duality theorem.

The Weak Duality Theorem

min
$$c \cdot x$$
 (P)
s.t. $Ax \ge b$,
 $x \ge 0$.

max
$$\mathbf{y} \cdot \mathbf{b}$$
 (D)
s.t. $\mathbf{y}A \leq \mathbf{c}$,
 $\mathbf{y} \geq 0$.

Theorem 1.

Let x_0 and y_0 be feasible solutions for LP-(P) and LP-(D), respectively. Then, we have

$$c \cdot x_0 \geq y_0 \cdot b$$
.

By the feasibility of x_0 and y_0 for LP-(P) and LP(D), we have

$$y_0 \cdot b \leq y_0 \cdot (Ax_0) = (y_0A) \cdot x_0 \leq c \cdot x_0.$$

Deriving the Dual LP

Deriving the Dual LP

Each variable in (P) corresponds to a **constraint in (D)**, i.e., a constraint bounding the combined coefficient.

$$\min \sum_{1 \le j \le n} c_j \cdot x_j \tag{P}$$

s.t.
$$\sum_{1 \le j \le n} a_{i,j} \cdot x_j \ge b_i, \quad \forall 1 \le i \le m,$$

$$x_j \ge 0$$
, $\forall 1 \le j \le n$.

$$\max \sum_{1 \le i \le m} b_i \cdot y_i \qquad (D)$$
s.t.
$$\sum_{1 \le i \le m} a_{i,j} \cdot y_i \le c_j, \quad \forall 1 \le j \le n,$$

$$y_i \ge 0, \quad \forall 1 \le i \le m.$$

The Natural LP for Vertex Cover

 $\forall v \in V,$ a constraint for v $\forall e = (u, v) \in E,$ a variable y_e $s. t. \quad x_u + x_v \ge 1, \quad \forall (u, v) \in E,$ $x_v \ge 0, \quad \forall v \in V.$

For each row $e = (u, v) \in E$ in the matrix A, only column u and v are 1, and the remainings are 0.

$$A(e,v) = \begin{cases} 1, & \text{if } v \in e, \\ 0, & \text{otherwise.} \end{cases}$$

$$\forall v \in V$$
, we get a constraint

$$\sum_{e \in F: v \in e} y_e \leq w_v.$$

The Dual Natural LP of Vertex Cover

■ In conclusion, we get

$$\min \quad \sum_{v \in V} w_v \cdot x_v \tag{P}$$
 s. t. $x_u + x_v \ge 1$, $\forall (u, v) \in E$, $x_v \ge 0$, $\forall v \in V$.

$$\max \sum_{e \in E} y_e$$
 (D)
$$\text{s.t. } \sum_{e \in E: v \in e} y_e \le w_v, \quad \forall v \in V,$$

$$y_e \ge 0, \quad \forall e \in E.$$

$$\forall A(e,v) = \begin{cases} 1, & \text{if } v \in e, \\ 0, & \text{otherwise.} \end{cases}$$

 $\forall v \in V$, we get a constraint $\sum_{e} y_e \leq w_v.$

Examples of

Natural Primal-Dual Problems

Minimum Vertex Cover & Maximum Matching

Given a graph G = (V, E), the (cardinality) vertex cover problem is to compute a minimum vertex subset $U \subseteq V$ such that, for any edge $(u, v) \in E$, u or v is in U.

$$\min \sum_{v \in V} x_v \qquad (P)$$

$$\text{s.t. } x_u + x_v \ge 1, \quad \forall (u, v) \in E,$$

$$x_v \ge 0, \quad \forall v \in V.$$

$$\max \sum_{e \in E} y_e \qquad (D)$$

$$\text{s.t. } \sum_{e \in E: v \in e} y_e \le 1, \quad \forall v \in V,$$

$$y_e \ge 0, \quad \forall e \in E.$$

The (cardinality) maximum matching problem is to compute a maximum size edge subset $M \subseteq E$ such that each vertex $u \in V$ is incident to at most edge in M.

Minimum Vertex Cover & Maximum Matching

Given a graph G = (V, E), the (**weighted**) vertex cover problem is to compute a minimum vertex subset $U \subseteq V$ such that, for any edge $(u, v) \in E$, u or v is in U.

$$\min \sum_{v \in V} w_v \cdot x_v \qquad (P)$$

$$\text{s.t. } x_u + x_v \ge 1, \quad \forall (u, v) \in E,$$

$$x_v \ge 0, \quad \forall v \in V.$$

$$\max \sum_{e \in E} y_e \qquad (D)$$

$$\text{s.t. } \sum_{e \in E: v \in e} y_e \le w_v, \quad \forall v \in V,$$

$$y_e \ge 0, \quad \forall e \in E.$$

The (weighted) maximum matching problem is to compute a maximum size edge multi-subset $M \subseteq E$ such that each vertex $u \in V$ is incident to at most w_v edges in M.

Max-Flow & Min-Cut

■ The natural LPs for maximum flow and minimum cut.

$$\max \sum_{v \in V: (s,v) \in E} f_{s,v} \tag{F}$$

s. t.
$$\sum_{u \in V: (u,v) \in E} f_{u,v} - \sum_{w \in V: (v,w) \in E} f_{v,w} = 0, \quad \forall v \in V - \{s,t\},$$

$$0 \le f_{u,v} \le c_{u,v}, \qquad \forall (u,v) \in E.$$

$$\min \sum_{(u,v)\in E} c_{u,v} \cdot y_{u,v} \tag{C}$$

s.t.
$$y_{u,v} + z_v \ge 1$$
, $\forall v \in V: (s,v) \in E$,

$$y_{u,v} - z_v \ge 0, \qquad \forall v \in V: (v,t) \in E,$$

$$y_{u,v} - z_u + z_v \ge 0$$
, $\forall u, v \in V - \{s, t\}: (u, v) \in E$,

$$y_{u,v} \ge 0,$$
 $\forall (u,v) \in E.$

$$z_v \in \mathbb{R}, \qquad \forall v \in V - \{s, t\}.$$

2-Approximation for Vertex Cover via the Dual-Fitting Technique

The Dual-Fitting Technique

Consider the primal and dual LPs for vertex cover.

$$\min \quad \sum_{v \in V} w_v \cdot x_v \tag{P}$$
 s. t. $x_u + x_v \ge 1$, $\forall (u, v) \in E$, $x_v \ge 0$, $\forall v \in V$.

$$\max \sum_{e \in E} y_e$$
 (D)
$$\text{s.t.} \sum_{e \in E: v \in e} y_e \leq w_v, \quad \forall v \in V,$$

$$y_e \geq 0, \quad \forall e \in E.$$

- By the weak duality theorem,
 any feasible solution for LP-(D) gives a lower-bound on LP-(P).
- In this part, we present a simple process that computes a feasible solution for LP-(D) that also corresponds to a 2-approximation for VC.

The Dual-Fitting Technique

- The idea is to compute a (maximal) feasible solution of LP-(D).
 - We start with a trivial solution y = 0 and gradually increase its value.
 - When a vertex inequality becomes tight,
 the cost of that vertex <u>can be paid</u> by the dual values of its incident edges.
- During the process, a feasible integral solution for LP-(P) is also formed.

min
$$\sum_{v \in V} w_v \cdot x_v$$
 (P)
s.t. $x_u + x_v \ge 1$, $\forall (u, v) \in E$, $x_v \ge 0$, $\forall v \in V$.

$$\max \sum_{e \in E} y_e$$
 (D)
$$\text{s. t. } \sum_{e \in E: v \in e} y_e \leq w_v, \quad \forall v \in V,$$

$$y_e \geq 0, \quad \forall e \in E.$$

The Dual-Fitting Process for LP-(D)

- The simple process goes as follows.
 - $\widehat{y} \leftarrow \mathbf{0},$ $E' \leftarrow E, \quad V' \leftarrow V.$
 - While $E' \neq \emptyset$, do

$$\max \sum_{e \in E} y_e$$
 (D)
$$\text{s. t. } \sum_{e \in E: v \in e} y_e \leq w_v, \quad \forall v \in V,$$

$$y_e \geq 0, \quad \forall e \in E.$$

- Raise the variable \hat{y}_e for all $e \in E'$ simultaneously at the same rate until the inequality $\sum_{e \in E: v \in e} \hat{y}_e \leq w_v$ for some $v \in V'$ holds with equality. Let $U \subseteq V'$ denote the set of vertices whose inequalities are tight and E[U] denote the set of incident edges of U.
- $V' \leftarrow V' U.$ $E' \leftarrow E' E[U].$
- Output $\mathcal{C} \coloneqq V V'$.

This process *greedily* pack the values into the dual variables until the constraints are tight.

Example

Consider the following example.

max
$$\sum_{e \in E} y_e$$
 (D)
s.t. $\sum_{e \in E: v \in e} y_e \le w_v$, $\forall v \in V$,
 $y_e \ge 0$, $\forall e \in E$.

Example

Consider the following example.

$$E' \coloneqq E, \qquad V' \coloneqq V.$$

$$\max \sum_{e \in E} y_e$$
 (D)
$$\text{s.t. } \sum_{e \in E: v \in e} y_e \le w_v, \quad \forall v \in V,$$

$$y_e \ge 0, \quad \forall e \in E.$$

- For each v selected, we have $\sum_{e \in E: v \in e} y_e = w_v$.
- Each edge pays for at most two vertices.
- So, the total cost of the selected vertices is at most

$$2 \cdot \sum_{e \in E} y_e \leq 2 \cdot OPT_f.$$

- We can also observe that,
 the process of raising the dual variables is equivalent to
 defining the "degree-weighted functions" in the layering algorithm.
- The layering algorithm is in fact a dual-fitting algorithm.
 - Its behavior become much simpler when we look at it from the perspective of LP duality.

The Analysis – Feasibility

- During the process,
 the following invariant holds in the beginning of each while loop.
 - For any $e = (u, v) \in E'$, we have $u, v \in V'$.
- Consider each while loop.
 - When the value of \hat{y}_e is raised for each $e \in E'$, the inequality of each $v \in V'$ is becoming tighter and some inequality will hold with equality.
 - So, at least one vertex along with its incident edges will be removed.
 - The invariant holds after each loop.
- \blacksquare Hence, when it ends, E' is empty and we have a feasible vertex cover.

The Analysis – Approximation Guarantee

- For the guarantee of the output, observe that \hat{y} is a feasible solution for LP-(D).
 - By the weak duality, we have $\sum_{e \in E} \hat{y}_e \leq OPT(LP-(P)) \leq OPT$.
- We have

$$w(\mathcal{C}) = \sum_{v \in V - V'} w(v) = \sum_{v \in V - V'} \sum_{e \in E: v \in e} \hat{y}_e \le 2 \cdot \sum_{e \in E} \hat{y}_e \le 2 \cdot OPT.$$

By the dual-fitting process, each $v \in V - V'$ has its inequality hold with equality. Each $e \in E$ is counted at most twice in the summation.

By the weak duality.

Implementing the Dual-Fitting Process to Run in Polynomial-Time

- The simple process goes as follows.
 - $w' \leftarrow w,$ $E' \leftarrow E, V' \leftarrow V.$
 - While $E' \neq \emptyset$, do
 - Let $t \leftarrow \min_{v \in V'} w'(v) / \deg_{E'}(v)$.
 - For each $v \in V'$, set $w'(v) \leftarrow w'(v) t \cdot \deg_{E'}(v)$. Let $U \coloneqq \{ v \in V' : w'(v) = 0 \}$.
 - $V' \leftarrow V' U .$ $E' \leftarrow E' E[U] .$
 - Output C := V V'.

$$\max \sum_{e \in E} y_e$$
 (D)
$$s. t. \sum_{e \in E: v \in e} y_e \le w_v, \quad \forall v \in V,$$

$$y_e \ge 0, \quad \forall e \in E.$$

This is exactly *the layering algorithm*, interpreted in the language of *LP dual-fitting*.