Introduction to Approximation Algorithms

Mong-Jen Kao (高孟駿)

Friday 13:20 – 15:10

Outline

- Linear Programming based Methods
 - Linear Programming (LP)
 - Formulating Optimization Problems as Linear Programs
- A 2-Approximation for Vertex Cover by <u>LP-rounding</u>
- Typical Flowchart for Rounding-based Methods
 - Formulation, Relaxation, Rounding

Linear Programming based Methods

"A large fraction of the theory for approximation algorithms, as we know it today, is built around linear programming." by V. Vazirani, 2001.

Linear Programming (LP)

Linear programming, or, linear optimization, is
 to optimize a linear objective function under a set of linear constraints
 in the real multi-dimensional space.

max
$$2x_1 + x_2$$

s.t. $x_1 - x_2 \ge -3$,
 $x_1 + x_2 \le 13$,
 $3 \le x_1 \le 7$,
 $x_2 \ge 2$.

Find $x_1, x_2 \in \mathbb{R}$

that satisfies $x_1-x_2 \geq -3$, $x_1+x_2 \leq 13$, $3 \leq x_1 \leq 7$, $x_2 \geq 2$.

such that $2x_1 + x_2$ is maximized

in the multi-dimensional real space.

The **feasible region** of this LP

s.t.
$$x_1 - x_2 \ge -3$$
,

$$x_1 + x_2 \leq 13,$$

$$3 \le x_1 \le 7$$
,

$$x_2 \geq 2$$
.

Each point in the region is a *feasible solution*

in the multi-dimensional real space.

The process of optimizing $2x_1 + x_2$

max
$$2x_1 + x_2$$

s.t. $x_1 - x_2 \ge -3$,
 $x_1 + x_2 \le 13$,
 $3 \le x_1 \le 7$,
 $x_2 \ge 2$.

 $2x_1 + x_2 = c$

The value of the objective function *increases* as *the hyperplane* moves towards its normal vector.

Hyperplane with normal vector $\overrightarrow{(2,1)}$

in the multi-dimensional real space.

max
$$2x_1 + x_2$$

s.t. $x_1 - x_2 \ge -3$,
 $x_1 + x_2 \le 13$,
 $3 \le x_1 \le 7$,
 $x_2 \ge 2$.

The process of optimizing $2x_1 + x_2$

The optimal solution for this LP.

At the moment, *c* is the optimal value.

We reach the optimal solution when the hyperplane is about to become disjoint with the feasible region.

$$2x_1 + x_2 = c$$

in the multi-dimensional real space.

In fact, it can be shown that, if the considered LP has an optimal solution, then there must be a *vertex on the boundary of the polytope* that is optimal.

The process of optimizing $2x_1 + x_2$

Linear Programming

as a Computation Problem

Linear Programming as a Computation Problem

- Linear programming can be solved in <u>weakly polynomial time</u>.
 i.e., in time polynomial in the input length
 but not necessarily in <u>the number of variables and constraints</u>.
- Given $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^n$, $c \in \mathbb{R}^m$, we can compute an optimal $x \in \mathbb{R}^n$ for the program

$$\max c^{T} \cdot x$$

$$A \cdot x \leq b,$$

$$x \geq 0.$$

in time *polynomial in the input length*.

- Linear programming can be solved in <u>weakly polynomial time</u>.
 i.e., in time polynomial in the input length
 but not necessarily in <u>the number of variables and constraints</u>.
 - There are a number of nice algorithms.
 - Simplex method, Interior-point method, Ellipsoid methods, etc.

Practically useful, not poly-time.

weakly poly-time.

■ Whether or not LP can be solved **in strongly polynomial time** is listed as <u>one of 18 greatest open problems in Mathematics</u> in the 21st century.

Formulating Combinatorial Optimization Problems as Linear Programming Problems

or, more generally, Mathematical Programming Problems

Sometimes simple;
Most of the time an Art.

Formulating the Combinatorial Optimization Problems

- In the combinatorial optimization problems, we always have <u>some decisions</u> to make.
- The idea is to
 - Encode each decision as a decision variable.
 - Convert problem requirements into *linear constraints*.

Ex. Vertex Cover

Given a graph G = (V, E) and a weight function $w : V \to Q^+$, compute a minimum-weight vertex subset $U \subseteq V$ such that, any $e \in E$ has at least one endpoint in U.

Decisions to make

For each vertex $v \in V$, should v be picked?

Variable x_v with $x_v \in \{0,1\}$

$$x_v = 1 \leftrightarrow \text{chosen}$$

■ Given a graph G = (V, E), compute a minimum-weight subset $U \subseteq V$ such that, any $e \in E$ is adjacent to some $v \in U$.

- Decision encoding

For each $v \in V$, create $x_v \in \{0,1\}$

$$x_v = 1 \leftrightarrow \text{chosen}$$

Linear constraints

Each $e = (u, v) \in E$ has to be covered.

For each
$$(u, v) \in E$$
, $x_u + x_v \ge 1$ must hold.

At least one of u, v needs to be selected.

Objective

To minimize
$$\sum_{v \in V} w_v \cdot x_v$$

An Integer Linear Program for Vertex Cover

$$\min \sum_{v \in V} w_v \cdot x_v$$
s.t. $x_u + x_v \ge 1$, $\forall (u, v) \in E$, $x_v \in \{0, 1\}$, $\forall v \in V$.

We have formulated Vertex Cover as an Integer Linear Program (ILP) in a natural way.

An Integer Linear Program for Vertex Cover

We have formulated Vertex Cover as an Integer Linear Program (ILP) in a natural way.

min
$$x_1 + x_2 + \dots + x_6$$

s.t. $x_1 + x_2 \ge 1$, $x_2 + x_3 \ge 1$, $x_3 + x_4 \ge 1$, $x_4 + x_5 \ge 1$, $x_5 + x_6 \ge 1$, $x_6 + x_1 \ge 1$, $x_2 + x_5 \ge 1$, $x_2 + x_6 \ge 1$, $x_3 + x_5 \ge 1$, $x_1, x_2, \dots, x_6 \in \{0,1\}$.

ILP is NP-hard

- Solving Integer Linear Program (ILP) is in general NP-hard.
 - It has to be, since many NP-hard problems can be formulated as
 ILPs in a natural way, including vertex cover.

Computing *the optimal grid-point is hard in general*, as it should be.

LP Relaxations for ILPs

By relaxing the range of the variables to real numbers,
 we get an <u>LP relaxation</u>, which can be solved (in weakly poly-time).

An LP Relaxation for Vertex Cover

By relaxing the range of the variables to real numbers,
 we get an <u>LP relaxation</u>, which can be solved (in weakly poly-time).

$$\min \sum_{v \in V} x_v$$
s.t. $x_u + x_v \ge 1$, $\forall (u, v) \in E$,
$$x_v \in \{0, 1\}, \quad \forall v \in V.$$

$$x_v \ge 0$$
,

The constraint $x_v \leq 1$ is **not needed here**. Why?

LP Relaxation for Bounds on ILP

A very <u>nice & useful property</u> given by relaxations is that, optimal solutions for the relaxations directly give **bounds** to the value of the original ILP.

The **optimal solution for the ILP**, which is *one of the grid points*, is *a <u>feasible solution</u> for the relaxed LP.*

Hence, the *optimal value of the relaxed LP* must be *no worse* than *that of the ILP*.

LP Relaxation for Bounds on ILP

Optimal solutions for the relaxations directly give bounds to the value of the original ILP.

$$\min \sum_{v \in V} w_v \cdot x_v \qquad (**)$$

$$\text{s.t. } x_u + x_v \ge 1, \quad \forall (u, v) \in E,$$

$$x_v \in \{0,1\}, \quad \forall v \in V.$$

$$\min \sum_{v \in V} w_v \cdot x_v \qquad (*)$$

$$\text{s.t. } x_u + x_v \ge 1, \quad \forall (u, v) \in E,$$

$$x_v \ge 0, \quad \forall v \in V.$$

■ Then, $Val(*) \leq Val(**)$.

Optimal Fractional Solution of LP Relaxation

--- The "Secret Message" from the Almighty Oracle

Solve the LP relaxation for an optimal (fractional) solution.

min
$$x_1 + x_2 + \dots + x_6$$

s.t. $x_1 + x_2 \ge 1$, $x_2 + x_3 \ge 1$,
 $x_3 + x_4 \ge 1$, $x_4 + x_5 \ge 1$,
 $x_5 + x_6 \ge 1$, $x_6 + x_1 \ge 1$,
 $x_2 + x_5 \ge 1$, $x_2 + x_6 \ge 1$,
 $x_3 + x_5 \ge 1$,
 $x_1, x_2, \dots, x_6 \ge 0$.

"is to select one-half of each vertex," said the almighty oracle.

"Does this help in our problem?"
We ask.

[&]quot;The best way for your graph, my friend,"

A Simple 2-approximation for Vertex Cover

- 1. Solve LP (*) for an optimal x^* .
- 2. (rounding)

For each $v \in V$, define

$$\widehat{x_v} \coloneqq \begin{cases} 1, & \text{if } x_v^* \ge \frac{1}{2}, \\ 0, & \text{otherwise.} \end{cases}$$

3. Output \hat{x} , i.e., the set described by \hat{x} .

$$\min \sum_{v \in V} w_v \cdot x_v \tag{*}$$

s.t.
$$x_u + x_v \ge 1$$
, $\forall (u, v) \in E$, $x_v \ge 0$, $\forall v \in V$.

The Feasibility

- We need to show that, \hat{x} is a feasible solution for the vertex cover problem, i.e., feasible for the ILP (**).
 - Consider any $(u, v) \in E$.
 - We have $x_u^* + x_v^* \ge 1$, since x^* is feasible for LP (*).

Hence, at least one of x_u^* , x_v^* is at least 1/2.

This means that at least one of u, v will be rounded up, and $\widehat{x_u} + \widehat{x_v} \ge 1$ holds as well.

The Approximation Guarantee

Since we only round up x_u^* when it is at least 1/2, it follows that

$$\sum_{v \in V} \widehat{x_v} \leq 2 \cdot \sum_{v \in V} x_v^* = 2 \cdot OPT_f \leq 2 \cdot OPT,$$

where OPT_f is the value of the optimal solution for LP (*) and OPT is the optimal solution of the vertex cover instance.

Typical Flowchart

for Rounding-based Methods

Typical Flowchart for LP-based Methods (so far)

Problem Π of Interests

An ILP Formulation for II

Given a graph G = (V, E), compute a minimum size subset $U \subseteq V$ such that, any $e \in E$ is adjacent to some $v \in U$.

$$\min \sum_{v \in V} x_v$$

s.t.
$$x_u + x_v \ge 1$$
, $\forall (u, v) \in E$,

$$x_v \in \{0,1\}, \forall v \in V.$$

Typical Flowchart for LP-based Methods (so far)

Typical Flowchart for *LP Rounding-based* Methods

