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Linear Programming based Methods

“A large fraction of the theory for approximation algorithms, 

as we know it today, is built around linear programming.”  by V. Vazirani, 2001.

“This is still true today.” by M.-J. Kao, 2021.



Linear Programming (LP)

■ Linear programming, or, linear optimization, is 

to optimize a linear objective function under a set of linear constraints

in the real multi-dimensional space.

Find  𝑥1 , 𝑥2 ∈ ℝ
max 2𝑥1 + 𝑥2

s. t. 𝑥1 − 𝑥2 ≥ −3,

𝑥1 + 𝑥2 ≤ 13,

3 ≤ 𝑥1 ≤ 7,

𝑥2 ≥ 2.

that satisfies 𝑥1 − 𝑥2 ≥ −3,

𝑥1 + 𝑥2 ≤ 13,

3 ≤ 𝑥1 ≤ 7,

𝑥2 ≥ 2.

such that  2𝑥1 + 𝑥2 is maximized



■ Linear programming, or, linear optimization, is to optimize a linear objective 

function under a set of linear constraints

in the multi-dimensional real space.

max 2𝑥1 + 𝑥2

s. t. 𝒙𝟏 − 𝒙𝟐 ≥ −𝟑,

𝒙𝟏 + 𝒙𝟐 ≤ 𝟏𝟑,

𝟑 ≤ 𝒙𝟏 ≤ 𝟕,

𝒙𝟐 ≥ 𝟐.

𝑥1

𝑥2

3 ≤ 𝑥1 𝑥1 ≤ 7

𝑥2 ≥ 2

𝑥1 + 𝑥2 ≤ 13

𝑥1 − 𝑥2 ≥ −3

Each point in the region 

is a feasible solution

The feasible region of this LP



■ Linear programming, or, linear optimization, is to optimize a linear objective 

function under a set of linear constraints

in the multi-dimensional real space.

The value of the objective function 

increases as the hyperplane 

moves towards its normal vector.

The process of optimizing 𝟐𝒙𝟏 + 𝒙𝟐

𝟐𝒙𝟏 + 𝒙𝟐 = 𝒄
Hyperplane with

normal vector (2,1)

𝐦𝐚𝐱 𝟐𝒙𝟏 + 𝒙𝟐

s. t. 𝑥1 − 𝑥2 ≥ −3,

𝑥1 + 𝑥2 ≤ 13,

3 ≤ 𝑥1 ≤ 7,

𝑥2 ≥ 2.



■ Linear programming, or, linear optimization, is to optimize a linear objective 

function under a set of linear constraints

in the multi-dimensional real space.

We reach the optimal solution when the hyperplane 

is about to become disjoint with the feasible region.

The process of optimizing 𝟐𝒙𝟏 + 𝒙𝟐

𝟐𝒙𝟏 + 𝒙𝟐 = 𝒄

The optimal solution

for this LP.

At the moment, 𝑐 is 

the optimal value.

𝐦𝐚𝐱 𝟐𝒙𝟏 + 𝒙𝟐

s. t. 𝑥1 − 𝑥2 ≥ −3,

𝑥1 + 𝑥2 ≤ 13,

3 ≤ 𝑥1 ≤ 7,

𝑥2 ≥ 2.



■ Linear programming, or, linear optimization, is to optimize a linear objective 

function under a set of linear constraints

in the multi-dimensional real space.

In fact, it can be shown that, if the 

considered LP has an optimal solution, 

then there must be a vertex on the 

boundary of the polytope

that is optimal.

The process of optimizing 𝟐𝒙𝟏 + 𝒙𝟐

𝟐𝒙𝟏 + 𝒙𝟐 = 𝒄

The optimal solution

for this LP.

At the moment, 𝑐 is 

the optimal value.



Linear Programming 

as a Computation Problem



Linear Programming as a Computation Problem

■ Linear programming can be solved in weakly polynomial time. 

i.e., in time polynomial in the input length

but not necessarily in the number of variables and constraints.

■ Given 𝐴 ∈ ℝ𝑚×𝑛, 𝑏 ∈ ℝ𝑛, 𝑐 ∈ ℝ𝑚, 

we can compute an optimal 𝑥 ∈ ℝ𝑛 for the program  

in time polynomial in the input length.

max 𝒄𝑇 ⋅ 𝒙

𝐴 ⋅ 𝒙 ≤ 𝒃,

𝒙 ≥ 0.



■ Linear programming can be solved in weakly polynomial time. 

i.e., in time polynomial in the input length

but not necessarily in the number of variables and constraints.

– There are a number of nice algorithms.

■ Simplex method, Interior-point method, Ellipsoid methods, etc.

■ Whether or not LP can be solved in strongly polynomial time

is listed as one of 18 greatest open problems in Mathematics

in the 21st century.

Practically useful,

not poly-time. weakly poly-time.



Formulating Combinatorial Optimization Problems 

as Linear Programming Problems

Sometimes simple;  

Most of the time an Art.

or, more generally, Mathematical Programming Problems



Formulating the Combinatorial Optimization Problems

■ In the combinatorial optimization problems, 

we always have some decisions to make.

■ The idea is to

– Encode each decision as a decision variable.

– Convert problem requirements into linear constraints.



Ex. Vertex Cover

■ Given a graph 𝐺 = (𝑉, 𝐸) and a weight function 𝑤 ∶ 𝑉 → 𝑄+, 

compute a minimum-weight vertex subset 𝑈 ⊆ 𝑉 such that, 

any 𝑒 ∈ 𝐸 has at least one endpoint in 𝑈.

– Decisions to make

For each vertex 𝑣 ∈ 𝑉, should 𝑣 be picked?

Variable  𝑥𝑣 with  𝑥𝑣 ∈ {0,1}

𝑥𝑣 = 1 ↔  chosen



■ Given a graph 𝐺 = (𝑉, 𝐸), compute a minimum-weight subset 𝑈 ⊆ 𝑉

such that, any 𝑒 ∈ 𝐸 is adjacent to some 𝑣 ∈ 𝑈.

– Decision encoding

– Linear constraints

Each 𝑒 = 𝑢, 𝑣 ∈ 𝐸 has to be covered.

For each 𝑣 ∈ 𝑉, create 𝑥𝑣 ∈ {0,1}

𝑥𝑣 = 1 ↔  chosen

For each (𝑢, 𝑣) ∈ 𝐸, 

𝑥𝑢 + 𝑥𝑣 ≥ 1 must hold.

– Objective

To minimize ෍

𝑣∈𝑉

𝑤𝑣 ⋅ 𝑥𝑣

At least one of 𝑢, 𝑣 needs to be selected.



An Integer Linear Program for Vertex Cover

■ We have formulated Vertex Cover as an Integer Linear Program (ILP)

in a natural way.

min ෍

𝑣∈𝑉

𝑤𝑣 ⋅ 𝑥𝑣

s. t. 𝑥𝑢 + 𝑥𝑣 ≥ 1, ∀ 𝑢, 𝑣 ∈ 𝐸,

𝑥𝑣 ∈ 0, 1 , ∀ 𝑣 ∈ 𝑉.



An Integer Linear Program for Vertex Cover

■ We have formulated Vertex Cover as an Integer Linear Program (ILP)

in a natural way.

min 𝑥1 + 𝑥2 +⋯+ 𝑥6

s. t. x1 + x2 ≥ 1, 𝑥2 + 𝑥3 ≥ 1,

𝑥3 + 𝑥4 ≥ 1, 𝑥4 + 𝑥5 ≥ 1,

𝑥5 + 𝑥6 ≥ 1, 𝑥6 + 𝑥1 ≥ 1,

𝑥2 + 𝑥5 ≥ 1, 𝑥2 + 𝑥6 ≥ 1,

𝑥3 + 𝑥5 ≥ 1,

𝑥1, 𝑥2, … , 𝑥6 ∈ {0,1}.

𝑣1

𝑣2 𝑣3

𝑣4

𝑣5𝑣6



ILP is NP-hard

■ Solving Integer Linear Program (ILP) is in general NP-hard.

– It has to be, since many NP-hard problems can be formulated as 

ILPs in a natural way, including vertex cover.

Computing the optimal grid-point is hard

in general, as it should be.



LP Relaxations for ILPs

■ By relaxing the range of the variables to real numbers, 

we get an LP relaxation, which can be solved (in weakly poly-time).



An LP Relaxation for Vertex Cover

■ By relaxing the range of the variables to real numbers, 

we get an LP relaxation, which can be solved (in weakly poly-time).

min ෍

𝑣∈𝑉

𝑥𝑣

s. t. 𝑥𝑢 + 𝑥𝑣 ≥ 1, ∀ 𝑢, 𝑣 ∈ 𝐸,

𝑥𝑣 ∈ 0, 1 , ∀ 𝑣 ∈ 𝑉.

𝒙𝒗 ≥ 𝟎,

The constraint 𝑥𝑣 ≤ 1 is not needed here.  Why?



LP Relaxation for Bounds on ILP

■ A very nice & useful property given by relaxations is that, 

optimal solutions for the relaxations directly give bounds to 

the value of the original ILP.

The optimal solution for the ILP, 

which is one of the grid points, 

is a feasible solution for the relaxed LP.

Hence, the optimal value of the relaxed LP

must be no worse than that of the ILP.



LP Relaxation for Bounds on ILP

■ Optimal solutions for the relaxations directly give bounds to the value 

of the original ILP.

■ Then,   Val ∗ ≤ Val ∗∗ .

min ෍

𝑣∈𝑉

𝑤𝑣 ⋅ 𝑥𝑣 (∗∗)

s. t. 𝑥𝑢 + 𝑥𝑣 ≥ 1, ∀ 𝑢, 𝑣 ∈ 𝐸,

𝑥𝑣 ∈ {0,1}, ∀ 𝑣 ∈ 𝑉.

min ෍

𝑣∈𝑉

𝑤𝑣 ⋅ 𝑥𝑣 (∗)

s. t. 𝑥𝑢 + 𝑥𝑣 ≥ 1, ∀ 𝑢, 𝑣 ∈ 𝐸,

𝑥𝑣 ≥ 0, ∀ 𝑣 ∈ 𝑉.



Optimal Fractional Solution of LP Relaxation 

--- The “Secret Message” from the Almighty Oracle

■ Solve the LP relaxation for an optimal (fractional) solution.

We getmin 𝑥1 + 𝑥2 +⋯+ 𝑥6

s. t. x1 + x2 ≥ 1, 𝑥2 + 𝑥3 ≥ 1,

𝑥3 + 𝑥4 ≥ 1, 𝑥4 + 𝑥5 ≥ 1,

𝑥5 + 𝑥6 ≥ 1, 𝑥6 + 𝑥1 ≥ 1,

𝑥2 + 𝑥5 ≥ 1, 𝑥2 + 𝑥6 ≥ 1,

𝑥3 + 𝑥5 ≥ 1,

𝑥1, 𝑥2, … , 𝑥6 ≥ 0.

“The best way for your graph, my friend,” 

“is to select one-half of each vertex,” said the almighty oracle.

“Does this help in our problem?”

We ask.

0.5
0.5

0.50.5

0.5
0.5

𝑣1

𝑣2 𝑣3

𝑣4

𝑣5𝑣6



A Simple 2-approximation for Vertex Cover

1. Solve LP (*) for an optimal 𝑥∗.

2. (rounding)

For each 𝑣 ∈ 𝑉, define 

ෞ𝑥𝑣 ≔ ൝
1, if 𝑥𝑣

∗ ≥
1

2
,

0, otherwise.

3. Output ො𝑥,

i.e., the set described by ො𝑥.

min ෍

𝑣∈𝑉

𝑤𝑣 ⋅ 𝑥𝑣 (∗)

s. t. 𝑥𝑢 + 𝑥𝑣 ≥ 1, ∀ 𝑢, 𝑣 ∈ 𝐸,

𝑥𝑣 ≥ 0, ∀ 𝑣 ∈ 𝑉.



The Feasibility

■ We need to show that, ො𝑥 is a feasible solution for the vertex cover 

problem, i.e., feasible for the ILP (**).

– Consider any 𝑢, 𝑣 ∈ 𝐸.

■ We have 𝑥𝑢
∗ + 𝑥𝑣

∗ ≥ 1, since 𝑥∗ is feasible for LP (*).

Hence, at least one of 𝑥𝑢
∗ , 𝑥𝑣

∗ is at least 1/2.

This means that at least one of 𝑢, 𝑣 will be rounded up, and 

ෞ𝑥𝑢 +ෞ𝑥𝑣 ≥ 1 holds as well.



The Approximation Guarantee

■ Since we only round up 𝑥𝑢
∗ when it is at least 1/2,

it follows that

෍

𝑣∈𝑉

ෞ𝑥𝑣 ≤ 2 ⋅෍

𝑣∈𝑉

𝑥𝑣
∗ = 2 ⋅ 𝑂𝑃𝑇𝑓 ≤ 2 ⋅ 𝑂𝑃𝑇,

where 𝑂𝑃𝑇𝑓 is the value of the optimal solution for LP (*)  and 

𝑂𝑃𝑇 is the optimal solution of the vertex cover instance.



Typical Flowchart 

for Rounding-based Methods



Typical Flowchart for LP-based Methods (so far)

Problem 𝚷 of Interests

An ILP Formulation 

for 𝚷

Design (properly)

min ෍

𝑣∈𝑉

𝑥𝑣

s. t. 𝑥𝑢 + 𝑥𝑣 ≥ 1, ∀ 𝑢, 𝑣 ∈ 𝐸,

𝑥𝑣 ∈ 0, 1 , ∀ 𝑣 ∈ 𝑉.

■ Given a graph 𝐺 = (𝑉, 𝐸), compute a 

minimum size subset 𝑈 ⊆ 𝑉 such that, 

any 𝑒 ∈ 𝐸 is adjacent to some 𝑣 ∈ 𝑈.



Typical Flowchart for LP-based Methods (so far)

Problem 𝚷 of Interests

An ILP Formulation 

for 𝚷

Design (properly)

Relax (properly)

An LP Relaxation 

(*) for 𝚷
Bounds the 

optimal value 

of ILP (!)
Solve (*) for an optimal 

(fractional) solution

𝒙∗ optimal 

for (*)



Typical Flowchart for LP Rounding-based Methods

Problem 𝚷 of Interests

An ILP Formulation 

for 𝚷

Design (properly)

Relax (properly)

An LP Relaxation 

(*) for 𝚷
Bounds the 

optimal value 

of ILP (!)
Solve (*) for an optimal 

(fractional) solution

𝒙∗ optimal 

for (*)

ෝ𝒙 integral & feasible 

for 𝚷

“Round“ 𝒙∗ smartly,

i.e., make it integral 

while preserving 

feasibility & quality

Usually the most 

challenging parts.


