Introduction to
Approximation Algorithms

Mong-Jen Kao (5 % 54)

Friday 13:20 — 15:10




Outline

m Approximation Scheme
- PTAS & FPTAS

m The Knapsack Problem
- An FPTAS for Knapsack
- Strongly NP-hardness & Non-existence of FPTAS




Approximation Schemes

— To Approximate to any Desirable Degrees

N
Use more computation time for arbitrarily-
good approximation guarantees.

X

[ Not every problem has approximation schemes.

)




Approximation Schemes

m An algorithm A is called an approximation scheme
for an optimization problem II if,

on any input instance I and any error parameter € > 0,
the algorithm A always produces

- a (1 + e)-approximate solution for I, if II is a minimization problem,

- a (1 — e)-approximate solution for I, if I1 is a maximization problem.

- Thatis, |A{)— OPT;| < €-0PT; always holds.

\\\\\\

___________________________________________________

The relative error between A(I) and OPT;
can be arbitrarily small!

- ____________4




Approximation Schemes

m An approximation scheme A is said to be

- A polynomial-time approximation scheme (PTAYS) if its running time

IS bounded by a polynomial in |I], i.e., g (%) - poly(|I]) for some
function g.

- Afully polynomial-time approximation scheme (FPTAS or Fully-
PTAS), if its running time is bounded by a polynomial in |I| and 1/e,

l.e., poly(l[l,%)

for arbitrarily close approximation guarantees.

[ A systematic way to exchange computation time J




Approximation Schemes

m In this course, we will see
- An FPTAS for the Knapsack problem.

- A necessary condition for FPTAS to exist for a problem.




The Knapsack Problem




The Knapsack Problem

m Given a set of n items with size a; and profit b;, where 1 <i < n, and

a knapsack size B,

the Knapsack problem is to compute a subset A € [1,n] with },;c4a; < B

such that );;c4 b; is maximized.

item 1

item 2

item n

size a4

size a,

size a,

profit by

profit b,

profit by,

?

N

size B

knapsack

To maximize
the total profit
put in the knapsack

/




The Knapsack Problem

m The Knapsack problem is a classic NP-complete problem.

- Can be reduced from the Partition problem, one of the 6 basic

NP-complete problems.

m The Knapsack problem can be solved by dynamic programming in
pseudo-polynomial time.

m We will see this problem can be approximated efficiently to any
desirable degree.




Dynamic Programming

for the Knapsack Problem




Dynamic Programming for Knapsack

m The Knapsack problem can be solved by standard dynamic
programming technique in pseudo-polynomial time.

- Forany0<i<nandp =0,
let A(i,p) denote the minimum total size it requires to get
a total profit of p using only the first i items.

A(i,p) Is defined to be oo if no such combination exists.




- Forany0<i<nandp =0,
let A(i,p) denote the minimum total size it requires to get
a total profit of p using only the first i items.

Only the first i items are used.

4 )

item 1

item 2 e —
- 4 ‘
°® ’% - ? I

item i |

* A Combination I
| with atotal profit p

item 7 A(i,p) : the minimum total size

required to achieve this setting.




- Forany0<i<nandp =0,
let A(i,p) denote the minimum total size it requires to get
a total profit of p using only the first i items.

A(i,p) Is defined to be oo if no such combination exists.

- Let P = maxi<j<nb;.
Clearly, the answer to the Knapsack problem is

the maximum p, where 0 < p < n - P, that makes A(n,p) < B.




The Recurrence Formula for A(i, p)

m By our definition, when i > 0, we have
When p < 0,
we have no valid combination at all.

- _ L —— D
00, If p<0 _
_ _ _ _ , fori>0,
min{ A(i-1,p), A(i-1, p-b,)+a |, if p>0
A(l, p) =+ - —_———
/ .
. 5 |
| Forp =0, the optimal combination either | '
contains the it"-item or does not contain it. * A Combination I
| with atotal profitp '
[ has size A(i— 1,p — b;) + q; ] [ has size A(i — 1,p) } . /




The Recurrence Formula for A(i, p)

m Fori =0, we have

AG,p)=1 N
{O, if p=0 .
_ , fori1=0.
o, If p£0
S\ y
N T—

When i = 0, no item is available for use.
The only valid combination is an empty set with a zero size.




The Recurrence Formula for A(i, p)

m We have the recurrence for A(i,p)

({oo, If p<0

: : . _ , fori>0,
min{ A(i-Lp), A(i-1, p-b,)+a, }, if p>0

A(l, p) =+
, fori1=0.

0, 1Ifp=0
o, If p=0

m Using the formula, we can compute A(i,p) forall 0 <i <n and
0 <p<n-P,where P=max,;<;<,b; IS the maximum profit of the items.

- The time complexity is 0(n? - P).




Dynamic Programming for Knapsack

([ o, if p<0 _
: . _ _ , fori>0,
{ min{ A(i-1,p), A(i-1, p-b,)+a |, if p>0
A, p) =5
{ 0, if p=0 .
_ , fori1=0.
- If p=0

The time complexity is O(n? - P).




A Pseudo-Polynomial Time Algorithm
m The Knapsack problem can be solved by standard dynamic
programming technique.
- The time complexity is 0(n? - P),

which is not polynomial in the input length n but grows with
the value of the input numbers.

- lItis a pseudo-polynomial time algorithm.

It can be very slow
when the value of P is large.




Inefficiency of Pseudo-Polynomial Time Algorithms

m For example,

- n =2, maxb; = 1018,

DP takes ©(108) time to execute.

- In contrast to the sorting algorithm,
whose running time does not depend on the value of the inputs,

DP for Knapsack can be very inefficient.

- This is inevitable, if the optimal solution must be computed.




One Natural Question to Ask

m The computation for the Knapsack problem is time-consuming

because it requires absolute precision in the resulting size and
profit.

m If only near-optimal solutions are sought, can we compute a good
solution efficiently for the Knapsack problem?




Approximating

the Optimal Solution for Knapsack

With a little bit (?) of compromise on the solution quality,

we can compute a good solution a lot faster!




Observation and ldea

m The computation for the Knapsack problem is time-consuming

because it aims for an absolute precision in the resulting value.

m By scaling down the profits of the items, we can reduce the range

of possible profit.
- The range of profits becomes smaller.

- Dynamic programming becomes much faster, and
the solution computed is still reasonably good.

Simple idea, works great.




: Scales down b; for all i \
Input instance I

|
of Knapsack il

[ New instance I’ }

. Intuitively, S should be | @

| : |

' not too bad for instance I. |

N S Apply DPon I

DP runs much faster,
since P is now smaller.

/
/
/
/
/
/ /
/ /
—_——————— -

Solution §’, <
optimal for I’

___________________________________________

Since S’ is the optimal solution for I,
it is at least as good as OPT; for instance I'.

- __ ________ ____ __ ___ ____ ___ _ ______ ___ _ _ ___________ _ ___________ _ ___________ __ ___________ ______________




Observation and ldea

m Let K be the scaling factor for the profits,

i.e., we are to set b; = |b;/K]| forall 1 <i < n.

- For dynamic programming to run in time polynomial in n,
K must be Q(P/n).

So that, the new maximum profit will be

max b; = max|b;/K] = 0(poly(n)).

1<i<n 1<i<n




Algorithm Description




Approximation Algorithm A for Knapsack

m Let
- I ={(aq, by),(ayb,), ..., (a,,b,), B} denote the input instance

- € > 0 be the input error parameter

m WLO.G., we assume

- B > max a;, and hence OPT; = P.

1<isn

m If a; > B for some item i, then this item can be dropped.




Description of the Algorithm A

P
1. LetK = % where P := maxy<;<y, b;.

2. Foreach 1 <i <n, define b; = {%‘

3. Apply dynamic programming on I' = {(a4, b1), (a,, b3), ..., (a,,, b;,), B}.

Let S’ be the combination computed.

4. Output S’ as the approximate solution for 1.




Analysis of Algorithm A




The Analysis

m To show that A is a (1 — €)-approximation for Knapsack,
we need to prove the following.

- The feasibility of the algorithm.

S’ is indeed a feasible solution for the input instance 1.

- The approximation guarantee of the algorithm.

The value of S’ with respectto I is at least (1 — €) times
the profit of the (unknown) optimal combination OPTy, i.e.,

Zbi > (1—-¢€)- z b; .

IES/ LEOPT]




The Feasibility of A

m The dynamic programming returns a feasible solution for I'.

So, we have ),3 <B.

ieS'

m Since I and I’ have the same Knapsack size,

S’ is also feasible for 1.




The Approximation Guarantee of A

m Forany A c [1,...,n], let profit(4) denote the profit of A under I
and profit'(4) denote the profit of A under I, i.e.,

profit(A) := Z b, and profit'(4) := z b; .

IEA LEA

m We will prove following lemma.

- { profit(OPT)) }

Lemma.

We have profit(S’') = (1 — €) - profit(OPT;).

T ﬁ profit(s’) ’

T 7 (1—¢) }
T - profit(OPTy)




Lemma.

We have profit(S’') = (1 — €) - profit(OPT).

m By the setting of b; for any item i, we have
b; > K-b, > b;—K.

m Then, we have

profit(S') > K -profit'(S') > K -profit'(OPT) > profit(OPT)—-n-K.

Ts’joptimal for I'. } At most n items are selected in OPT;. }

m By the definition of K, we have

profit(OPT)—n-K = profit(OPT)—-¢&-P > (1-¢&)-profit(OPT).

{iprofit(OPT,). 1




(1 — e)-Approximation for Knapsack

m |n conclusion, we obtain the following theorem.

Theorem.

Algorithm A computes a (1 — e)-approximation solution for the Knapsack

problem in 0(n3/€) time.

— The time required by DP is 0(n2 : {g‘) = O(n3/e).




Not many problems have FPTAS.

Strongly NP-hardness &
Non-existence of FPTAS




The Existence of FPTAS

m Intheory, FPTAS seems to be the most desirable algorithm for
combinatorial optimization problems.

- It approximates the problem to any desirable degree.

- It may not always be practically useful, since the desirable solution

guality often requires undesirable running time.

m Nevertheless, only a small portion of problems has FPTAS,
which we will see in the following.




The Existence of FPTAS

m In the following,
we derive a necessary condition for the existence of FPTAS.

m When the objective function Is

- Integer-valued, and

- Polynomially-bounded by the sum of input numbers, i.e.,

OPT; < poly ( ZIaI ,

a€l

FPTAS leads to a pseudo-polynomial time algorithm.




The Existence of FPTAS

m When the objective function of the problem is integer-valued and
polynomially-bounded by the sum of the input numbers, 1.e., OPT; <
poly( X..erlal), FPTAS leads to pseudo-polynomial time algorithms.

- The idea is simple:

To force FPTAS to return an optimal solution.

Set € properly, so that FPTAS has to g OorT{) 1
. o 1
return a solution that is within OPT(I) + 1 1 orr(n)
Since the objective is integer-valued, T OPT() -1

FPTAS must return the optimal solution.




m When the objective function of the problem is integer-valued and
polynomially-bounded by the sum of the input numbers, 1.e., OPT; <
poly( X..erlal), FPTAS leads to pseudo-polynomial time algorithms.

- Assume the above conditions.
We will derive a pseudo-polynomial time algorithm for this problem.

- Lete =1/poly(Q.¢/lal) and apply the FPTAS.
_ - T oPT() +1
Then the value of the solution computed is within
+ 0PT(I)
(1+¢€)-0PT;, <OPT, +€¢-p(|I,]) = OPT; +1,
which means that it must be OPT;. - OPT) =1

- The running time of the above is polynomial in |I| and 1/,
which is poly (3. ,¢/lal), 1.e., polynomial in the input numbers.




The Existence of FPTAS

m We have derived a necessary condition for the existence of FPTAS
for a large category of optimization problems,
l.e., problems with integer-valued & polynomially-bounded objective.

- When such a problem has an FPTAS,
It must have a pseudo-polynomial time algorithm as well.

- Conversely, if such a problem has no pseudo-polynomial time algorithm,
It cannot have an FPTAS.




Strongly NP-hardness

m An NP-hard problem is said to be strongly NP-hard,

If the problem remains NP-hard even when all of its input numbers

are bounded by a polynomial in its input length.
- Most NP-hard problems are in fact strongly NP-hard.

- By definition, strongly NP-hard problems have no pseudo-polynomial
time algorithms, unless P=NP.

Most of the problems we consider in this course are in this category.




An Alternative Definition

m An NP-hard problem is said to be strongly NP-hard,

If the problem remains NP-hard even when all of its input numbers

are written in unary representation.

- That Is, instead of writing a number in its binary representation,
we use the unary representation.

- For example, for the number 10,
we use 1111111111 instead of 1010.




Strongly NP-hardness

m An NP-hard problem is called strongly NP-hard, if it remains NP-hard even
when all of its input numbers are bounded by a polynomial in its input length.

- Most NP-hard problems are in fact strongly NP-hard.

- By definition, strongly NP-hard problems have no pseudo-polynomial
time algorithms, unless P=NP.

m Hence, we conclude that, strongly NP-hard problems with integer-valued &
polynomially-bounded objective cannot have FPTAS, unless P=NP.

Most of the problems we consider in this course are in this category.




Let's proceed to our next problem.




