
Introduction to 

Approximation Algorithms

Mong-Jen Kao (高孟駿)

Friday 13:20 – 15:10



Outline

■ Approximation Scheme

– PTAS & FPTAS

■ The Knapsack Problem

– An FPTAS for Knapsack

– Strongly NP-hardness & Non-existence of FPTAS



Approximation Schemes

– To Approximate to any Desirable Degrees

Use more computation time for arbitrarily-

good approximation guarantees.

Not every problem has approximation schemes.



Approximation Schemes

■ An algorithm 𝒜 is called an approximation scheme

for an optimization problem Π if, 

on any input instance 𝐼 and any error parameter 𝜖 > 0, 

the algorithm 𝒜 always produces 

– a (1 + 𝜖)-approximate solution for 𝐼, if Π is a minimization problem,

– a (1 − 𝜖)-approximate solution for 𝐼, if Π is a maximization problem.

– That is,   𝒜 𝐼 − 𝑂𝑃𝑇𝐼 ≤ 𝜖 ⋅ 𝑂𝑃𝑇𝐼 always holds.

The relative error between 𝒜 𝐼 and 𝑂𝑃𝑇𝐼
can be arbitrarily small!



Approximation Schemes

■ An approximation scheme 𝒜 is said to be 

– A polynomial-time approximation scheme (PTAS) if its running time

is bounded by a polynomial in 𝐼 , i.e., 𝑔
1

𝜖
⋅ 𝑝𝑜𝑙𝑦 𝐼 for some 

function 𝑔.

– A fully polynomial-time approximation scheme (FPTAS or Fully-

PTAS), if its running time is bounded by a polynomial in 𝑰 and 𝟏/𝝐, 

i.e., 𝑝𝑜𝑙𝑦 𝐼 ,
1

𝜖

A systematic way to exchange computation time 

for arbitrarily close approximation guarantees.



Approximation Schemes

■ In this course, we will see

– An FPTAS for the Knapsack problem.

– A necessary condition for FPTAS to exist for a problem.



The Knapsack Problem



The Knapsack Problem

■ Given a set of 𝑛 items with size 𝒂𝒊 and profit 𝒃𝒊, where 1 ≤ 𝑖 ≤ 𝑛, and 

a knapsack size 𝑩, 

the Knapsack problem is to compute a subset 𝑨 ⊆ [𝟏, 𝒏] with σ𝐢∈𝑨𝒂𝒊 ≤ 𝐁

such that σ𝒊∈𝑨𝒃𝒊 is maximized.

size 𝑎1item 1 profit 𝑏1

size 𝑎2item 2 profit 𝑏2

size 𝑎𝑛item 𝑛 profit 𝑏𝑛

size B

knapsack

?

To maximize 

the total profit 

put in the knapsack



The Knapsack Problem

■ The Knapsack problem is a classic NP-complete problem.

– Can be reduced from the Partition problem, one of the 6 basic 

NP-complete problems.

■ The Knapsack problem can be solved by dynamic programming in 

pseudo-polynomial time. 

■ We will see this problem can be approximated efficiently to any 

desirable degree.



Dynamic Programming 

for the Knapsack Problem



Dynamic Programming for Knapsack

■ The Knapsack problem can be solved by standard dynamic 

programming technique in pseudo-polynomial time.

– For any 0 ≤ 𝑖 ≤ 𝑛 and 𝑝 ≥ 0, 

let 𝐴(𝑖, 𝑝) denote the minimum total size it requires to get 

a total profit of 𝒑 using only the first 𝒊 items.

𝐴(𝑖, 𝑝) is defined to be ∞ if no such combination exists.



– For any 0 ≤ 𝑖 ≤ 𝑛 and 𝑝 ≥ 0, 

let 𝐴(𝑖, 𝑝) denote the minimum total size it requires to get 

a total profit of 𝒑 using only the first 𝒊 items.

A Combination 

with a total profit 𝒑

?

item 1

item 2

item 𝑛

item 𝑖

Only the first 𝒊 items are used.

𝑨(𝒊, 𝒑) : the minimum total size 

required to achieve this setting.



– For any 0 ≤ 𝑖 ≤ 𝑛 and 𝑝 ≥ 0, 

let 𝐴(𝑖, 𝑝) denote the minimum total size it requires to get 

a total profit of 𝒑 using only the first 𝒊 items.

𝐴(𝑖, 𝑝) is defined to be ∞ if no such combination exists.

– Let 𝑃 = 𝑚𝑎𝑥1≤𝑖≤𝑛𝑏𝑖. 

Clearly, the answer to the Knapsack problem is

the maximum 𝑝, where 0 ≤ 𝑝 ≤ 𝑛 ⋅ 𝑃,  that makes 𝐴 𝑛, 𝑝 ≤ 𝐵.



The Recurrence Formula for 𝐴(𝑖, 𝑝)

■ By our definition, when 𝑖 > 0, we have

 


















=


=






+



=

.0for     , 
0 if,  

0 if0,  
  

,0for    , 
0 if,    ) 1 (  ),1( min  

0 if,  
  

),(

i
p

p

i
pa, p-bi-A,pi-A

p

piA
ii

A Combination 

with a total profit 𝒑

?
For 𝑝 ≥ 0, the optimal combination either 

contains the 𝒊𝒕𝒉-item or does not contain it.

has size 𝑨 𝒊 − 𝟏, 𝒑 − 𝒃𝒊 + 𝒂𝒊 has size 𝑨 𝒊 − 𝟏, 𝒑

When 𝑝 < 0, 

we have no valid combination at all.



The Recurrence Formula for 𝐴(𝑖, 𝑝)

■ For 𝑖 = 0, we have

 


















=


=






+



=

.0for     , 
0 if,  

0 if0,  
  

,0for    , 
0 if,    ) 1 (  ),1( min  

0 if,  
  

),(

i
p

p

i
pa, p-bi-A,pi-A

p

piA
ii

When 𝑖 = 0, no item is available for use.

The only valid combination is an empty set with a zero size.



The Recurrence Formula for 𝐴(𝑖, 𝑝)

■ We have the recurrence for 𝐴(𝑖, 𝑝)

■ Using the formula, we can compute 𝐴(𝑖, 𝑝) for all 0 ≤ 𝑖 ≤ 𝑛 and 

0 ≤ 𝑝 ≤ 𝑛 ⋅ 𝑃, where P = max1≤𝑖≤𝑛𝑏𝑖 is the maximum profit of the items.

– The time complexity is 𝑂(𝑛2 ⋅ 𝑃).

 


















=


=






+



=

.0for     , 
0 if,  

0 if0,  
  

,0for    , 
0 if,    ) 1 (  ),1( min  

0 if,  
  

),(

i
p

p

i
pa, p-bi-A,pi-A

p

piA
ii



Dynamic Programming for Knapsack

 


















=


=






+



=

.0for     , 
0 if,  

0 if0,  
  

,0for    , 
0 if,    ) 1 (  ),1( min  

0 if,  
  

),(

i
p

p

i
pa, p-bi-A,pi-A

p

piA
ii

0

0 1 2 … … 𝒏 ⋅ 𝑷

0

n

…

∞ ∞ ∞ ∞ ∞

The time complexity is 𝑂(𝑛2 ⋅ 𝑃).



A Pseudo-Polynomial Time Algorithm

■ The Knapsack problem can be solved by standard dynamic 

programming technique.

– The time complexity is 𝑂(𝑛2 ⋅ 𝑃),

which is not polynomial in the input length 𝑛 but grows with

the value of the input numbers.

– It is a pseudo-polynomial time algorithm.

It can be very slow

when the value of 𝑃 is large.



Inefficiency of Pseudo-Polynomial Time Algorithms

■ For example,

– 𝑛 = 2,  max 𝑏𝑖 = 1018,

DP takes Θ 1018 time to execute.

– In contrast to the sorting algorithm, 

whose running time does not depend on the value of the inputs, 

DP for Knapsack can be very inefficient.

– This is inevitable, if the optimal solution must be computed.



One Natural Question to Ask

■ The computation for the Knapsack problem is time-consuming

because it requires absolute precision in the resulting size and 

profit.

■ If only near-optimal solutions are sought, can we compute a good 

solution efficiently for the Knapsack problem?



Approximating 

the Optimal Solution for Knapsack

With a little bit (?) of compromise on the solution quality, 

we can compute a good solution a lot faster!



Observation and Idea

■ The computation for the Knapsack problem is time-consuming

because it aims for an absolute precision in the resulting value.

■ By scaling down the profits of the items, we can reduce the range 

of possible profit.

– The range of profits becomes smaller.

– Dynamic programming becomes much faster, and 

the solution computed is still reasonably good.

Simple idea, works great.



Input instance 𝑰

of Knapsack

New instance 𝑰’

Apply DP on 𝑰’

Solution 𝑆’, 

optimal for 𝑰’

Scales down 𝑏𝑖 for all 𝑖

DP runs much faster, 

since 𝑃 is now smaller.

Intuitively, 𝑆′ should be 

not too bad for instance 𝐼.

Since 𝑆′ is the optimal solution for 𝑰′, 

it is at least as good as 𝑶𝑷𝑻𝑰 for instance 𝑰′.



Observation and Idea

■ Let 𝐾 be the scaling factor for the profits, 

i.e., we are to set 𝑏𝑖
′ ≔ 𝑏𝑖/𝐾 for all 1 ≤ 𝑖 ≤ 𝑛.

– For dynamic programming to run in time polynomial in 𝑛, 

𝐾 must be Ω 𝑃/𝑛 .

So that, the new maximum profit will be

max
1≤𝑖≤𝑛

𝑏𝑖
′ = max

1≤𝑖≤𝑛
𝑏𝑖/𝐾 = 𝑂 𝑝𝑜𝑙𝑦 𝑛 .



Algorithm Description



Approximation Algorithm 𝒜 for Knapsack

■ Let

– 𝑰 = 𝑎1, 𝑏1 , 𝑎2, 𝑏2 , … , 𝑎𝑛, 𝑏𝑛 , 𝐵 denote the input instance

– 𝜖 > 0 be the input error parameter

■ W.L.O.G., we assume

– 𝐵 ≥ max
1≤𝑖≤𝑛

𝑎𝑖, and hence 𝑂𝑃𝑇𝐼 ≥ 𝑃.

■ If 𝑎𝑖 > 𝐵 for some item 𝑖, then this item can be dropped.



Description of the Algorithm 𝒜

1. Let 𝐾 =
𝜖𝑃

𝑛
, where 𝑃 ≔ max1≤𝑖≤𝑛 𝑏𝑖.

2. For each 1 ≤ 𝑖 ≤ 𝑛, define 𝑏𝑖
′ ≔

𝑏𝑖

𝐾
.

3. Apply dynamic programming on 𝑰′ = 𝑎1, 𝑏1
′ , 𝑎2, 𝑏2

′ , … , 𝑎𝑛, 𝑏𝑛
′ , 𝐵 . 

Let 𝑆′ be the combination computed.

4. Output 𝑆′ as the approximate solution for 𝑰.



Analysis of Algorithm 𝒜



The Analysis

■ To show that 𝒜 is a (1 − 𝜖)-approximation for Knapsack, 

we need to prove the following. 

– The feasibility of the algorithm.

𝑺′ is indeed a feasible solution for the input instance 𝑰.

– The approximation guarantee of the algorithm.

The value of 𝑆′ with respect to 𝐼 is at least (1 − 𝜖) times

the profit of the (unknown) optimal combination 𝑂𝑃𝑇𝐼, i.e.,

෍

𝑖∈𝑆′

𝑏𝑖 ≥ 1 − 𝜖 ⋅ ෍

𝑖∈𝑂𝑃𝑇𝐼

𝑏𝑖 .



The Feasibility of 𝒜

■ The dynamic programming returns a feasible solution for 𝐼′.

So, we have                  . 

■ Since 𝐼 and 𝐼′ have the same Knapsack size,

𝑆′ is also feasible for 𝐼.

Ba
Si

i 
 '



The Approximation Guarantee of 𝒜

■ For any 𝐴 ⊆ [1,… , 𝑛], let profit(𝐴) denote the profit of 𝐴 under 𝐼

and profit′(𝐴) denote the profit of 𝐴 under 𝐼′, i.e., 

profit 𝐴 ≔෍

𝑖∈𝐴

𝑏𝑖 and profit′ 𝐴 ≔෍

𝑖∈𝐴

𝑏𝑖
′ .

■ We will prove following lemma.

Lemma.

We have  profit 𝑆′ ≥ 1 − 𝜖 ⋅ profit(𝑂𝑃𝑇𝐼).

profit(𝑂𝑃𝑇𝐼)

profit(𝑆’)

1 − ϵ
⋅ profit(𝑂𝑃𝑇𝐼)



Lemma.

We have  profit 𝑆′ ≥ 1 − 𝜖 ⋅ profit(𝑂𝑃𝑇𝐼).

■ By the setting of 𝑏𝑖
′ for any item 𝑖, we have 

𝑏𝑖 ≥ 𝐾 ⋅ 𝑏𝑖
′ ≥ 𝑏𝑖 − 𝐾 .

■ Then, we have

■ By the definition of 𝐾, we have

. )(profit    )('profit    )'('profit    )'(profit KnOPTOPTKSKS −

𝑆′ is optimal for 𝐼′. At most 𝑛 items are selected in 𝑂𝑃𝑇𝐼.

. )(profit)1(    )(profit    )(profit OPTPOPTKnOPT −−=− 

𝑃 ≤ profit(𝑂𝑃𝑇𝐼).



1 − 𝜖 -Approximation for Knapsack

■ In conclusion, we obtain the following theorem.

– The time required by DP is O 𝑛2 ⋅
𝑃

𝐾
= O 𝑛3/𝜖 .

Theorem.

Algorithm 𝒜 computes a 1 − 𝜖 -approximation solution for the Knapsack

problem in O 𝑛3/𝜖 time.



Strongly NP-hardness &

Non-existence of FPTAS

Not many problems have FPTAS.



The Existence of FPTAS

■ In theory, FPTAS seems to be the most desirable algorithm for 

combinatorial optimization problems.

– It approximates the problem to any desirable degree.

– It may not always be practically useful, since the desirable solution 

quality often requires undesirable running time.

■ Nevertheless, only a small portion of problems has FPTAS, 

which we will see in the following.



The Existence of FPTAS

■ In the following, 

we derive a necessary condition for the existence of FPTAS.

■ When the objective function is

– Integer-valued, and

– Polynomially-bounded by the sum of input numbers, i.e., 

𝑂𝑃𝑇𝐼 < 𝑝𝑜𝑙𝑦 ෍

𝑎∈𝐼

𝑎 ,

FPTAS leads to a pseudo-polynomial time algorithm.



The Existence of FPTAS

■ When the objective function of the problem is integer-valued and 

polynomially-bounded by the sum of the input numbers, i.e., 𝑂𝑃𝑇𝐼 <

𝑝𝑜𝑙𝑦 σ𝑎∈𝐼 𝑎 , FPTAS leads to pseudo-polynomial time algorithms.

– The idea is simple: 

To force FPTAS to return an optimal solution.

𝑂𝑃𝑇(𝐼)

𝑂𝑃𝑇(𝐼) + 1
Set 𝝐 properly, so that FPTAS has to 

return a solution that is within 𝑂𝑃𝑇 𝐼 ± 1.

Since the objective is integer-valued, 

FPTAS must return the optimal solution.

𝑂𝑃𝑇 𝐼 − 1



■ When the objective function of the problem is integer-valued and 

polynomially-bounded by the sum of the input numbers, i.e., 𝑂𝑃𝑇𝐼 <

𝑝𝑜𝑙𝑦 σ𝑎∈𝐼 𝑎 , FPTAS leads to pseudo-polynomial time algorithms.

– Assume the above conditions. 

We will derive a pseudo-polynomial time algorithm for this problem.

– Let 𝜖 = 1/𝑝𝑜𝑙𝑦 σ𝑎∈𝐼 𝑎 and apply the FPTAS.

Then the value of the solution computed is within

1 ± 𝜖 ⋅ 𝑂𝑃𝑇𝐼 < 𝑂𝑃𝑇𝐼 ± 𝜖 ⋅ 𝑝 𝐼𝑢 = 𝑂𝑃𝑇𝐼 ± 1,

which means that it must be 𝑂𝑃𝑇𝐼.

– The running time of the above is polynomial in |𝐼| and 1/𝜖, 

which is 𝑝𝑜𝑙𝑦 σ𝑎∈𝐼 𝑎 , i.e., polynomial in the input numbers.

𝑂𝑃𝑇(𝐼)

𝑂𝑃𝑇(𝐼) + 1

𝑂𝑃𝑇 𝐼 − 1



The Existence of FPTAS

■ We have derived a necessary condition for the existence of FPTAS 

for a large category of optimization problems, 

i.e., problems with integer-valued & polynomially-bounded objective.

– When such a problem has an FPTAS, 

it must have a pseudo-polynomial time algorithm as well.

– Conversely, if such a problem has no pseudo-polynomial time algorithm, 

it cannot have an FPTAS.



Strongly NP-hardness

■ An NP-hard problem is said to be strongly NP-hard, 

if the problem remains NP-hard even when all of its input numbers

are bounded by a polynomial in its input length.

– Most NP-hard problems are in fact strongly NP-hard.

– By definition, strongly NP-hard problems have no pseudo-polynomial 

time algorithms, unless P=NP.

Most of the problems we consider in this course are in this category.



An Alternative Definition

■ An NP-hard problem is said to be strongly NP-hard, 

if the problem remains NP-hard even when all of its input numbers

are written in unary representation.

– That is, instead of writing a number in its binary representation, 

we use the unary representation.

– For example, for the number 10, 

we use 1111111111 instead of 1010.



Strongly NP-hardness

■ An NP-hard problem is called strongly NP-hard, if it remains NP-hard even 

when all of its input numbers are bounded by a polynomial in its input length.

– Most NP-hard problems are in fact strongly NP-hard.

– By definition, strongly NP-hard problems have no pseudo-polynomial 

time algorithms, unless P=NP.

■ Hence, we conclude that, strongly NP-hard problems with integer-valued & 

polynomially-bounded objective cannot have FPTAS, unless P=NP.

Most of the problems we consider in this course are in this category.



Let’s proceed to our next problem.


