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The k-Center Problem



The k-Dominating Set Problem

■ The k-dominating set problem is the decision version of 

the unweighted dominating set problem in graphs. 

– Given a graph 𝐺 = (𝑉, 𝐸) and 𝑘 ∈ ℕ, determine if there exists 

a vertex subset of size 𝑘 that dominates (covers) all the vertices in 𝑉.

■ The vertices can also be weighted, and the goal is then to decide 

the existence of a dominating set with weight at most 𝑊.

Decision Problem

( Yes / No )



The k-Center Problem

■ The k-Center problem is a relaxation of the k-dominating set problem 

on the dominating (covering) distance.

It asks:

– What is the minimum covering radius it requires, 

if we want to cover the entire graph with only 𝑘 vertices?



The k-Center Problem

■ Consider the following graph. If we are to select 1 vertex, … 

If we select a vertex here, 

it covers the entire graph with a distance of 2.

If we select a vertex here,

it covers the entire graph with a distance of 3



The k-Center Problem

If we select the 2 vertices, 

they cover the graph with a distance 1.

What is the minimum covering distance, if we are to select 𝑘 vertices?



The k-Center Problem

■ Let 𝑀 = (𝑉, 𝑑) be a metric space with distance function 𝑑 defined over 𝑉. 

– For any vertex subset 𝐀 ⊆ 𝐕 and any 𝑣 ∈ 𝑉, let 

𝑑 𝑣, 𝐴 ≔ min
𝑢∈𝐴

𝑑 𝑣, 𝑢

denote minimum distance between 𝑣 and any vertex in the subset 𝐴.

– The covering radius of 𝐴 is defined as max
𝑣∈𝑉

𝑑 𝑣, 𝐴 ,

i.e., the maximum distance between any vertex and the set 𝐴.

Satisfies identity of indiscernible,

symmetry, and the triangle inequality.



The k-Center Problem

■ Let 𝑀 = (𝑉, 𝑑) be a metric space with distance function 𝑑 defined over 𝑉

and 𝑘 ∈ ℕ be a positive integer. 

The metric 𝑘-center problem is to compute a subset 𝐴 ⊆ 𝑉 with 𝐴 = 𝑘

such that the covering radius of 𝑨 is minimized.

– That is, max
𝑣∈𝑉

𝑑 𝑣, 𝐴 , is minimized.

Place the centers so as to minimize the covering radius.



The k-Center Problem

■ Consider the following graph.

Placing a center here gives 

a covering radius of 3.

The covering radius is the maximum distance 

from the vertices to the center set, i.e., max
𝑣∈𝑉

min
𝑢∈𝐴

𝑑 𝑣, 𝑢 .



The k-Center Problem

■ Consider the following graph.

Placing a center here gives 

a covering radius of 2.

The covering radius is the maximum distance 

from the vertices to the center set, i.e., max
𝑣∈𝑉

min
𝑢∈𝐴

𝑑 𝑣, 𝑢 .



The k-Center Problem

For placing 2 centers, 

the optimal covering radius is 1.

The k-center problem is to place the centers so as to minimize the covering radius.



k-Center as a Clustering Problem

■ The k-center problem is a type of clustering problems. 

– Placing the centers to form clusters such that, 

the distance of intra-cluster communications is minimized.



(Brief)

Status of the k-Center Problem



The Status of k-Center

■ The k-center problem is NP-hard to solve.

– It can be approximated to a factor of 2, 

either by parametric search or simple iterative refining.

– It cannot be approximated to 2 − 𝜖 for any 𝜖 > 0, unless P = NP.

■ For the vertex-weighted version, 

parametric search yields a 3-approximation.



Inherent reduction to 

the Dominating Set Problem

The k-center problem is tightly connected to the existence of dominating sets.



The incidence graph G(t)

■ Let 𝑀 = (𝑉, 𝑑) and 𝑘 ∈ ℕ be an instance of 𝑘-center, and 

𝑡 ≥ 0 be a target radius.

– Define the incidence graph 𝑮 𝒕 = 𝑉, 𝐸𝑡

with vertex set 𝑉 and edge set 

𝑬𝒕 ≔ { 𝒖, 𝒗 ∶ 𝑢, 𝑣 ∈ 𝑉 , 𝒅 𝒖, 𝒗 ≤ 𝒕 } .

In 𝐺(𝑡), we connect vertices 

that are within distance 𝑡.



■ Let 𝑀 = (𝑉, 𝑑) and 𝑘 ∈ ℕ be an instance of 𝑘-center, and 

𝑡 ≥ 0 be a target radius.

– Define the incidence graph 𝑮 𝒕 = 𝑉, 𝐸𝑡
with vertex set 𝑉 and edge set 

𝑬𝒕 ≔ { 𝒖, 𝒗 ∶ 𝑢, 𝑣 ∈ 𝑉 , 𝒅 𝒖, 𝒗 ≤ 𝒕 } .

■ Let 𝑡∗ denote the optimal radius that can be achieved.

Lemma 1.

For any 𝑡 ≥ 0, 

𝐺(𝑡) has a dominating set of size 𝑘 if and only if 𝑡 ≥ 𝑡∗.

In 𝐺(𝑡), we connect vertices 

that are within distance 𝑡.



■ If 𝐺(𝑡) has a dominating set 𝑆 with size 𝑘, 

then selecting 𝑆 to be the center set yields a covering radius at most 𝑡.

Since 𝑡∗ is the optimal radius that can be achieved,  𝑡∗ ≤ 𝑡.

■ Conversely, if 𝑡 ≥ 𝑡∗, then let 𝐴∗ be an optimal center set.

For any 𝑣 ∈ 𝑉, we have 𝑑 𝑣, 𝐴∗ ≤ 𝑡∗ ≤ 𝑡, 

which means that in 𝐺(𝑡), 𝑣 is dominated by some vertex in 𝐴∗. 

Hence 𝐴∗ is a dominating set for 𝐺(𝑡) with size 𝑘.

Lemma 1.

For any 𝑡 ≥ 0, 

𝐺(𝑡) has a dominating set of size 𝑘 if and only if 𝑡 ≥ 𝑡∗.



An Inherent Reduction to Dominating Set

■ By Lemma 1, the optimal radius is the smallest 𝑡 such that

𝐺(𝑡) has a dominating set of size at most 𝑘.

Lemma 1.

For any 𝑡 ≥ 0, 

𝐺(𝑡) has a dominating set of size 𝑘 if and only if  𝑡 ≥ 𝑡∗.

This reduction illustrates the nature of the k-center problem.

Solving the k-dominating set problem, however, is NP-hard.



Discretizing Possible Values for 𝑡



Discretizing Possible Values for 𝑡

■ The optimal radius is the smallest 𝑡 such that 

𝐺(𝑡) has a dominating set of size at most 𝑘.

■ Let’s, for now, leave aside the solvability of dominating set problem.

Do we really have infinitely many possible 𝑮(𝒕) to consider ?

Lemma 1.

For any 𝑡 ≥ 0, 

𝐺(𝑡) has a dominating set of size 𝑘 if and only if  𝑡 ≥ 𝑡∗.

The answer turns out to be no.



Discretizing Possible Values for 𝑡

■ Consider the following example. 

When 𝑡 goes from zero to infinity, we have……

𝐺 0

𝑣1

𝑣2

𝑣3

𝑣4

𝑣5

𝐺 𝑑(𝑣1, 𝑣2)

𝑣1

𝑣2

𝑣3

𝑣4

𝑣5

……

…… 𝐺 𝑑(𝑣2, 𝑣5)

𝑣1

𝑣2

𝑣3

𝑣4

𝑣5

……

……

……

……

New edges pop up in 𝐺(𝑡) only when

𝑡 passes the distance between a pair.



Discretizing Possible Values for 𝑡

■ When 𝑡 goes from zero to infinity, we know that……

– 𝐺 𝑡 changes only when the value of 𝑡 reaches the distance 

between any pair of vertices.

In that case, new edges will pop up in 𝐺 𝑡 .

■ Let 𝑑1, 𝑑2, … , 𝑑𝑚 denote the distances between all pair of vertices, 

sorted in ascending order.

– Then, 𝐺(𝑡), where 𝑡 ∈ 𝑑1, 𝑑2, … , 𝑑𝑚 , are exactly the set of graphs 

that will appear when 𝑡 goes from zero to infinity.



Lower-Bounding 

the Size of any Dominating Set



Lower-bounding the size of dominating sets

■ In the following, we derive a beautiful lower-bound on the size of 

any dominating set in a graph.

Lemma 1.

For any 𝑡 ≥ 0,   𝑮(𝒕) has a dominating set of size 𝒌 if and only if  𝑡 ≥ 𝑡∗.𝑮(𝒕) has a dominating set of size 𝒌



Some Notations – Graph Closure

■ Let 𝐺 = (𝑉, 𝐸) be a graph.

– For any positive constant 𝑐, define the graph 𝐺𝑐 = (𝑉, 𝐸𝑐) with

𝐸𝑐 ≔ 𝑢, 𝑣 ∶ 𝑑𝐺 𝑢, 𝑣 ≤ 𝑐 .

𝐺
𝐺2 Every pair of vertices 

that has distance at most 2 in 𝐺

is connected in 𝐺2.



Some Notations – Maximal Independent Set

■ Let 𝐺 = (𝑉, 𝐸) be a graph.

– We say that a vertex subset 𝐼 ⊆ 𝑉 is an independent set for 𝐺

if none of vertex pairs 𝑢, 𝑣 ∈ 𝐼 is connected by an edge in 𝐺, 

i.e., the induced subgraph of 𝐼 has no edges at all.

– We say that an independent set 𝐼 is maximal

if it is not contained in any other independent set as a subset.

Intuitively, the size of a maximal independent set cannot be 

extended by adding any new vertex.



Maximal Independent Sets

Two maximal independents  𝐼1, 𝐼2 for the graph.

𝐼1 𝐼2

No more vertex can be added 

to the two sets.



The Maximal Independent Sets for 𝐺

■ Let 𝐺 = (𝑉, 𝐸) be a graph.

■ Let 𝐼 be an MIS for 𝐺.

– If 𝐼 is not dominating in 𝐺, 

then there exist a 𝑣 ∈ 𝑉 such that, 𝑣 ∉ 𝐼 and 𝑣, 𝑢 ∉ 𝐸 for all 𝑢 ∈ 𝐼.

– Hence, 𝐼 ∪ 𝑣 is an independent set, a contradiction.

Lemma 2.

Any maximal independent set for 𝐺 is also a dominating set for 𝐺. 



The Maximal Independent Sets in 𝐺2

■ Let 𝐺 = (𝑉, 𝐸) be a graph.

■ Consider any 𝑣 ∈ 𝐷 and the neighbors 𝑁(𝑣) of 𝑣.

– The vertices 𝑣 ∪ 𝑁 𝑣 form a clique in 𝐺2.

– Hence, 𝐼 contains at most one vertex from 𝑣 ∪ 𝑁 𝑣 .

■ This holds for all 𝑣 ∈ 𝐷.  

Hence, we have 𝐼 ≤ 𝐷 .

Lemma 3.

For any feasible dominating set 𝐷 for 𝐺 and any independent set 𝐼 for 𝐺2, 

we have  𝐼 ≤ 𝐷 .

in 𝐺2

𝑣

𝑁 𝑣

𝑣



The Maximal Independent Sets in 𝐺2

■ Let 𝐺 = (𝑉, 𝐸) be a graph.

■ By Lemma 2 and 3, any maximal independent set for 𝐺2

– Lower-bounds the size of any dominating set of 𝐺, and

– Dominates the vertices in 𝐺 within a distance of at most 2.

Lemma 2.

Any maximal independent set for 𝐺 is also a dominating set for 𝐺. 

Lemma 3.

For any feasible dominating set 𝐷 for 𝐺 and any independent set 𝐼 for 𝐺2, 

we have  𝐼 ≤ 𝐷 .



The Parametric Search Technique 

&

2-Approximation for k-Center



MIS as a Tool for “Approximate-or-Refute”

■ Consider the k-Center problem.

■ Let 𝑡 > 0 be a target parameter to be tested, and 

let 𝐼(𝑡) be a maximal independent set for 𝐺2(𝑡).

– If 𝐼 𝑡 > 𝑘, 

then by Lemma 3, 𝐺 𝑡 has no dominating set of size 𝑘, and 𝑡 < 𝑡∗. 

– If 𝐼 𝑡 ≤ 𝑘, 

then by Lemma 2, 𝐼 𝑡 has a covering radius of 2𝑡.

– The smallest 𝑡 with 𝐼 𝑡 ≤ 𝑘 must satisfy 𝑡 ≤ 𝑡∗ and 

will be a 2-approximation.



The “Approximate-or-Refute” Search Process

■ The algorithm goes as follows.

1. Let 𝑑1, 𝑑2, … , 𝑑𝑚 be the all-pair distances between the vertices,

sorted in ascending order.

2. Greedily compute a maximal independent set 𝐼𝑖 for 𝐺2 𝑑𝑖 .

Let 𝑖′ be the smallest index such that 𝐼𝑖′ ≤ 𝑘.

3. Output 𝐼𝑖′ as the approximate solution for the metric k-center 

problem.

Step 2 can either be done by sequential search or binary search.



2-Approximation 

by Simple Iterative Refining 



Simple Iterative Refinement

■ We can also obtain a 2-approximation by simple iterative refinement.

– The idea is to greedily insert new centers so as to minimize 

the current assignment radius.

– The algorithm goes as follows.

1. Let 𝒞 ← ∅ be the current of centers.

2. For  𝑖 = 1,2, … , 𝑘 do

– Pick 𝑢 ∈ 𝑉 that maximize 𝑑(𝑢, 𝒞), i.e., 𝑢 = argmax𝑣∈𝑉𝑑(𝑣, 𝒞).

– 𝒞 ← 𝒞 ∪ {𝑢} .

Pick a vertex farthest from 𝒞 and 

add it to 𝒞.



The Approximation Guarantee

■ To see that the set 𝒞 computed by the algorithm is a 2-approximation,

consider any optimal solution  𝒮∗ = 𝑣1, 𝑣2, … , 𝑣𝑘 with radius 𝑟∗.

– For any 1 ≤ 𝑖 ≤ 𝑘, and any 𝑢, 𝑣 ∈ 𝑁 𝑣𝑖 ∪ 𝑣𝑖 ,  we have 

𝑑 𝑢, 𝑣 ≤ 2 ⋅ 𝑟∗

by the triangle inequality.

𝑣𝑖

≤ 𝑟∗

𝑢

𝑣

The reason is that,

𝑑 𝑢, 𝑣 ≤ 𝑑 𝑢, 𝑣𝑖 + 𝑑 𝑣𝑖 , 𝑣

≤ 𝑟∗ + 𝑟∗

≤ 2 ⋅ 𝑟∗

by triangle inequality.



– For any 1 ≤ 𝑖 ≤ 𝑘, and any 𝑢, 𝑣 ∈ 𝑁 𝑣𝑖 ∪ 𝑣𝑖 ,  we have 

𝒅 𝒖, 𝒗 ≤ 𝟐 ⋅ 𝒓∗

by the triangle inequality.

■ Hence, 

– If 𝒞 includes one vertex from 𝑁 𝑣𝑖 ∪ 𝑣𝑖 for each 1 ≤ 𝑖 ≤ 𝑘, 

then by (*) we know that,  𝑑 𝑣, 𝒞 ≤ 2 ⋅ 𝑟∗ holds for all 𝑣 ∈ 𝑉.

– If 𝒞 includes more than one vertex from 𝑁 𝑣𝑖 ∪ 𝑣𝑖 for some 𝑖, 

then at the moment when the second center is placed,

for any 𝑣 ∈ 𝑉, we have 

𝑑 𝑣, 𝒞 ≤ 𝑑 𝑐1, 𝑐2 ≤ 2 ⋅ 𝑟∗

as well.
𝑣𝑖

≤ 𝑟∗

𝑐1

𝑐2

Inequality (*)

By the design 

of the greedy algorithm.



Inapproximability of 2 − 𝜖



Creating the Gap for k-Center

■ As hinted in Lemma 1, the metric k-center problem is closely related to 

the k-dominating set problem. 

– Given an instance 𝐺 = (𝑉, 𝐸) of k-dominating set problem, 

we create an instance (𝑉, 𝑑) of metric k-center problem 

such that, 

■ If the answer for 𝐺 is “yes”, 

then there exists a feasible solution for (𝑉, 𝑑) with radius 1.

■ If the answer for 𝐺 is “no”, 

then any feasible solution for (𝑉, 𝑑) has radius at least 2.

The ratio of the gap corresponds to the hardness of approximation.

Optimal radius = 1

Optimal radius ≥ 2



The Reduction

■ Let 𝐺 = (𝑉, 𝐸) be an instance of the k-dominating set problem. 

Define a distance metric as

for any 𝑢, 𝑣 ∈ 𝑉, 𝑑 𝑢, 𝑣 ≔ ቊ
1, if 𝑢, 𝑣 ∈ 𝐸,
2, otherwise.

■ We have the following lemma.

Lemma 3.

𝐺 has a dominating set of size 𝑘 if and only if 

(𝑉, 𝑑) has a 𝑘-center set with radius 1.



The Weighted k-Center Problem

&

3-Approximation by Parametric Search



The Weighted k-Center Problem

■ In the weighted metric k-center problem, 

the vertices are weighted by a weight function 𝑤 ∶ 𝑉 → ℝ+, and 

the goal is to compute a subset 𝐴 ⊆ 𝑉 such that

– The total weight of 𝐴 does not exceed the given budget 𝐾, 

i.e., 𝑤 𝐴 ≤ 𝐾,

– The covering radius 𝐴 is minimized.

Place the centers under the given budgets to minimize the covering radius.



Parametric Search for the Weighted k-Center

■ We will obtain a simple 3-approximation by parametric search technique.

– Let 𝑡∗ be the optimal radius.

– The following lemma reduces this problem to the weighted 

dominating set problem.

Lemma 5.

For any 𝑡 ≥ 0, the graph 𝐺(𝑡) has a dominating set of weight 𝑘

if and only if  𝑡 ≥ 𝑡∗.

The proof is the same as Lemma 1.



Parametric Search for the Weighted k-Center

■ In order to perform parametric search, 

we need to establish the testing process for the weighted dominating set.

For any 𝑡, the testing process either

– Computes a solution with radius at most c ⋅ 𝑡 for some constant 𝑐, or, 

– Asserts that 𝑡 < 𝑡∗ and refutes 𝑡.

Then, by Lemma 5,

the smallest 𝑡 that is not refuted by the process will be a 𝑐-approximation.



The Testing Process for Weighted Dominating Set

For any 𝑡, the testing process either

– Computes a solution with radius at most c ⋅ 𝑡∗ for some constant 𝑡, or

– Asserts that 𝑡 < 𝑡∗ and refutes 𝑡.

■ To form a valid lower-bound, we can observe that…

– Any maximal independent set 𝐼 for 𝐺2 still covers 𝐺

with a distance at most 2.

– Any maximal independent set 𝐼 for 𝐺2 still bounds any dominating set 

of 𝐺 in size.  ( but not in weight )

The basic properties 

for maximal independent sets still hold.



– Any maximal independent set 𝐼 for 𝐺2 still bounds any dominating set 

of 𝐺 in size ( but not in weight )

By selecting the lightest neighbor for each 𝑣 ∈ 𝐼, 

we can lower-bound the weight of any dominating set 𝐷.

For any vertex 𝑣 ∈ 𝑉, let ℓ 𝑣 denote the lightest vertex in 𝑁 𝑣 ∪ 𝑣 , 

i.e., ℓ 𝑣 ≔ argmin𝑢∈ 𝑣 ∪𝑁 𝑣 𝑤(𝑢).

Define

ℓ 𝐼 ≔ ℓ 𝑣 ∶ 𝑣 ∈ 𝐼 .

Then, 𝑤(ℓ 𝐼 ) lower-bounds 𝑤(𝐷), and

ℓ 𝐼 covers 𝐺 within a distance of 3!

𝑣

𝐼

ℓ 𝑣

ℓ 𝐼



The Maximal Independent Sets in 𝐺2

■ Let 𝐺 = (𝑉, 𝐸) be a graph with weight function 𝑤 ∶ 𝑉 → ℝ+.

■ The proof is based on the same idea.

Lemma 6.

For any maximal independent set 𝐼 for 𝐺2, 

• ℓ(𝐼) dominates the vertices of 𝑉 with a distance at most 3. 

• 𝑤 ℓ 𝐼 ≤ 𝑤(𝐷),  for any feasible dominating set 𝐷 for 𝐺.



The Parametric Search Process

■ The algorithm goes as follows.

1. Let 𝑑1, 𝑑2, … , 𝑑𝑚 be the all-pair distances between the vertices,

sorted in ascending order.

2. Greedily compute a maximal independent set 𝐼𝑖 for 𝐺2 𝑑𝑖 .

Let 𝑖′ be the smallest index such that  𝑤 ℓ 𝐼𝑖′ ≤ 𝑘.

3. Output ℓ 𝐼𝑖′ as the approximate solution for the weighted metric 

k-center problem.

Step 2 can either be done by sequential search or binary search.



That’s all for k-Center so far.

Let’s proceed to our next problem.


