Introduction to Approximation Algorithms

Mong-Jen Kao (高孟駿)

Friday 13:20 – 15:10

Outline

- The k-Center Problem
 - 2-approximation by the Parametric Search technique
 - Inherent reduction to dominating set problem
 - Lower-bounding the size of dominating sets
 - 2-approximation by simple Iterative Refining
 - Inapproximability of 2ϵ
- The weighted k-Center Problem and a 3-approximation

The k-Dominating Set Problem

The k-dominating set problem is the <u>decision version</u> of the <u>unweighted dominating set</u> problem in graphs. Decision Problem (Yes / No)

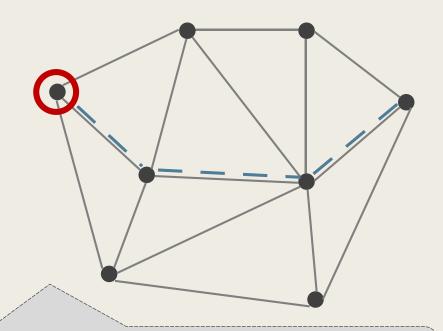
- Given a graph G = (V, E) and $k \in \mathbb{N}$, determine if there exists a vertex subset of size k that dominates (covers) all the vertices in V.
- The vertices can also be weighted, and the goal is then to decide the existence of a dominating set with weight at most W.

■ The k-Center problem is a relaxation of the k-dominating set problem on the dominating (covering) distance.

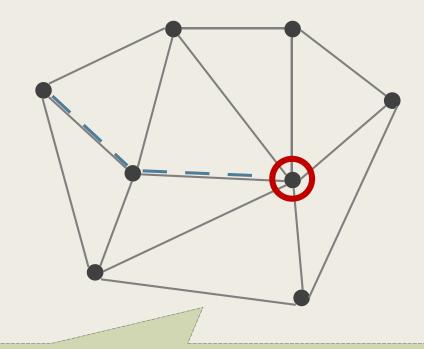
It asks:

What is the <u>minimum covering radius</u> it requires,
 if we want to cover the entire graph with only k vertices?

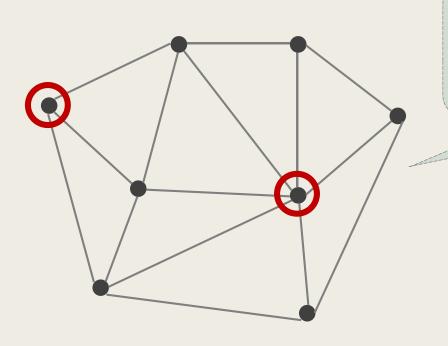
■ Consider the following graph. If we are to select 1 vertex, ...



If we select a vertex here, it covers the entire graph with a distance of 3



If we select a vertex here, it covers the entire graph with a distance of 2.



If we select the 2 vertices, they cover the graph with a distance 1.

What is the minimum covering distance, if we are to select k vertices?

Satisfies identity of indiscernible, symmetry, and *the triangle inequality*.

- Let M = (V, d) be a metric space with distance function d defined over V.
 - For any vertex subset $A \subseteq V$ and any $v \in V$, let

$$d(v,A) := \min_{u \in A} d(v,u)$$

denote minimum distance between v and any vertex in the subset A.

- The *covering radius* of *A* is defined as $\max_{v \in V} d(v, A)$, i.e., the maximum distance between any vertex and the set *A*.

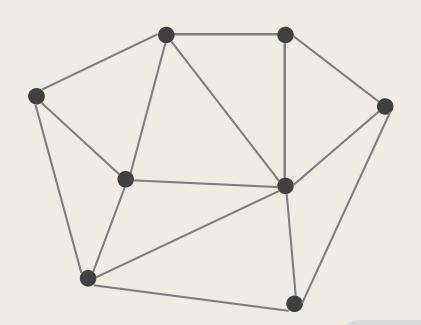
Let M = (V, d) be a metric space with *distance function* d defined over V and $k \in \mathbb{N}$ be a positive integer.

The metric k-center problem is to compute a subset $A \subseteq V$ with |A| = k such that the **covering radius of** A **is minimized**.

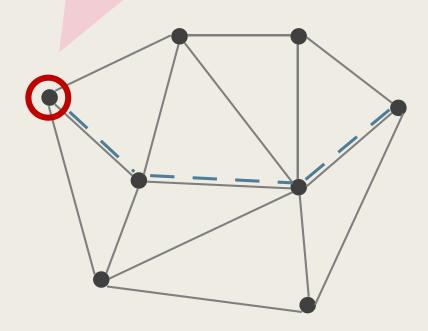
- That is, $\max_{v \in V} d(v, A)$, is minimized.

Place the centers so as to minimize the covering radius.

Consider the following graph.

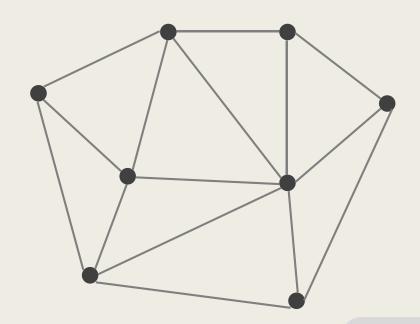


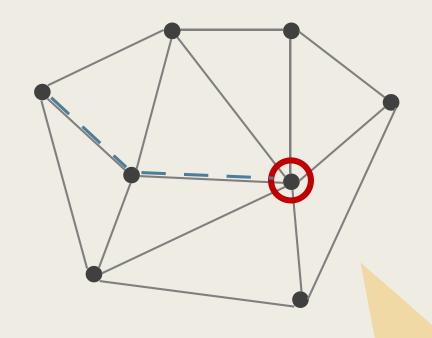
Placing a center here gives a covering radius of 3.



The covering radius is the maximum distance from the vertices to the center set, i.e., $\max_{v \in V} \min_{u \in A} d(v, u)$.

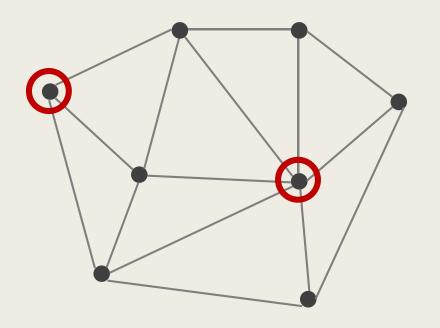
Consider the following graph.





Placing a center here gives a covering radius of 2.

The covering radius is the maximum distance from the vertices to the center set, i.e., $\max_{v \in V} \min_{u \in A} d(v, u)$.

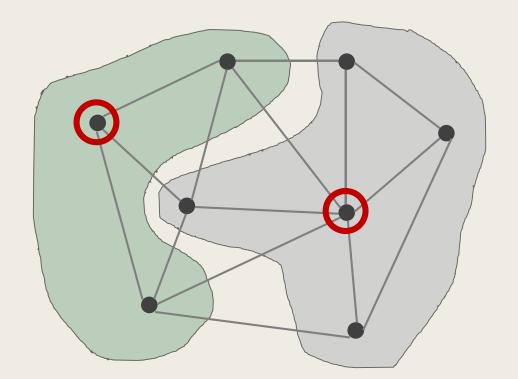


For placing 2 centers, the optimal covering radius is 1.

The k-center problem is to place the centers so as to minimize the covering radius.

k-Center as a Clustering Problem

- The k-center problem is a type of clustering problems.
 - Placing the centers to form clusters such that,
 the distance of intra-cluster communications is minimized.



(Brief)

Status of the k-Center Problem

The Status of k-Center

- The k-center problem is NP-hard to solve.
 - It can be approximated to a factor of 2,
 either by <u>parametric search</u> or simple <u>iterative refining</u>.
 - It cannot be approximated to 2ϵ for any $\epsilon > 0$, unless P = NP.
- For the vertex-weighted version, parametric search yields a 3-approximation.

Inherent reduction to the Dominating Set Problem

The k-center problem is tightly connected to the existence of dominating sets.

The incidence graph G(t)

- Let M = (V, d) and $k \in \mathbb{N}$ be an instance of k-center, and $t \ge 0$ be a **target radius**.
 - Define the *incidence graph* $G(t) = (V, E_t)$ with vertex set V and edge set $E_t \coloneqq \{(u, v) : u, v \in V, d(u, v) \leq t \}.$

In G(t), we connect vertices that are within distance t.

- Let M = (V, d) and $k \in \mathbb{N}$ be an instance of k-center, and $t \ge 0$ be a **target radius**.
 - Define the *incidence graph* $G(t) = (V, E_t)$ with vertex set V and edge set

$$E_t := \{(u,v) : u,v \in V, d(u,v) \leq t\}.$$

In G(t), we connect vertices that are within distance t.

■ Let t^* denote the optimal radius that can be achieved.

Lemma 1.

For any $t \ge 0$,

G(t) has a dominating set of size k if and only if $t \ge t^*$.

Lemma 1.

For any $t \geq 0$,

G(t) has a dominating set of size k if and only if $t \ge t^*$.

- If G(t) has a dominating set S with size k,
 then selecting S to be the center set yields a covering radius at most t.
 Since t* is the optimal radius that can be achieved, t* ≤ t.
- Conversely, if $t \ge t^*$, then let A^* be an optimal center set.

For any $v \in V$, we have $d(v, A^*) \le t^* \le t$, which means that in G(t), v is dominated by some vertex in A^* .

Hence A^* is a dominating set for G(t) with size k.

An Inherent Reduction to Dominating Set

Lemma 1.

For any $t \geq 0$,

G(t) has a dominating set of size k if and only if $t \ge t^*$.

By Lemma 1, the optimal radius is the smallest t such that G(t) has a dominating set of size at most k.

This reduction illustrates the nature of the k-center problem. Solving the k-dominating set problem, however, is *NP-hard*.

Lemma 1.

For any $t \ge 0$, G(t) has a dominating set of size k if and only if $t \ge t^*$.

- The optimal radius is the smallest t such that G(t) has a dominating set of size at most k.
- Let's, for now, leave aside the solvability of dominating set problem.

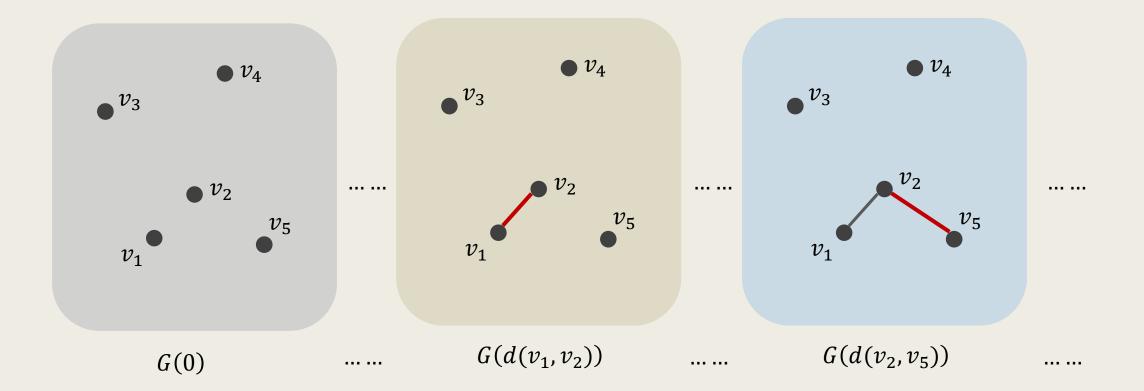
Do we really have infinitely many possible G(t) to consider ?

The answer turns out to be no.

Consider the following example.

When t goes from zero to infinity, we have.....

New edges pop up in G(t) only when t passes the distance between a pair.



- When *t* goes from zero to infinity, we know that......
 - G(t) changes only when the value of t reaches the distance between any pair of vertices.
 - In that case, new edges will pop up in G(t).
- Let $d_1, d_2, ..., d_m$ denote the distances between all pair of vertices, sorted in ascending order.
 - Then, G(t), where $t \in \{d_1, d_2, ..., d_m\}$, are exactly the set of graphs that will appear when t goes from zero to infinity.

Lower-Bounding the Size of any Dominating Set

Lower-bounding the size of dominating sets

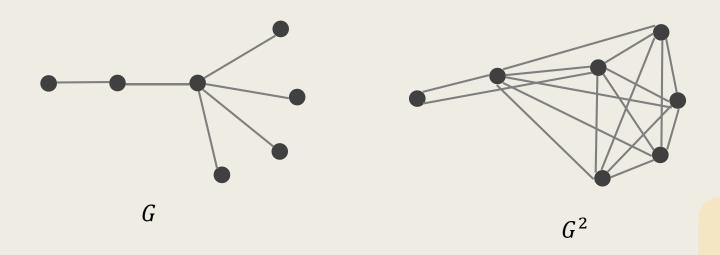
Lemma 1.

For any $t \ge 0$, G(t) has a dominating set of size k if and only if $t \ge t^*$.

■ In the following, we derive a <u>beautiful lower-bound</u> on the size of <u>any dominating set</u> in a graph.

Some Notations – Graph Closure

- Let G = (V, E) be a graph.
 - For any positive constant c, define the graph $G^c = (V, E^c)$ with $E^c \coloneqq \{(u, v) : d_G(u, v) \le c \}.$



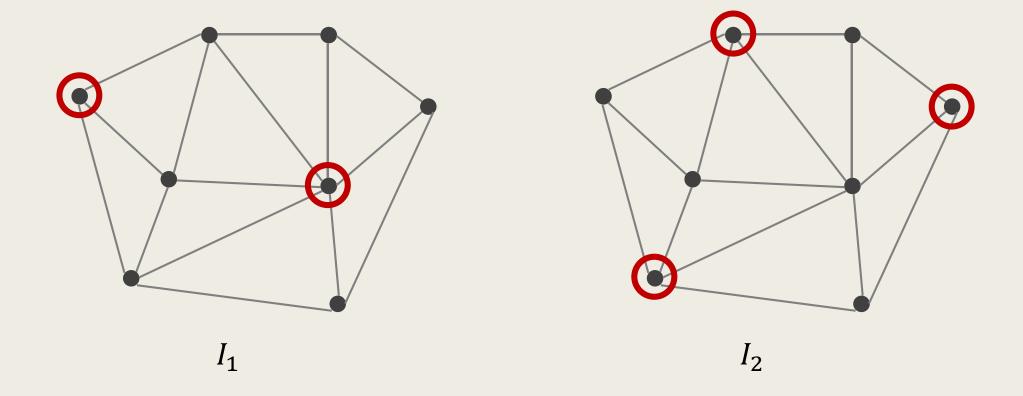
Every pair of vertices that has distance at most 2 in G is connected in G^2 .

Some Notations – Maximal Independent Set

- Let G = (V, E) be a graph.
 - We say that a vertex subset I ⊆ V is an *independent set* for G if *none of vertex pairs* u, v ∈ I *is connected by an edge* in G, i.e., the induced subgraph of I has no edges at all.
 - We say that an independent set I is maximal
 if it is not contained in any other independent set as a subset.

Intuitively, the size of a maximal independent set *cannot be extended by adding any new vertex*.

Maximal Independent Sets



Two maximal independents I_1 , I_2 for the graph.

No more vertex can be added to the two sets.

The Maximal Independent Sets for *G*

■ Let G = (V, E) be a graph.

Lemma 2.

Any maximal independent set for G is also a dominating set for G.

- \blacksquare Let I be an MIS for G.
 - If *I* is not dominating in *G*, then there exist a $v \in V$ such that, $v \notin I$ and $(v, u) \notin E$ for all $u \in I$.
 - Hence, $I \cup \{v\}$ is an independent set, a contradiction.

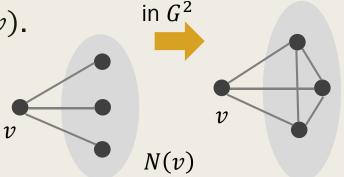
The Maximal Independent Sets in G^2

■ Let G = (V, E) be a graph.

Lemma 3.

For any feasible dominating set D for G and any independent set I for G^2 , we have $|I| \leq |D|$.

- Consider any $v \in D$ and the neighbors N(v) of v.
 - The vertices $\{v\} \cup N(v)$ form a clique in G^2 .
 - Hence, *I* contains at most one vertex from $\{v\} \cup N(v)$.
- This holds for all $v \in D$. Hence, we have $|I| \le |D|$.



The Maximal Independent Sets in G^2

■ Let G = (V, E) be a graph.

Lemma 2.

Any maximal independent set for G is also a dominating set for G.

Lemma 3.

For any feasible dominating set D for G and any independent set I for G^2 , we have $|I| \leq |D|$.

- By Lemma 2 and 3, any maximal independent set for G^2
 - Lower-bounds the size of any dominating set of G, and
 - Dominates the vertices in G within a distance of at most 2.

The Parametric Search Technique

&

2-Approximation for k-Center

MIS as a Tool for "Approximate-or-Refute"

- Consider the k-Center problem.
- Let t > 0 be a target parameter to be tested, and let I(t) be a maximal independent set for $G^2(t)$.
 - If |I(t)| > k, then by Lemma 3, G(t) has no dominating set of size k, and $t < t^*$.
 - If $|I(t)| \le k$, then by Lemma 2, I(t) has a covering radius of 2t.
 - The smallest t with $|I(t)| \le k$ must satisfy $t \le t^*$ and will be a 2-approximation.

The "Approximate-or-Refute" Search Process

- The algorithm goes as follows.
 - 1. Let $d_1, d_2, ..., d_m$ be the all-pair distances between the vertices, sorted in ascending order.
 - 2. Greedily compute a maximal independent set I_i for $G^2(d_i)$. Let i' be the smallest index such that $|I_{i'}| \leq k$.
 - 3. Output $I_{i'}$ as the approximate solution for the metric k-center problem.

Step 2 can either be done by sequential search or binary search.

2-Approximationby Simple Iterative Refining

Simple Iterative Refinement

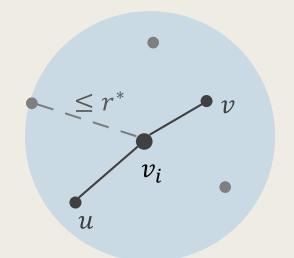
- We can also obtain a 2-approximation by *simple iterative refinement*.
 - The idea is to greedily insert new centers so as to minimize the current assignment radius.
 - The algorithm goes as follows.
 - 1. Let $\mathcal{C} \leftarrow \emptyset$ be the current of centers.
 - 2. For i = 1, 2, ..., k do
 - Pick $u \in V$ that maximize d(u, C), i.e., $u = \operatorname{argmax}_{v \in V} d(v, C)$.
 - $\mathcal{C} \leftarrow \mathcal{C} \cup \{u\}$.

Pick a vertex farthest from C and add it to C.

The Approximation Guarantee

- To see that the set \mathcal{C} computed by the algorithm is a 2-approximation, consider any optimal solution $\mathcal{S}^* = \{v_1, v_2, ..., v_k\}$ with radius r^* .
 - For any $1 \le i \le k$, and any $u, v \in N(v_i) \cup \{v_i\}$, we have $d(u,v) \le 2 \cdot r^*$

by the triangle inequality.



The reason is that,

$$\begin{aligned} d(u,v) &\leq d(u,v_i) + d(v_i,v) \\ &\leq r^* + r^* \\ &\leq 2 \cdot r^* \end{aligned}$$

by triangle inequality.

- For any $1 \le i \le k$, and any $u,v \in N(v_i) \cup \{v_i\}$, we have $d(u,v) \le 2 \cdot r^*$ Inequality (*) by the triangle inequality.

Hence,

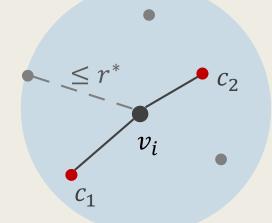
- If $\mathcal C$ includes one vertex from $N(v_i) \cup \{v_i\}$ for each $1 \le i \le k$, then by (*) we know that, $d(v,\mathcal C) \le 2 \cdot r^*$ holds for all $v \in V$.
- If C includes more than one vertex from $N(v_i) \cup \{v_i\}$ for some i, then at the moment when the second center is placed,

for any $v \in V$, we have

$$d(v, \mathcal{C}) \leq d(c_1, c_2) \leq 2 \cdot r^*$$

as well.

By the design of the greedy algorithm.



Inapproximability of $2 - \epsilon$

Creating the Gap for k-Center

- As hinted in Lemma 1, the metric k-center problem is closely related to the k-dominating set problem.
 - Given an instance G = (V, E) of k-dominating set problem, we create an instance (V, d) of metric k-center problem such that,
 - If the answer for G is "yes", then **there exists a feasible solution** for (V, d) with radius 1.
 - If the answer for G is "no", then any feasible solution for (V, d) has radius at least 2.

Optimal radius ≥ 2

Optimal radius = 1

The ratio of the gap corresponds to the hardness of approximation.

The Reduction

■ Let G = (V, E) be an instance of the k-dominating set problem.

Define a distance metric as

for any
$$u, v \in V$$
, $d(u, v) \coloneqq \begin{cases} 1, & \text{if } (u, v) \in E, \\ 2, & \text{otherwise.} \end{cases}$

We have the following lemma.

Lemma 3.

G has a dominating set of size k if and only if (V, d) has a k-center set with radius 1.

The Weighted k-Center Problem &

3-Approximation by Parametric Search

The Weighted k-Center Problem

- In the weighted metric k-center problem, the vertices are weighted by a weight function $w: V \to \mathbb{R}^+$, and the goal is to compute a subset $A \subseteq V$ such that
 - The total weight of A does not exceed the given budget K,
 i.e., w(A) ≤ K,
 - The covering radius *A* is minimized.

Parametric Search for the Weighted k-Center

- We will obtain a simple 3-approximation by parametric search technique.
 - Let t* be the optimal radius.
 - The following lemma reduces this problem to the weighted dominating set problem.

Lemma 5.

For any $t \ge 0$, the graph G(t) has a dominating set of weight k if and only if $t \ge t^*$.

Parametric Search for the Weighted k-Center

In order to perform parametric search,
 we need to establish the testing process for the weighted dominating set.

For any *t*, the testing process either

- Computes a solution with radius at most $c \cdot t$ for some constant c, or,
- Asserts that $t < t^*$ and refutes t.

Then, by Lemma 5, the smallest t that is not refuted by the process will be a c-approximation.

The Testing Process for Weighted Dominating Set

For any t, the testing process either

- Computes a solution with radius at most $c \cdot t^*$ for some constant t, or
- Asserts that $t < t^*$ and refutes t.

The basic properties for maximal independent sets still hold.

- To form a valid lower-bound, we can observe that...
 - Any maximal independent set *I* for *G*² still covers *G* with a distance at most 2.
 - Any maximal independent set *I* for *G*² still bounds any dominating set
 of *G* in size. (but not in weight)

Any maximal independent set *I* for *G*² still bounds any dominating set
 of *G* in size (but not in weight)

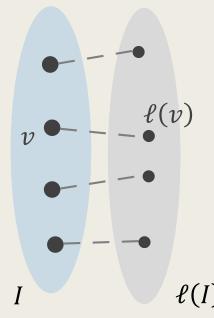
By selecting the lightest neighbor for each $v \in I$, we can lower-bound the weight of any dominating set D.

For any vertex $v \in V$, let $\ell(v)$ denote the lightest vertex in $N(v) \cup \{v\}$, i.e., $\ell(v) \coloneqq \operatorname{argmin}_{u \in \{v\} \cup N(v)} w(u)$.

Define

$$\ell(I) := \{ \ell(v) : v \in I \}.$$

Then, $w(\ell(I))$ lower-bounds w(D), and $\ell(I)$ covers G within a distance of 3!



The Maximal Independent Sets in G^2

■ Let G = (V, E) be a graph with weight function $w : V \to \mathbb{R}^+$.

Lemma 6.

For any maximal independent set I for G^2 ,

- $\ell(I)$ dominates the vertices of V with a distance at most 3.
- $w(\ell(I)) \le w(D)$, for any feasible dominating set *D* for *G*.

■ The proof is based on the same idea.

The Parametric Search Process

- The algorithm goes as follows.
 - 1. Let $d_1, d_2, ..., d_m$ be the all-pair distances between the vertices, sorted in ascending order.
 - 2. Greedily compute a maximal independent set I_i for $G^2(d_i)$. Let i' be the smallest index such that $w\left(\ell(I_{i'})\right) \leq k$.
 - 3. Output $\ell(I_{i'})$ as the approximate solution for the weighted metric k-center problem.

Step 2 can either be done by sequential search or binary search.

That's all for k-Center so far.

Let's proceed to our next problem.

