
Introduction to

Approximation Algorithms

Mong-Jen Kao (高孟駿)

Friday 13:20 – 15:10

Outline

■ The Set Cover Problem

– An 𝐻𝑛-approximation via greedy approach

■ The cost-efficiency of the choices

■ A tight example for the algorithm analysis

– An 𝑂(log 𝑛)-Approximation via randomized LP-rounding

The Set Cover Problem

The Set Cover Problem

■ Given a universe 𝒰 of 𝑛 elements, a collection of subsets of 𝒰,

𝒮 = 𝑆1, 𝑆2, … , 𝑆𝑘 , and a cost function 𝑐 ∶ 𝒮 → ℚ+,

the set cover problem is to compute a minimum cost subcollection

of 𝒮 that covers all the elements of 𝒰.

– i.e., to pick a collection of subsets 𝒜 ⊆ 𝒮 such that

𝑠∈𝒜ڂ 𝑠 = 𝒰 and the total cost, σ𝒔∈𝓐 𝒄(𝒔), is minimized.

An Intuitive Way to View the Set Cover Problem

cost: 3

𝑆1 = 𝑒2, 𝑒4

cost: 2

𝑆2 = 𝑒1, 𝑒5, 𝑒7

cost: 5

𝑆3 = 𝑒3, 𝑒2, 𝑒6

cost: 3

𝑆4 = 𝑒1, 𝑒2, 𝑒6, 𝑒7

The subsets in 𝑺

𝑒1

The universe 𝓤

of elements

𝑒2

𝑒3

𝑒4

𝑒5

𝑒6

𝑒7

𝑆1

𝑆2

𝑆3

𝑆4

For any 𝑠 ∈ 𝒮 and 𝑒 ∈ 𝒰,

there’s an edge 𝒔, 𝒆 if 𝒆 ∈ 𝒔.

cost: 3

𝑆1 = 𝑒2, 𝑒4

cost: 2

𝑆2 = 𝑒1, 𝑒5, 𝑒7

cost: 5

𝑆3 = 𝑒3, 𝑒2, 𝑒6

cost: 3

𝑆4 = 𝑒1, 𝑒2, 𝑒6, 𝑒7

The subsets in 𝑺

𝑒1

The universe 𝓤

of elements

𝑒2

𝑒3

𝑒4

𝑒5

𝑒6

𝑒7

𝑆1

𝑆2

𝑆3

𝑆4

Pick a minimum cost vertex subset from the left, such that

every vertex on the right is adjacent to at least one chosen vertex on the left.

cost: 3

𝑆1 = 𝑒2, 𝑒4

cost: 2

𝑆2 = 𝑒1, 𝑒5, 𝑒7

cost: 5

𝑆3 = 𝑒3, 𝑒2, 𝑒6

cost: 3

𝑆4 = 𝑒1, 𝑒2, 𝑒6, 𝑒7

The subsets in 𝑺

𝑒1

The universe 𝓤

of elements

𝑒2

𝑒3

𝑒4

𝑒5

𝑒6

𝑒7

𝑆1

𝑆2

𝑆3

𝑆4

Pick a minimum cost vertex subset from the left, such that

every vertex on the right is adjacent to at least one chosen vertex on the left.

cost: 3

𝑆1 = 𝑒2, 𝑒4

cost: 2

𝑆2 = 𝑒1, 𝑒5, 𝑒7

cost: 5

𝑆3 = 𝑒3, 𝑒2, 𝑒6

cost: 3

𝑆4 = 𝑒1, 𝑒2, 𝑒6, 𝑒7

The subsets in 𝑺

𝑒1

The universe 𝓤

of elements

𝑒2

𝑒3

𝑒4

𝑒5

𝑒6

𝑒7

𝑆1

𝑆2

𝑆3

𝑆4

Pick a minimum cost vertex subset from the left, such that

every vertex on the right is adjacent to at least one chosen vertex on the left.

Common Parameters for Set Cover

■ Let Π = (𝒰, 𝒮, 𝑐) be an instance of the set cover problem.

– For each 𝑢 ∈ 𝒰, we define the frequency of 𝑢 to be the number of

sets in 𝒮 to which 𝑢 belongs, i.e., the number of sets 𝑢 is in.

– We will use 𝒇 to denote the maximum frequency of the

elements.

■ It turns out that,

the maximum frequency is a useful parameter when

approximating the set cover problem.

Related Variations

The Dominating Set Problem

■ Given a graph 𝐺 = (𝑉, 𝐸) and a vertex weight function 𝑤 ∶ 𝑉 → 𝑄+,

compute a minimum-weight vertex subset 𝑈 ⊆ 𝑉 such that,

for any 𝑣 ∈ 𝑉, either

𝑣 ∈ 𝑈 or 𝑣 has a neighbor that does.

dominates

Intuitively, we are covering the vertices using the vertices.

The Vertex Cover Problem

■ Given a graph 𝐺 = (𝑉, 𝐸) and a vertex weight function 𝑤 ∶ 𝑉 → 𝑄+,

compute a minimum-weight vertex subset 𝑈 ⊆ 𝑉 such that,

for any edge 𝑒 ∈ 𝐸, at least one endpoint of 𝑒 is in 𝑈.

– The vertex cover problem is a special case of set cover

for which 𝑓 = 2.

– When hypergraphs are considered,

vertex cover is equivalent to set cover.

Intuitively, we are covering the edges using the vertices.

(Brief)

Status of the Set Cover Problem

The Set Cover Problem

■ The set cover problem is a classic NP-hard problem

that is studied in many fields.

■ The set cover problem can be approximated to a ratio of

– 𝐻𝑛 by simple greedy approach, where 𝐻𝑛 is the 𝑛𝑡ℎ-harmonic

number.

– 𝑓 by the “layering” algorithm, where 𝑓 is the maximum frequency of

the elements.

The Set Cover Problem

■ The set cover is NP-hard to approximate to 1 − 𝑜 1 ⋅ ln 𝑛

unless P=NP.

■ If we assume the Unique Game Conjecture (UGC), then

approximating set cover to a ratio better than 𝑓 − 𝜖 for any 𝜖 > 0 is NP-hard.

𝐻𝑛-approximation by

Simple Greedy Approach on Cost-Efficiency

Greedy towards Cost-Efficiency

■ For problems of this kind, a very natural approach is to consider

the cost-effectiveness / cost-efficiency of the choices, and

to always pick the most cost-efficient one.

– This is likely fail for most of the times, if our goal is to solve the

optimization problem for an optimal solution.

■ For example, this can perform arbitrarily bad for the knapsack problem.

– However, this intuitive approach yields a good approximation for the

set cover problem, provably the best one.

How is Cost-Efficiency Defined?

■ One natural question is that,

How should the cost-efficiency of the sets be defined?

– It may seem that…

𝑒1
𝑒3

𝑒2

𝑺𝒊 with cost 6
Selecting 𝑆𝑖 can cover 3 elements

with a cost of 6.

The average price of 𝑆𝑖 is 6/3 = 2.

This may seem correct, but…

How is Cost-Efficiency Defined?

■ The cost-efficiency of the sets can change as the algorithm proceeds.

– Suppose that, prior to picking 𝑆𝑖,

some sets were already picked…

Selecting 𝑆𝑖 can cover only 2 elements.

The average price of 𝑆𝑖 is now 6/2 = 3,

instead of 2.

𝑒1 𝑒3

𝑒2

𝑺𝒊 with cost 6

𝑺𝒋

How is Cost-Efficiency Defined?

■ Let 𝐴 be the set of elements that have already been covered.

– We define the average covering price of a set 𝑆,

subject to a prior coverage of 𝐴, to be

𝑒1 𝑒3

𝑒2

𝑺 with cost 𝑐(𝑆)

𝑨

.
)(

 :),(Aprice
AS

Sc
AS

−
=

The Algorithm Description

The algorithm

■ The algorithm picks the most cost-efficient subset in each

iteration until all the elements are covered.

– The idea is that,

since we always pick the “best choice” in each iteration,

its efficiency is no worse than that of the optimal solution.

• While 𝐶 is not yet a cover,

Pick the most cost-efficient subset from 𝒮 and add it to 𝐶.

The algorithm

■ The algorithm picks the most cost-efficient subset in each

iteration until all the elements are covered.

𝒞 ← ∅.

while ڂ𝒔∈𝓒 𝒔 ≠ 𝒰, do

Pick the set 𝑆′ ∈ 𝒮 with the minimum aprice 𝑆′, 𝑠∈𝒞ڂ 𝑠 .

𝒞 ← 𝒞 ∪ {𝑆′}.

Return 𝒞.

The Analysis

The Approximation Guarantee

■ Let 𝑒1, 𝑒2, … , 𝑒𝑛 be the elements in 𝒰, with indexes labelled by the order

they are covered.

– Define price(𝑒𝑖) to be the price the algorithm uses to cover 𝑒𝑖,

i.e., the average price of the particular set that first makes 𝑒𝑖 covered.

■ The following lemma, which bounds the covering price of each element,

is the key to establishing the 𝐻𝑛 guarantee.

Lemma 1.

We have price(𝑒𝑖) ≤
𝑂𝑃𝑇

𝑛−𝑖+1
for all 1 ≤ 𝑖 ≤ 𝑛.

The Approximation Guarantee

■ Suppose that Lemma 1 is true, then it follows that

𝑐 𝒞 ≔ ෍

𝑠∈𝒞

𝑐 𝑆 = ෍

1≤𝑖≤𝑛

price 𝑒𝑖 ≤ ෍

1≤𝑖≤𝑛

1

𝑖
⋅ 𝑂𝑃𝑇

= 𝐻𝑛 ⋅ 𝑂𝑃𝑇.

Lemma 1.

We have price(𝑒𝑖) ≤
𝑂𝑃𝑇

𝑛−𝑖+1
for all 1 ≤ 𝑖 ≤ 𝑛.

The cost of each 𝑆 ∈ 𝒞 is distributed as the prices

of the elements it effectively covers.
So, it suffices to prove Lemma 1.

Lemma 1.

We have price(𝑒𝑖) ≤
𝑂𝑃𝑇

𝑛−𝑖+1
for all 1 ≤ 𝑖 ≤ 𝑛.

Proof.

Consider the particular iteration for which 𝒆𝒊 becomes covered.

Let ෡𝑆𝒊 denote the set that is picked to cover 𝑒𝑖, and

𝑈𝑖 denote set of uncovered elements in the beginning of that iteration.

The universe 𝓤

Already covered 𝑼𝒊

𝑒𝑖

෡𝑺𝒊

An intuitive lemma with a technical proof.

The optimal solution (for (𝒰, 𝒮, 𝑐)) can cover 𝑈𝑖 with cost 𝑂𝑃𝑇.

Since ෡𝑆𝑖 is the most cost-efficient choice at that moment,

we claim that its average price is at most 𝑂𝑃𝑇/ 𝑈𝑖 .

If so, then
price 𝑒𝑖 ≤

𝑂𝑃𝑇

𝑈𝑖
≤

𝑂𝑃𝑇

𝑛 − 𝑖 + 1
.

The universe 𝓤

Already covered 𝑼𝒊

𝑒𝑖

෡𝑺𝒊

𝑒𝑖 is the 𝑖𝑡ℎ-element that gets covered. So, 𝑈𝑖 ≥ 𝑛 − 𝑖 + 1.

The average price of the optimal

solution at that moment.

Proof. (continue)

It remains to prove the claim that aprice ෡𝑆𝑖 , 𝒰 − 𝑈𝑖 ≤
𝑂𝑃𝑇

𝑈𝑖
.

Let 𝒪 = 𝑂1, 𝑂2, … , 𝑂ℓ denote an optimal solution for (𝑼𝒊 , 𝓢 , 𝒄).

• Imagine that, 𝑂1, 𝑂2, … , 𝑂ℓ are selected in order.

• For any 1 ≤ 𝑗 ≤ ℓ, define

ap′ 𝑂𝑗 ≔ aprice 𝑂𝑗 , 𝑈 − 𝑈𝑖 ∪ ራ

1≤𝑘<𝑗

𝑂𝑘 .

Intuitively, ap′ 𝑂𝑗 is the updated average price of 𝑂𝑗,

when 𝑂1, 𝑂2, … , 𝑂𝑗−1 are selected in prior to 𝑂𝑗.

The average price of ෡𝑆𝑖 subject to prior coverage of 𝒰 − 𝑈𝑖.

Proof. (continue)

It remains to prove the claim that aprice ෡𝑆𝑖 , 𝒰 − 𝑈𝑖 ≤
𝑂𝑃𝑇

𝑈𝑖
.

Denote by 𝒪 = 𝑂1, 𝑂2, … , 𝑂ℓ an optimal solution for the instance (𝑼𝒊, 𝓢, 𝒄).

• For any 1 ≤ 𝑗 ≤ ℓ, define

ap′ 𝑂𝑗 ≔ aprice 𝑂𝑗 , 𝑈 − 𝑈𝑖 ∪ ራ

1≤𝑘<𝑗

𝑂𝑘 .

Then it follows that, for any 1 ≤ 𝑗 ≤ ℓ, we have

aprice ෡𝑆𝑖 , 𝒰 − 𝑈𝑖 ≤ aprice 𝑂𝑗 , 𝒰 − 𝑈𝑖 ≤ ap′ 𝑂𝑗 < ∞.

Guaranteed by our greedy choice.
By definition, the effective coverage of 𝑂𝑗

in ap′ 𝑂𝑗 is at most that in aprice 𝑂𝑗 , 𝒰 − 𝑈𝑖 .

Proof. (continue)

Now we prove the claim that aprice ෡𝑆𝑖 , 𝒰 − 𝑈𝑖 ≤
𝑂𝑃𝑇

𝑈𝑖
.

Denote by 𝒪 = 𝑂1, 𝑂2, … , 𝑂ℓ an optimal solution for the instance (𝑼𝒊, 𝓢, 𝒄).

Then it follows that, for any 1 ≤ 𝑗 ≤ ℓ, we have

aprice ෡𝑆𝑖 , 𝒰 − 𝑈𝑖 ≤ aprice 𝑂𝑗 , 𝒰 − 𝑈𝑖 ≤ aprice′ 𝑂𝑗 < ∞.

Then,
aprice ෡𝑆𝑖 , 𝒰 − 𝑈𝑖 ≤ ෍

1≤𝑗≤ℓ

𝑂𝑗 𝑘<𝑗𝑂𝑘≥1ڂ−

𝑈𝑖
⋅ ap′ 𝑂𝑗

= ෍

1≤𝑗≤ℓ

1

|𝑈𝑖|
⋅ 𝑐(𝑂𝑗) =

𝑐 𝒪

𝑈𝑖
≤

𝑂𝑃𝑇

𝑈𝑖
.

By the above inequality, and

෍

1≤𝑗≤ℓ

𝑂𝑗 𝑘<𝑗𝑂𝑘≥1ڂ−

𝑈𝑖
= 1.

A Tight Example for the Greedy Algorithm

■ The following example shows that,

the approximation ratio of the greedy algorithm is indeed 𝐻𝑛.

…

𝑆1 𝑆2 𝑆3 𝑆𝑛

1 1

2

1

3

1

𝑛

𝑆𝑛+1

1 + 𝜖

The greedy algorithm will pick 𝑆1, 𝑆2, … , 𝑆𝑛, while the optimal solution is to pick 𝑆𝑛+1.

Randomized 𝑂(log 𝑛)-Approximation for

Set Cover via LP-rounding

Randomized Rounding for Set Cover

■ We can use a simple & interesting randomized rounding technique

to compute an 𝑂 log 𝑛 -approximation for Set Cover.

Consider the following natural ILP for set cover.

min ෍

𝐴∈𝒮

𝑤𝐴 ⋅ 𝑥𝐴 ∗

s. t. ෍

𝐴∈𝒮∶𝑒∈𝐴

𝑥𝐴 ≥ 1, ∀ 𝑒 ∈ 𝒰,

𝑥𝐴 ∈ 0, 1 , ∀ 𝐴 ∈ 𝒮.

Randomized Rounding for Set Cover

1. Solve LP (∗∗) for an optimal fractional solution 𝑥∗.

2. Let 𝒞 ← ∅.

Repeat the following process for 𝑐 ⋅ log 𝑛 times.

– For each 𝐴 ∈ 𝒮,

include 𝐴 into 𝒞 with probability 𝑥𝐴
∗.

3. Output 𝒞.

min ෍

𝐴∈𝒮

𝑤𝐴 ⋅ 𝑥𝐴 ∗∗

s. t. ෍

𝐴∈𝒮∶𝑒∈𝐴

𝑥𝐴 ≥ 1, ∀ 𝑒 ∈ 𝒰,

𝑥𝐴 ≥ 0, ∀ 𝐴 ∈ 𝒮.

We will set 𝑐 ≔ 1 + 𝑜(1).

The Feasibility

■ Consider any 𝑒 ∈ 𝒰 and the sets 𝑁 𝑒 ≔ 𝐴 ∈ 𝒮 ∶ 𝑒 ∈ 𝐴 that contain 𝑒.

– Consider each of the 𝑐 ⋅ log 𝑛 iterations. We have

Pr 𝑒 does not get covered = ෑ

𝐴∈𝑁(𝑒)

(1 − 𝑥𝐴
∗)

≤ ෑ

𝐴∈𝑁 𝑒

𝑒−𝑥𝐴
∗

= 𝑒− σ𝐴∈𝑁 𝑒 𝑥𝐴
∗

≤ 𝑒−1 .1 + 𝑥 ≤ 𝑒𝑥 holds for all 𝑥 ∈ ℝ.

σ𝐴∈𝑁(𝑒) 𝑥𝐴
∗ ≥ 1 by the feasibility of 𝑥∗ for LP (∗∗).

The Feasibility

■ Consider any 𝑒 ∈ 𝒰 and the sets 𝑁 𝑒 ≔ 𝐴 ∈ 𝒮 ∶ 𝑒 ∈ 𝐴 that contain 𝑒.

– Consider each of the 𝑐 ⋅ log 𝑛 iterations.

We have Pr 𝑒 does not get covered ≤ 𝑒−1.

– Hence,

Pr 𝒞 does not cover 𝑒 ≤ 𝑒−1 𝑐⋅log 𝑛 ≤
1

4𝑛

for 𝑐 ≔ 1 + 𝑜(1) such that 𝑛−𝑐 ≤ 1/(4𝑛).

– Applying union bound, we get

Pr 𝒞 does not cover 𝒰 ≤ 𝒰 ⋅
1

4𝑛
≤

1

4
.

This process will cover 𝒰 with high probability (w.h.p.).

The Approximation Guarantee

■ The expected cost incurred by each iteration is

𝐸 cost of subsets chosen in this iteration = ෍

𝐴∈𝒮

𝑤𝐴 ⋅ 𝑥𝐴
∗ = 𝑂𝑃𝑇𝑓 .

Hence, we have 𝐸 𝑤 𝒞 = 𝑐 ⋅ log 𝑛 ⋅ 𝑂𝑃𝑇𝑓 .

■ By Markov’s inequality, we get

Pr 𝑤 𝒞 ≥ 4𝑐 ⋅ log 𝑛 ⋅ 𝑂𝑃𝑇𝑓 ≤
1

4
.

This cost is bounded with high probability (w.h.p.).

The Approximation Guarantee

■ Combining the two w.h.p (with-high-probability) conclusions,

it follows that

Pr 𝒞 does not cover 𝒰 or 𝑤 𝒞 ≥ 4𝑐 ⋅ log 𝑛 ⋅ 𝑂𝑃𝑇𝑓 ≤
1

2
.

■ Repeat the entire process 𝑐′ times for some constant 𝑐′ ∈ ℕ sufficiently

large and output the best feasible solution.

We get a 4𝑐 ⋅ log 𝑛 -approximation with probability at least 1 − 2−𝑐
′
.

That’s all for Set Cover so far.

Let’s proceed to our next problem.

