Introduction to
Approximation Algorithms

Mong-Jen Kao (5 % 54)

Friday 13:20 — 15:10

Outline

m [he Set Cover Problem

- An H,-approximation via greedy approach
m The cost-efficiency of the choices

m Atight example for the algorithm analysis

- An O(logn)-Approximation via randomized LP-rounding

The Set Cover Problem

The Set Cover Problem

m Given a universe U of n elements, a collection of subsets of U,
§={S5.,5,,..,5, }, and a cost functionc: § - Q",

the set cover problem is to compute a minimum cost subcollection
of § that covers all the elements of U.

- l.e., to pick a collection of subsets A € § such that

U.eqss = U and the total cost, }.c 4 ¢(s), IS minimized.

An Intuitive Way to View the Set Cover Problem

The subsets in § _
________________________________ The universe U

I/ \I
cost: 3 | Foranys€s and e € U, | Erclemens
S . there’s an edge (s,e)ife€s. |
Sl == {ez, 84_} ! ‘ N /I i
€2
cost: 2
S2
S, = {eq, es5, e} €3
€4
cost: 5
S3
S3 = {es, ez, €6} ex
cost: 3 €6
Sa
S4- — {elr €7, €e, 67}
€7

———

Pick a minimum cost vertex subset from the left, such that
every vertex on the right is adjacent to at least one chosen vertex on the left.

- . . ________

The subsets in §
The universe U

of elements
\ 4 :1
cost: 2 s "’ 2
S, ={e1, €5, €7} i \ , €3
cost: 5 Q'

S
s leveed | Ay .

cost: 3 €s

Sa
S4- — {elr €2, €e, 67} o
7

cost: 3

S1 = {ez, e4}

T

—_—_——————— e ——_— e —_—_—_———_—_—_——_—_—_—_—_—_—_—_—_—_—_—_—_—_—_—_E—_E—_—_E—_—_E——_E—_E—_E—_E——_E——_E—_E—_E—_E——_E——_E—_E—_E—E—_—_—E—_—E——————

Pick a minimum cost vertex subset from the left, such that
every vertex on the right is adjacent to at least one chosen vertex on the left.

- . . ________

The subsets in §
The universe U

_ of elements
cost: 3
51
51 = e —
€2
cost: 2
52

S, ={ei, ez, e5} \ /- es
cost: 5 Q'/
S3 = {es, €5, €6} s ,& es

cost: 3 €s

Sa
S4- — {31; €2, €e, 67} o
7

T

—_—_——————— e ——_— e —_—_—_———_—_—_——_—_—_—_—_—_—_—_—_—_—_—_—_—_—_—_E—_E—_—_E—_—_E——_E—_E—_E—_E——_E——_E—_E—_E—_E——_E——_E—_E—_E—E—_—_—E—_—E——————

Pick a minimum cost vertex subset from the left, such that
every vertex on the right is adjacent to at least one chosen vertex on the left.

- . . ________

The subsets in §
The universe U

of elements
\ 4 e1
€2
cost: 2 ,
S, _
. N)

cost: 5 s, "(’l ey

S3 = {33; €2, 36}

cost: 3

S1 = {ez, e4}

cost: 3 €s

Sa
S4- — {elr €2, €e, 67} o
7

T

Common Parameters for Set Cover

m Letll = (U,S,c) be an instance of the set cover problem.

- For each u € U, we define the frequency of u to be the number of
sets in § to which u belongs, i.e., the number of sets u is In.

- We will use f to denote the maximum frequency of the

elements.

m It turns out that,
the maximum frequency is a useful parameter when

approximating the set cover problem.

Related Variations

The Dominating Set Problem

m Given agraph G = (V,E) and a vertex weight functionw : V - Q™,
compute a minimum-weight vertex subset U < IV such that,
for any v € V, either

v € U or v has a neighbor that does.

dominates

The Vertex Cover Problem

m Givenagraph ¢ = (V,E) and a vertex weight functionw : V - Q™,
compute a minimum-weight vertex subset U < IV such that,
for any edge e € E, at least one endpoint of e iIs In U.

- The vertex cover problem is a special case of set cover
for which f = 2.

- When hypergraphs are considered,

vertex cover is equivalent to set cover.

(Brief)

Status of the Set Cover Problem

The Set Cover Problem

m The set cover problem is a classic NP-hard problem
that is studied in many fields.

m The set cover problem can be approximated to a ratio of
- H, by simple greedy approach, where H,, is the nt*-harmonic

number.

- f by the “layering” algorithm, where f is the maximum frequency of
the elements.

The Set Cover Problem

m The set cover is NP-hard to approximate to (1 — o(1)) - Inn
unless P=NP.

m If we assume the Unique Game Conjecture (UGC), then
approximating set cover to a ratio better than f — € for any € > 0 is NP-hard.

H..-approximation by

Simple Greedy Approach on Cost-Efficiency

Greedy towards Cost-Efficiency

m For problems of this kind, a very natural approach is to consider
the cost-effectiveness / cost-efficiency of the choices, and
to always pick the most cost-efficient one.

- This is likely fail for most of the times, if our goal is to solve the
optimization problem for an optimal solution.

m For example, this can perform arbitrarily bad for the knapsack problem.

- However, this intuitive approach yields a good approximation for the
set cover problem, provably the best one.

How Is Cost-Efficiency Defined?

m One natural guestion is that,

How should the cost-efficiency of the sets be defined?

- It may seem that...

——— e —————

S; with cost 6

with a cost of 6.

—_————— e —

\

|

Selecting S; can cover 3 elements i
|

|

|

——

__

How Is Cost-Efficiency Defined?

m The cost-efficiency of the sets can change as the algorithm proceeds.

- Suppose that, prior to picking S;,
some sets were already picked...

e —_—_—_——————e—e e e e e e e e

S; with cost 6

n
@
@D
O
=
>
Q
N
Q
Q)
-
)
@)
<
D
-
o
=]
<
N
D
)
=
)
>
—
&

___ o S

The average price of S; iIshow 6/2 = 3,
instead of 2.

__

How Is Cost-Efficiency Defined?

m Let A be the set of elements that have already been covered.

- We define the average covering price of a set S,
subject to a prior coverage of A4, to be

c(S)
S-A

Aprice(S, A) =
A

S with cost ¢(S)

The Algorithm Description

The algorithm

m The algorithm picks the most cost-efficient subset in each

iteration until all the elements are covered.

~
« While C is not yet a cover,

Pick the most cost-efficient subset from § and add it to C.

- The idea is that,
since we always pick the “best choice” in each iteration,
Its efficiency is no worse than that of the optimal solution.

The algorithm

m The algorithm picks the most cost-efficient subset in each

iteration until all the elements are covered.

C « Q.
while UgS # U, do

Pick the set S’ € § with the minimum aprice(S’, Usee S)-
C<CU{S'}.

Return C.

The Analysis

The Approximation Guarantee

m Leteg,e,, ..., e, be the elements in U, with indexes labelled by the order
they are covered.

- Define price(e;) to be the price the algorithm uses to cover e;,
l.e., the average price of the particular set that first makes e; covered.

m The following lemma, which bounds the covering price of each element,
IS the key to establishing the H,, guarantee.

Lemma 1.

OPT

forall1 <i<n.
n—i+1

We have price(e;) <

The Approximation Guarantee

Lemma 1.

OPT

We have price(e;) < — forall1 <i<n.

m Suppose that Lemma 1 is true, then it follows that

c(C) = ZC(S) = z price(e;) <
1<isn

SEC

__— _

The cost of each S € C is distributed as the prices
of the elements it effectively covers.

——

__

An intuitive lemma with a technical proof.

Lemma 1.

OPT

forall1 <i <n.
n—i+1

We have price(e;) <

Proof.

Consider the particular iteration for which e; becomes covered.

Let S; denote the set that is picked to cover e;, and

U; denote set of uncovered elements in the beginning of that iteration.

S The universe U
i

S The universe U
L

The optimal solution (for (U, S, ¢)) can cover U; with cost OPT.

Since S; is the most cost-efficient choice at that moment,

we claim that its average price is at most OPT/|U;|.

If so. then OPT OPT The average price of the optimal
’ price(e;) < < _ _ solution at that moment.
Ui n—i+1

e; is the it"-element that gets covered. So, |U;| > n —i + 1.

The average price of S; subject to prior coverage of U — U;.

Proof. (continue)

OPT
Uil

It remains to prove the claim that aprice(S;, U — U;) <
Let O = {04, 0,,...,0,} denote an optimal solution for (U;,S,c).
* Imagine that, 04, 0,, ..., 0, are selected in order.

« Forany 1l <j <, define

ap'(0;) := aprice (0]-, (U—-U;) U U 0k> .

1<k<j

Intuitively, ap’(0;) is the updated average price of 0;,
when 04, 0,, ..., 0;_; are selected in prior to 0.

Proof. (continue)

OPT

It remains to prove the claim that aprice(S;, U — U;) < T

Denote by 0 = {04, 0, ..., 0,} an optimal solution for the instance (U;, §, c¢).

 Forany 1 <j <7, define

ap’(OJ-) := aprice (0]-, (U—-U;) U U 0k> .

1<k<j

Then it follows that, forany 1 <j < £, we have

aprice(S;, U — U;) < aprice(Oj,‘u—Ui) < ap’(()j) < oo,

By definition, the effective coverage of 0;

Guaranteed by our greedy choice. _ _
[Y OHT STEEEY in ap’(0;) is at most that in aprice(0;, U — U;).

Proof. (continue)

Now we prove the claim that aprice(fl-,‘u — U,;) < %.

Denote by 0 = {04, 0, ..., 0,} an optimal solution for the instance (U;, §, c¢).

Then it follows that, forany 1 < j < £, we have

aprice(S;, U — U;) < aprice(0;, U —U;) < aprice’(0;) < oo.

Then, |0, — U O]

_ ~ 1<k<j Yk /

aprice(S;, U — U;) < z T J -ap’(0;)
1<j<¢ l
//Z ~ oy c(0) _ OPT
By the above inequality, and B) ,{)lUil) = u;l — U]
<j<

z |0 U1<k<]0k| —1
; |U; | '
<]<£

\l

A Tight Example for the Greedy Algorithm

m The following example shows that,
the approximation ratio of the greedy algorithm is indeed H,,.

51 52 S3 Sn
) Sn+1

® ® ® ®
\/ 1+e€

1 1 1 1

2 3 n

The greedy algorithm will pick S, S,, ..., S;,, while the optimal solution is to pick S, ;.

Randomized 0 (log n)-Approximation for

Set Cover via LP-rounding

Randomized Rounding for Set Cover

m We can use a simple & interesting randomized rounding technique
to compute an O(logn)-approximation for Set Cover.

Consider the following natural ILP for set cover.

Randomized Rounding for Set Cover

1. Solve LP (*x) for an optimal fractional solution x*.

2. LetC « Q.

Repeat the following process for c - logn times.

- Foreach A € S,

include 4 into C with probability x*. i
P Y Xa ' 2 Wy * Xy

3. Output C.

The Feasiblility

m Considerany e € U and the sets N(e) :={A € S : e € A} that contain e.

- Consider each of the ¢ - logn iterations. We have

Pr| e does not get covered | = 1_[(1—xy)
A€EN(e)

‘ ‘ e_xz — e ZAEN(e) xz

IA

IA
®
L

1+ x < e* holds for all x € R.

Yaen(e) X4 = 1 by the feasibility of x* for LP ().

This process will cover U with high probability (w.h.p.).

The Feasiblility

m Considerany e € U and the sets N(e) :={A € S : e € A } that contain e.

- Consider each of the ¢ - logn iterations.

We have Pr[e does not get covered] < e 1.

- Hence,

Pr[C does notcovere | < (e 1)clogn < ym

forc:=1+ 0o(1) such that n™ < 1/(4n).
- Applying union bound, we get

1 1
Pr| € doesnotcoverU] < |U|]-— < -.
4n 4

The Approximation Guarantee

m The expected cost incurred by each iteration is

E| cost of subsets chosen in this iteration | = Z Wy xy = OPTf.

A€ES
Hence, we have E[w(C)] = c-logn - OPTf .
m By Markov's inequality, we get
1
Pr[W(C’) > 4c - logn-OPTf] < 1

This cost is bounded with high probability (w.h.p.).

The Approximation Guarantee

m Combining the two w.h.p (with-high-probability) conclusions,
it follows that

1

Pr[C does not cover U or w(C) = 4c-logn- OPTf] < >

m Repeat the entire process ¢’ times for some constant ¢’ € N sufficiently

large and output the best feasible solution.

We get a (4c - logn)-approximation with probability at least 1 — 2-¢',

That's all for Set Cover so far.

Let's proceed to our next problem.

Al

