# Introduction to Approximation Algorithms

Mong-Jen Kao (高孟駿)

Friday 13:20 – 15:10

## Outline

- The Vertex Cover Problem
- The (Weighted) Vertex Cover Problem
  - An 2-approximation by the "Layering" Technique

## The Vertex Cover Problem

## The (Cardinality) Vertex Cover Problem

Given a graph G = (V, E), compute a <u>minimum-size</u> vertex subset  $U \subseteq V$  such that, for any edge  $e \in E$ , at least one endpoint of e is in U.



Intuitively, we are covering the edges using the vertices.

## Status of the Vertex Cover Problem

- The vertex cover problem is a well-known *NP-complete* problem.
  - It is a <u>benchmark problem</u> used in many fields for testing the performance of all sorts of techniques.
- The vertex cover problem can be **approximated** to a ratio of 2.
  - For hypergraphs, f-approximation can be obtained,
    where f is the maximum size of the hyperedges.

Let's see how this can be done!

## Status of the Vertex Cover Problem

In terms of *approximation hardness*,

- It is NP-hard to obtain a  $(\sqrt{2} \epsilon)$ -approximation, for any  $\epsilon > 0$ , unless P=NP.
- If we assume the <u>Unique Game Conjecture (UGC)</u>, then  $(2 - \epsilon)$ -approximation is also NP-hard to obtain, for any  $\epsilon > 0$ .
  - The lower bound generalizes to  $f \epsilon$  for hypergraphs.

# The (Weighted) Vertex Cover Problem

### The Vertex Cover Problem

Given a graph G = (V, E) and <u>a vertex weight function</u>  $w : V \to Q^+$ , compute a minimum-weight vertex subset  $U \subseteq V$  such that, for any edge  $e \in E$ , at least one endpoint of e is in U.





# 2-Approximationby the "Layering" Technique

## The Layering Technique for Vertex Cover

- We introduce a clever way to deal with the vertex cover problem.
  - The approximation ratio we obtain here is 2.
  - It can be generalized to <u>hypergraphs</u> to yield an *f*-approximation,
    where *f* is the maximum size of the hyperedges.
- The idea is to decompose the input instance, including the graph and the weight function, in a way such that, the total weight in each layer is well-bounded.

## Outline

- Degree-Weighted Functions
- Sketch of the Algorithm
- Algorithm Description & Analysis

## Degree-Weighted Function

- We say that a weight function  $w: V \to Q^+$  is *degree-weighted*, if there is some c > 0 such that  $w(v) = c \cdot \deg(v)$  holds for all  $v \in V$ .
  - i.e., the vertex weights are proportional to their degrees.
- The following lemma is intrinsic to the cover problems.

#### Lemma 2.

Let w be a degree-weighted function of the vertices.

Then,  $w(V) \leq 2 \cdot w(U)$  holds for any feasible vertex cover U for G.

For degree-weighted functions, the total weight is not too large compared to any VC!

#### Lemma 2.

Let w' be a degree-weighted function of the vertices.

Then,  $w'(V) \leq 2 \cdot w'(U)$  holds for any feasible vertex cover U for G.

#### Proof.

Since U is a feasible vertex cover, it covers all the edges in E, and

$$w'(U) = \sum_{v \in U} w'(v) = \sum_{v \in U} c \cdot \deg(v) \ge c \cdot |E|.$$

On the other hand,

Since *U* is a vertex cover, each edge is counted at least once.

$$w'(V) = \sum_{v \in V} c \cdot \deg(v) = 2 \cdot c \cdot |E| \le 2 \cdot w'(U).$$

Each edge is counted exactly twice.

By the above inequality.

- By Lemma 2, when the vertices are degree-weighted,
  the weight of any feasible vertex cover cannot be too small.
  - Even taking all the vertices isn't too bad compared to OPT.
- The idea of the layering algorithm is to *greedily decompose*the weight function into a sequence of degree-weighted functions.
  - In each iteration, a degree-weighted function is formed, and the weight of each vertex decreases correspondingly.

- In particular, we will
  - Decompose the weight function w into  $w_1, w_2, ..., w_k$ , and possibly some left-over weights, and
  - Form a nesting sequence of vertex subsets  $V \supseteq V_1 \supseteq V_2 \supseteq \cdots \supseteq V_k$

Between layers, some vertices are removed from consideration.

We make  $w_i$  proportional to vertex degrees in  $V_i$ .

A valid vertex cover will be formed during this process.



For each layer, the induced subgraph of  $V_i$  is considered.

■ The key in bounding the overall cost is to guarantee that, the weight function in each layer is degree-weighted.



- The idea of the layering algorithm is to *greedily decompose*the weight function into a sequence of degree-weighted functions.
  - In each iteration, a degree-weighted function is formed, and the weight of each vertex decreases correspondingly.
  - When the weight of a vertex is fully-decomposed (becomes zero),
    the algorithm selects it into the solution set.
  - After each iteration, vertices with <u>zero weight</u> or <u>zero degree</u> are removed from consideration.

- In particular, we will
  - Decompose the weight function w into  $w_1, w_2, ..., w_k$ , and possibly some left-over weights, and
  - Form a nesting sequence of vertex subsets  $V \supseteq V_1 \supseteq V_2 \supseteq \cdots \supseteq V_k$  .



Vertices whose weight are fully-decomposed are included in the solution and removed from consideration.

A valid vertex cover will be formed during this process.

# The Algorithm Description

- Let G = (V, E) and  $w : V \to \mathbb{Q}^+$  be the input instance of the vertex cover problem.
- During the execution,
  the algorithm maintains the following information.
  - w': The residual weight function left to be decomposed.
  - V': The set of remaining vertices in G.
- Initially, w' := w and V' := V.

- Let w' denote the residual weight function left to be decomposed and V' the set of remaining vertices.
- In each iteration, the algorithm does the following until  $V' = \emptyset$ .

Intuitively,  $c \cdot \deg(v)$  is the <u>largest</u> degree-weighted function that can be defined for vertices in V'.

- 1. Let  $c := \min_{v \in V'} w'(v)/\deg(v)$ .
- 2. Decreases w'(v) by  $c \cdot \deg(v)$  for all  $v \in V'$ .
  - Selects vertices with zero residual weight into the solution, and
  - $\blacksquare$  Remove zero-weight vertices and then zero-degree vertices from V'.

- 1. Let  $w' \leftarrow w$ ,  $V' \leftarrow V$ , and  $C \leftarrow \emptyset$ .
- 2. For i = 1, 2, ..., do until V' becomes empty
  - Let  $G_i$  be the subgraph induced by V' and  $\deg_i$  be the degree function of  $G_i$ . Remove all v with  $\deg_i(v) = 0$  from V'.
  - Let  $c_i = \min_{v \in V'} w'(v) / \deg_i(v)$ . Set  $w'(v) \leftarrow w'(v) - c_i \cdot \deg_i(v)$  for all  $v \in V'$ .
  - Let  $W_i$  be the zero-weight vertices in V'. Set  $C \leftarrow C \cup W_i$  and remove  $W_i$  from V'.

Pick the fully-decomposed vertices.

Define the function

 $w_i(v) \coloneqq c_i \cdot \deg_i(v)$ .

3. Output *C* as the approximation solution.

# Example

Consider the following example.









$$c_2 = \min_{v \in V'} w'(v) / \deg_2(v) = 1.$$





$$w_2 = c_2 \cdot \deg_2(v).$$











## The Analysis of the Algorithm

We will prove the following theorem.

#### Theorem 3.

The layering algorithm computes a 2-approximation for the vertex cover problem.

- We need to prove the following two statements.
  - (Feasibility) The algorithm terminates in polynomial time, and  $C := \bigcup_{i \ge 1} W_i$  is a feasible vertex cover for G.
  - (Approximation Guarantee)  $w(\mathcal{C}) \leq 2 \cdot w(\mathcal{C}^*)$ , where  $\mathcal{C}^*$  is an optimal vertex cover for G.

## The Feasibility

- To see that the algorithm terminates in polynomial time, observe that,
  - In each iteration, at least one vertex becomes zero-weight, and is removed from V'.
  - Hence, the algorithm terminates in O(|V|) iterations.

## The Feasibility

- Next, we prove that  $\mathcal{C} := \bigcup_{i>1} W_i$  is a feasible vertex cover for G.
- Observe that, when a vertex is removed from V', either w'(v) = 0 or  $\deg_i(v) = 0$ .
  - If w'(v) = 0, then v is selected into  $\mathcal{C}$ , and all its incident edges are covered.
  - If  $\deg_i(v) = 0$ , then all its incident edges have already been covered.

Since  $V' = \emptyset$  when the algorithm terminates, all the edges are covered.

## The Approximation Guarantee

- Since  $C^*$  is a feasible cover for G, it is feasible for  $G_i$  for all  $i \ge 1$ .
- By the decomposition scheme and Lemma 2,

we have

The vertices in C are fully-decomposed.

$$w(\mathcal{C}) = \sum_{v \in \mathcal{C}} w(v) = \sum_{v \in \mathcal{C}} \sum_{i \ge 1} w_i(v)$$

$$\leq \sum_{i\geq 1} w_i(V) \leq \sum_{i\geq 1} 2 \cdot w_i(\mathcal{C}^*) \leq 2 \cdot w(\mathcal{C}^*).$$

By Lemma 2.