
Introduction to

Approximation Algorithms

Mong-Jen Kao (高孟駿)

Friday 13:20 – 15:10

Outline

■ The Vertex Cover Problem

■ The (Weighted) Vertex Cover Problem

– An 2-approximation by the “Layering” Technique

The Vertex Cover Problem

The (Cardinality) Vertex Cover Problem

■ Given a graph 𝐺 = (𝑉, 𝐸),

compute a minimum-size vertex subset 𝑈 ⊆ 𝑉 such that,

for any edge 𝑒 ∈ 𝐸, at least one endpoint of 𝑒 is in 𝑈.

Intuitively, we are covering the edges using the vertices.

Status of the Vertex Cover Problem

■ The vertex cover problem is a well-known NP-complete problem.

– It is a benchmark problem used in many fields for testing

the performance of all sorts of techniques.

■ The vertex cover problem can be approximated to a ratio of 2.

– For hypergraphs, 𝑓-approximation can be obtained,

where 𝑓 is the maximum size of the hyperedges.

Let’s see how this can be done!

Status of the Vertex Cover Problem

In terms of approximation hardness,

■ It is NP-hard to obtain a 2 − 𝜖 -approximation,

for any 𝜖 > 0, unless P=NP.

■ If we assume the Unique Game Conjecture (UGC),

then (2 − 𝜖)-approximation is also NP-hard to obtain, for any 𝜖 > 0.

– The lower bound generalizes to 𝑓 − 𝜖 for hypergraphs.

The (Weighted) Vertex Cover Problem

The Vertex Cover Problem

■ Given a graph 𝐺 = (𝑉, 𝐸) and a vertex weight function 𝑤 ∶ 𝑉 → 𝑄+,

compute a minimum-weight vertex subset 𝑈 ⊆ 𝑉 such that,

for any edge 𝑒 ∈ 𝐸, at least one endpoint of 𝑒 is in 𝑈.

1

1

1 1

1

1

1

1
1

1

1

10

2-Approximation

by the “Layering” Technique

The Layering Technique for Vertex Cover

■ We introduce a clever way to deal with the vertex cover problem.

– The approximation ratio we obtain here is 2.

– It can be generalized to hypergraphs to yield an 𝑓-approximation,

where 𝑓 is the maximum size of the hyperedges.

■ The idea is to decompose the input instance,

including the graph and the weight function,

in a way such that, the total weight in each layer is well-bounded.

Outline

■ Degree-Weighted Functions

■ Sketch of the Algorithm

■ Algorithm Description & Analysis

Degree-Weighted Function

■ We say that a weight function 𝑤 ∶ 𝑉 → 𝑄+ is degree-weighted,

if there is some 𝑐 > 0 such that 𝑤 𝑣 = 𝑐 ⋅ deg(𝑣) holds for all 𝑣 ∈ 𝑉.

– i.e., the vertex weights are proportional to their degrees.

■ The following lemma is intrinsic to the cover problems.

Lemma 2.

Let 𝑤 be a degree-weighted function of the vertices.

Then, 𝒘 𝑽 ≤ 𝟐 ⋅ 𝒘(𝑼) holds for any feasible vertex cover 𝑼 for 𝐺.

For degree-weighted functions,

the total weight is not too large compared to any VC!

Lemma 2.

Let 𝑤′ be a degree-weighted function of the vertices.

Then, 𝒘′ 𝑽 ≤ 𝟐 ⋅ 𝒘′(𝑼) holds for any feasible vertex cover 𝑼 for 𝐺.

Proof.

Since 𝑈 is a feasible vertex cover, it covers all the edges in 𝐸, and

𝑤′ 𝑈 = ෍

𝑣∈𝑈

𝑤′(𝑣) = ෍

𝑣∈𝑈

𝑐 ⋅ deg(𝑣) ≥ 𝑐 ⋅ 𝐸 .

On the other hand,

𝑤′ 𝑉 = ෍

𝑣∈𝑉

𝑐 ⋅ deg(𝑣) = 2 ⋅ 𝑐 ⋅ 𝐸 ≤ 2 ⋅ 𝑤′(𝑈) .

Since 𝑈 is a vertex cover,

each edge is counted at least once.

Each edge is counted exactly twice. By the above inequality.

The Layering Algorithm

■ By Lemma 2, when the vertices are degree-weighted,

the weight of any feasible vertex cover cannot be too small.

– Even taking all the vertices isn’t too bad compared to OPT.

■ The idea of the layering algorithm is to greedily decompose

the weight function into a sequence of degree-weighted functions.

– In each iteration, a degree-weighted function is formed, and

the weight of each vertex decreases correspondingly.

■ In particular, we will

– Decompose the weight function 𝒘 into 𝒘𝟏, 𝒘𝟐, … ,𝒘𝒌, and

possibly some left-over weights, and

– Form a nesting sequence of vertex subsets 𝑽 ⊇ 𝑽𝟏 ⊇ 𝑽𝟐 ⊇ ⋯ ⊇ 𝑽𝒌

𝑉 𝑉1 𝑉2

……

∅

𝑤1 𝑤2𝑤 ≥ + + ……

For each layer,

the induced subgraph of 𝑽𝒊 is considered.

We make 𝑤𝑖 proportional

to vertex degrees in 𝑉𝑖.
Between layers, some vertices

are removed from consideration.

A valid vertex cover will be

formed during this process.

■ The key in bounding the overall cost is to guarantee that,

the weight function in each layer is degree-weighted.

𝑉 𝑉1 𝑉2

……

∅

𝑤1 𝑤2𝑤 ≥ + + ……

For each layer,

the induced subgraph of 𝑽𝒊 is considered.

We make 𝑤𝑖 proportional

to vertex degrees in 𝑉𝑖.
Between layers, some vertices

are removed from consideration.

We will guarantee that, the total weight

of 𝑉𝑖 w.r.t. 𝑤𝑖 is well-bounded!

A valid vertex cover will be

formed during this process.

The Layering Algorithm

■ The idea of the layering algorithm is to greedily decompose

the weight function into a sequence of degree-weighted functions.

– In each iteration, a degree-weighted function is formed, and

the weight of each vertex decreases correspondingly.

– When the weight of a vertex is fully-decomposed (becomes zero),

the algorithm selects it into the solution set.

– After each iteration, vertices with zero weight or zero degree are

removed from consideration.

■ In particular, we will

– Decompose the weight function 𝒘 into 𝒘𝟏, 𝒘𝟐, … ,𝒘𝒌, and

possibly some left-over weights, and

– Form a nesting sequence of vertex subsets 𝑽 ⊇ 𝑽𝟏 ⊇ 𝑽𝟐 ⊇ ⋯ ⊇ 𝑽𝒌 .

𝑉 𝑉1 𝑉2

……

∅

𝑤1 𝑤2𝑤 ≥ + + ……

A valid vertex cover will be

formed during this process.

Vertices whose weight are fully-decomposed

are included in the solution and removed from consideration.

The Algorithm Description

The Layering Algorithm

■ Let 𝐺 = (𝑉, 𝐸) and 𝑤 ∶ 𝑉 → ℚ+ be the input instance of

the vertex cover problem.

■ During the execution,

the algorithm maintains the following information.

– 𝑤′ : The residual weight function left to be decomposed.

– 𝑉′ : The set of remaining vertices in 𝐺.

■ Initially, 𝑤′ ≔ 𝑤 and 𝑉′ ≔ 𝑉.

The Layering Algorithm

■ Let 𝑤′ denote the residual weight function left to be decomposed

and 𝑉′ the set of remaining vertices.

■ In each iteration,

the algorithm does the following until 𝑉′ = ∅.

1. Let 𝑐 ≔ min
𝑣∈𝑉′

𝑤′(𝑣)/deg(𝑣).

2. Decreases 𝑤′ 𝑣 by 𝑐 ⋅ deg(𝑣) for all 𝑣 ∈ 𝑉′.

■ Selects vertices with zero residual weight into the solution, and

■ Remove zero-weight vertices and then zero-degree vertices from 𝑉′.

Intuitively, 𝑐 ⋅ deg 𝑣 is the largest

degree-weighted function

that can be defined for vertices in 𝑉′.

The Layering Algorithm

1. Let 𝑤′ ← 𝑤, 𝑉′ ← 𝑉, and 𝐶 ← ∅.

2. For 𝑖 = 1,2, … , do until 𝑉′ becomes empty

– Let 𝐺𝑖 be the subgraph induced by 𝑉′ and deg𝑖 be the degree function of 𝐺𝑖.

Remove all 𝑣 with deg𝑖 𝑣 = 0 from 𝑉′.

– Let 𝑐𝑖 = min
𝑣∈𝑉′

𝑤′(𝑣)/ deg𝑖(𝑣).

Set 𝑤′ 𝑣 ← 𝑤′ 𝑣 − 𝑐𝑖 ⋅ deg𝑖(𝑣) for all 𝑣 ∈ 𝑉′.

– Let 𝑊𝑖 be the zero-weight vertices in 𝑉′.

Set 𝐶 ← 𝐶 ∪𝑊𝑖 and remove 𝑊𝑖 from 𝑉′.

3. Output 𝐶 as the approximation solution.

Define the function

𝑤𝑖 𝑣 ≔ 𝑐𝑖 ⋅ deg𝑖(𝑣).

Pick the fully-decomposed vertices.

Example

■ Consider the following example.

4

5

8

7

7

7

𝑎

𝑏

𝑐 𝑑

𝑒

𝑔

4

5

8

7

7

7 𝑐1 = min
𝑣∈𝑉′

𝑤′(𝑣)/ deg1(𝑣) = 1.

4

3

2

4

2

3

𝑤1 = 𝑐1 ⋅ deg1(𝑣) .

𝟎

2

6

3

5

4

𝑎

𝑏

𝑐 𝑑

𝑒
𝑔

𝑎

𝑏

𝑐 𝑑

𝑒
𝑔

𝑎

𝑏

𝑐 𝑑

𝑒
𝑔

𝑐2 = min
𝑣∈𝑉′

𝑤′(𝑣)/ deg2(𝑣) = 1.

2

1

3

2

2

𝑤2 = 𝑐2 ⋅ deg2(𝑣) .

𝟎

2

6

3

5

4

6

5

4

5

3

2

2 3

𝟎 𝟎

𝑎

𝑏

𝑐 𝑑

𝑒
𝑔 𝑎

𝑐 𝑑

𝑒 𝑔

𝑎

𝑐 𝑑

𝑒 𝑔

𝑎

𝑐 𝑑

𝑒 𝑔

𝑐3 = min
𝑣∈𝑉′

𝑤′(𝑣)/ deg3(𝑣) = 2.

2

2

𝑤3 = 𝑐3 ⋅ deg2(𝑣) .

5

3

2

𝟎 𝟎

5

3

2

3

2

1

𝟎

1

𝑎

𝑐 𝑑

𝑒 𝑔 𝑎

𝑒
𝑔

𝑒
𝑔

𝑒
𝑔

𝑒
𝑔

𝑔

4

5

8

7

7

7 4

3

2

4

2

3
𝑤1

2

1

3

2

2𝑤2

2

2

𝑤3

𝑤

1

5

left-over

𝑎

𝑏

𝑐 𝑑

𝑒
𝑔

𝑎

𝑏

𝑐 𝑑

𝑒
𝑔

𝑎

𝑐 𝑑

𝑒
𝑔

𝑒
𝑔

𝑎

𝑔

The Analysis of the Algorithm

■ We will prove the following theorem.

■ We need to prove the following two statements.

– (Feasibility) The algorithm terminates in polynomial time, and

𝒞 ≔ 𝑖≥1𝑊𝑖ڂ is a feasible vertex cover for 𝐺.

– (Approximation Guarantee) 𝑤 𝒞 ≤ 2 ⋅ 𝑤(𝒞∗),

where 𝒞∗ is an optimal vertex cover for 𝐺.

Theorem 3.

The layering algorithm computes a 2-approximation for the vertex cover problem.

The Feasibility

■ To see that the algorithm terminates in polynomial time,

observe that,

– In each iteration,

at least one vertex becomes zero-weight, and is removed from 𝑉′.

– Hence, the algorithm terminates in 𝑂 𝑉 iterations.

The Feasibility

■ Next, we prove that 𝒞 ≔ 𝑖≥1𝑊𝑖ڂ is a feasible vertex cover for 𝐺.

■ Observe that,

when a vertex is removed from 𝑉′, either 𝑤′ 𝑣 = 0 or deg𝑖 𝑣 = 0.

– If 𝑤′ 𝑣 = 0, then 𝑣 is selected into 𝒞, and

all its incident edges are covered.

– If deg𝑖 𝑣 = 0, then all its incident edges have already been covered.

Since 𝑉′ = ∅ when the algorithm terminates, all the edges are covered.

The Approximation Guarantee

■ Since 𝒞∗ is a feasible cover for 𝐺, it is feasible for 𝐺𝑖 for all 𝑖 ≥ 1.

■ By the decomposition scheme and Lemma 2,

we have

𝑤 𝒞 = ෍

𝑣∈𝒞

𝑤(𝑣) = ෍

𝑣∈𝒞

෍

𝑖≥1

𝑤𝑖(𝑣)

≤ ෍

𝑖≥1

𝑤𝑖 𝑉 ≤ ෍

𝑖≥1

2 ⋅ 𝑤𝑖 𝒞
∗ ≤ 2 ⋅ 𝑤 𝒞∗ .

The vertices in 𝒞 are fully-decomposed.

By Lemma 2.

