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3.2 Metric TSP

The following is a well-studied problem in combinatorial optimization.

Problem 3.5 (Traveling salesman problem (TSP)) Given a complete
graph with nonnegative edge costs, find a minimum cost cycle visiting every
vertex exactly once.

In its full generality, TSP cannot be approximated, assuming P �= NP.

Theorem 3.6 For any polynomial time computable function α(n), TSP can-
not be approximated within a factor of α(n), unless P = NP.

Proof: Assume, for a contradiction, that there is a factor α(n) polynomial
time approximation algorithm, A, for the general TSP problem. We will show
that A can be used for deciding the Hamiltonian cycle problem (which is NP-
hard) in polynomial time, thus implying P = NP.

The central idea is a reduction from the Hamiltonian cycle problem to
TSP, that transforms a graph G on n vertices to an edge-weighted complete
graph G′ on n vertices such that

• if G has a Hamiltonian cycle, then the cost of an optimal TSP tour in G′

is n, and
• if G does not have a Hamiltonian cycle, then an optimal TSP tour in G′

is of cost > α(n) · n.

Observe that when run on graph G′, algorithm A must return a solution of
cost ≤ α(n) ·n in the first case, and a solution of cost > α(n) ·n in the second
case. Thus, it can be used for deciding whether G contains a Hamiltonian
cycle.

The reduction is simple. Assign a weight of 1 to edges of G, and a weight
of α(n) · n to nonedges, to obtain G′. Now, if G has a Hamiltonian cycle,
then the corresponding tour in G′ has cost n. On the other hand, if G has
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no Hamiltonian cycle, any tour in G′ must use an edge of cost α(n) · n, and
therefore has cost > α(n) · n. ✷

Notice that in order to obtain such a strong nonapproximability result,
we had to assign edge costs that violate triangle inequality. If we restrict our-
selves to graphs in which edge costs satisfy triangle inequality, i.e., consider
metric TSP, the problem remains NP-complete, but it is no longer hard to
approximate.

3.2.1 A simple factor 2 algorithm

We will first present a simple factor 2 algorithm. The lower bound we will
use for obtaining this factor is the cost of an MST in G. This is a lower
bound because deleting any edge from an optimal solution to TSP gives us
a spanning tree of G.

Algorithm 3.7 (Metric TSP – factor 2)

1. Find an MST, T , of G.
2. Double every edge of the MST to obtain an Eulerian graph.
3. Find an Eulerian tour, T , on this graph.
4. Output the tour that visits vertices of G in the order of their first

appearance in T . Let C be this tour.

Notice that Step 4 is similar to the “short-cutting” step in Theorem 3.3.

Theorem 3.8 Algorithm 3.7 is a factor 2 approximation algorithm for met-
ric TSP.

Proof: As noted above, cost(T ) ≤ OPT. Since T contains each edge of T
twice, cost(T ) = 2 · cost(T ). Because of triangle inequality, after the “short-
cutting” step, cost(C) ≤ cost(T ). Combining these inequalities we get that
cost(C) ≤ 2 ·OPT. ✷

Example 3.9 A tight example for this algorithm is given by a complete
graph on n vertices with edges of cost 1 and 2. We present the graph for
n = 6 below, where thick edges have cost 1 and remaining edges have cost 2.
For arbitrary n the graph has 2n−2 edges of cost 1, with these edges forming
the union of a star and an n − 1 cycle; all remaining edges have cost 2. The
optimal TSP tour has cost n, as shown below for n = 6:

�

��

�

�

�

� �

�
�

�

�

❙
❙❙
✏✏✏✏◗
◗

◗◗✑
✑

✑✑
❇
❇
❇
❇

❙
❙
❙

✏✏✏✏

�
�
�

����

✂
✂
✂
✂

◗
◗

◗◗✑
✑

✑✑
❇
❇
❇
❇

❧
❧❧
❜
❜❜✟✟
✟�

��

✁
✁
✁
�
�
��

❆
❆
❆
❉
❉
❉



32 3 Steiner Tree and TSP

Suppose that the MST found by the algorithm is the spanning star created
by edges of cost 1. Moreover, suppose that the Euler tour constructed in Step
3 visits vertices in order shown below for n = 6:
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Then the tour obtained after short-cutting contains n−2 edges of cost 2 and
has a total cost of 2n−2. Asymptotically, this is twice the cost of the optimal
TSP tour. ✷

3.2.2 Improving the factor to 3/2

Algorithm 3.7 first finds a low cost Euler tour spanning the vertices of G, and
then short-cuts this tour to find a traveling salesman tour. Is there a cheaper
Euler tour than that found by doubling an MST? Recall that a graph has
an Euler tour iff all its vertices have even degrees. Thus, we only need to be
concerned about the vertices of odd degree in the MST. Let V ′ denote this
set of vertices. |V ′| must be even since the sum of degrees of all vertices in the
MST is even. Now, if we add to the MST a minimum cost perfect matching
on V ′, every vertex will have an even degree, and we get an Eulerian graph.
With this modification, the algorithm achieves an approximation guarantee
of 3/2.

Algorithm 3.10 (Metric TSP – factor 3/2)

1. Find an MST of G, say T .
2. Compute a minimum cost perfect matching, M , on the set of

odd-degree vertices of T . Add M to T and obtain an Eulerian graph.
3. Find an Euler tour, T , of this graph.
4. Output the tour that visits vertices of G in order of their first

appearance in T . Let C be this tour.

Interestingly, the proof of this algorithm is based on a second lower bound
on OPT.

Lemma 3.11 Let V ′ ⊆ V , such that |V ′| is even, and let M be a minimum
cost perfect matching on V ′. Then, cost(M) ≤ OPT/2.

Proof: Consider an optimal TSP tour of G, say τ . Let τ ′ be the tour
on V ′ obtained by short-cutting τ . By the triangle inequality, cost(τ ′) ≤
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cost(τ). Now, τ ′ is the union of two perfect matchings on V ′, each consisting
of alternate edges of τ . Thus, the cheaper of these matchings has cost ≤
cost(τ ′)/2 ≤ OPT/2. Hence the optimal matching also has cost at most
OPT/2. ✷

Theorem 3.12 Algorithm 3.10 achieves an approximation guarantee of 3/2
for metric TSP.

Proof: The cost of the Euler tour,

cost(T ) ≤ cost(T ) + cost(M) ≤ OPT +
1
2
OPT =

3
2
OPT,

where the first inequality follows by using the two lower bounds on OPT.
Using the triangle inequality, cost(C) ≤ cost(T ), and the theorem follows. ✷

Example 3.13 A tight example for this algorithm is given by the following
graph on n vertices, with n odd:
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Thick edges represent the MST found in step 1. This MST has only two odd 
vertices, and by adding the edge joining them we obtain a traveling salesman 
tour of cost (n − 1) + �n/2�. In contrast, the optimal tour has cost n. ✷

Finding a better approximation algorithm for metric TSP is currently 
one of the outstanding open problems in this area. Many researchers have 
conjectured that an approximation factor of 4/3 may be achievable.




