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Design & Analysis
of Approximation Algorithms

[ Some general concepts. }




Finding & Deriving the Bounds

m A great part of Approximation Algorithms is about finding bounds.

- Upper-bounds / Lower-bounds

for

Our algorithm / Optimal solution Takes some imaginations and

sometimes deep observations.

/
m conceivable. }

Let's try to review this part
for every algorithm we are talking about.




Outline

m Metric Steiner Tree
- Factor-Preserving Reduction

- MST-based 2-approximation

m Metric Traveling Salesman Problem (TSP)
- 3/2-approximation

- A PTAS for the Euclidean TSP*




Metric Traveling Salesman Problem
(TSP)




The Traveling Salesman Problem (TSP)

m Given a complete graph ¢ = (V, E) with nonnegative edge costs,

find a minimum cost cycle visiting every vertex exactly once.

- This is the most general form of the TSP problem.

- However, this problem cannot be approximated at all.

Theorem.

The TSP problem cannot be approximated to a factor of a(n),
for any polynomial-time computable function a(n), unless P = NP.




The (Metric) Traveling Salesman Problem (TSP)

m Given a complete graph ¢ = (V, E) with nonnegative edge costs that

satisfy the triangle inequality, find a minimum cost cycle

visiting every vertex exactly once.




A Simple 2-approximation Algorithm

Algorithm A for Metric TSP

1. Compute an MST T for G.
2. Double every edge of the T to obtain an Eulerian graph.
3. Find an Eulerian tour 7 on this graph.

4. Shortcutting 7 to obtain a TSP tour € and output C.




An Improved 3 /2-approximation Algorithm

Algorithm A for Metric TSP

1. Compute an MST T for G.

2. Compute a min-cost perfect matching M on the set of

odd-degree vertices of T.
3. Add M to T to obtain an Eulerian graph.
4. Find an Eulerian tour 7 on this graph.

5. Shortcutting 7 to obtain a TSP tour € and output C.




The Metric Steiner Tree Problem




The Graph Steiner Tree Problem

m Given an undirected graph G = (V, E) with nonnegative edge weight
and a subset of vertices A € V, called the terminals,

the Steiner tree problem is to compute a minimum weight tree in G
that contains all the terminals of A.

terminal

terminal

terminal




The Graph Steiner Tree Problem

m The graph Steiner tree problem is one type of min-cost connected

subgraph problems in graphs.

- When all vertices are terminals, 1.e., A =V,
the problem is exactly the Minimum Spanning Tree (MST) problem.

- When the number of terminals is two, i.e., |A| = 2,
the problem becomes the shortest path (SP) problem.

- The Steiner tree problem addresses the rest situations in between.

[ We will see that, it reduces to the Metric Steiner Tree Problem. }




The (Metric) Steiner Tree Problem

m In the (Metric) Steiner Tree problem, we are given as input :

- An undirected complete graph ¢ = (V,E),

- An edge weight function w : V —» R=? that satisfies
the triangle inequality, i.e.,

wl,v) <w(yt)+w(t,v) Vuvt €V, and
- Asetofterminals 4 €V,

The goal is to compute a minimum weight tree in G that spans
all the terminals of A.

_____



A Factor-Preserving Reduction
from Graph Steiner Tree

to Metric Steiner Tree

[ Hence, it suffices to consider the metric case. }




Approximation Factor Preserving Reduction

m LetII;, I, be two optimization problems.
An approximation factor preserving reduction from II; to II, consists of two
polynomial-time algorithms f and g, such that

- For any instance I; of I1,
I, = f(I;) Is an instance of I, whose optimal value is ho worse than I;.

- For any solution t of I,,
s := g(I4,t) is a solution of I; whose objective is no worse than that of ¢.

4 S

For minimization problems, the definition requires
° OPTHZ(IZ) < OPTnl(Il)

¢ Objnl(ll,S) < Objnz(lz,t)

-




Minimization problem Il

Instance I; of I

Solution s
for I

Approximation factor preserving
reduction (f, g) from I1; to II,.

Algorithm f

OPT(I,) < OPT (I

Algorithm g

—

Obj(lli S)
< Obj(]z, t)

Minimization problem II,

Instance I, of 1,

Solution t
for [,




Approximation Factor Preserving Reduction

m Let (f,g) be an approximation factor preserving reduction from II; to II,.
Then, from the definition, it follows that

- OPTnl(Il) — OPTH2(12)1 Whel’e 12 = f(ll)

- An a-approximation algorithm for II, gives an a-approximation
solution for I1; via g.

m Provided that such a reduction exists,
to approximate I1,, it suffices to develop approximation algorithms for I1,.




Approximation factor preserving
reduction (f, g) from I1; to II,.

Minimization problem Il Minimization problem II,

Algorithm f

ﬁ

OPT(I,) < OPT(I;)

Instance I; of I Instance I, of 1,

a-approximation
a-approximation solution for I, } algorithm for Il

T Al
Sl 5 % Solution ¢
for I for I
Obj(lli S)
< Obj(]z, t)




Lemma.

There is an approximation factor preserving reduction
from the graph Steiner tree problem to the metric Steiner tree problem.

m Let/ = (G = (V,E),w, A) be an instance of the graph Steiner tree problem.

m We create an instance I' = (G',w’, A) for the metric Steiner tree problem
as follows.

- Let G’ be the complete graph defined on V.

- For each u,v € V, define w'(u,v) :=d,,(u, v), where d,, (u, v) is the
shortest distance between u and v in G with respect to w.

m Thatis, we define (G',w") to be the closure of (G, w).




Lemma.

There is an approximation factor preserving reduction
from the graph Steiner tree problem to the metric Steiner tree problem.

m Clearly, the construction can be done in polynomial time.

m Let T be an optimal Steiner tree for 1.
Then,

- Since T is also a Steiner tree for I’,
for any optimal Steiner tree T' for I', we have w'(T") < w'(T).

- Hence, OPT(I') = w'(T") < w(T) = OPT(I).




Lemma.

There is an approximation factor preserving reduction
from the graph Steiner tree problem to the metric Steiner tree problem.

m Let T’ be a Steiner tree for I'.

m From T', construct a Steiner tree T for I as follows.

1. Replace each edge of T', say, edge (u, v), by a shortest path
between u and v in G with respect to w.

Let H be the resulting graph.

2. Break cycles in H arbitrarily to get a tree.
Letitbe T.

m Clearly, the construction is in polynomial time.




Lemma.

There is an approximation factor preserving reduction
from the graph Steiner tree problem to the metric Steiner tree problem.

m By the construction of T,
ACV(T)Y<SV(H)=V(T)
and T is a Steiner tree for 1.

m \We also have

w(T) < w(H) < 2 P o ) = WP )

u,vev

m Hence obj(I,T) < obj(I',T").

This completes the reduction.




(Brief)

Status of the Steiner Tree Problem




The Steiner Tree Problem

m The Steiner tree problem is NP-hard.

- ltis also APX-complete, which means that, unless P = NP,

It Is not possible to approximate this problem arbitrarily close to 1.

m This problem can be approximated to In(4) = 1.39 by Linear Programming
(LP) and iterative randomized rounding techniques. [Byrka et al., STOC, 2010]

- Approximating this problem within a ratio 96/95 =~ 1.0105 is NP-hard.

m This problem is an important fundamental problem and has practical
applications in circuit layout and network designs.




The Steiner Tree Problem

m When the underlying metric is Euclidean,
l.e., the Euclidean Steiner tree, there is a PTAS.

m Many special cases and further generalizations have been considered.
For example, the rectilinear Steiner tree, further connectivity constraints,
parameterized complexity, etc.

m In this lecture,
we will examine a simple 2-approximation via an MST-based algorithm.




MST-Based 2-Approximation




Connecting the Terminals — How?

m The goal of the Steiner tree problem is to connect the terminals in G,
using a tree structure.

m Non-terminal nodes can be used if necessary.

terminal

terminal terminal




Connecting the Terminals — How?

m Minimum spanning tree (MST) connects the given set of vertices
using the minimum cost possible.

- Intuitively, with triangle inequality, the cost of MST should not be
too bad compared to the optimal Steiner tree.

’ terminal
terminal

= >

terminal terminal




The Price of Ignoring All Non-terminal Nodes

m Locally, triangle inequality guarantees low-cost when non-terminal
nodes are ignored.

- Globally, ignoring all non-terminal nodes doesn’t seem to
behave too bad, either.

- 4

Triangle inequality promises

that —
ad < ab + bc + cd. . :
N Y This key observation leads us to

a 2-approximation guarantee.




2-Approximation Algorithm for Steiner Tree

m Let]/ = (G = (V,E),w,A) be an instance of Steiner tree.

m The algorithm goes as follows.

1. Compute an MST T of the induced subgraph of A in G,

l.e., the graph consists of the vertices in A and the edges.

2. Output T as the approximate Steiner tree for I.

/

(S

Question:

How do we bound the cost of T in terms of OPT; ?

/




How do we compare T to OPT; ?

m Intuitively, we feel that, MST does not perform too bad.

How do we formally establish a bound ?

[ How to compare? }

Y

Optimal Steiner
tree for |

./




Use an Intermediate Withess

m We will show that, we can construct from OPT,; a withess graph H,

such that

w(T) < w(H) w(H) < 2-w(OPT})

RS )

< Intermediate < 2. Optimal Steiner
B witness graph H | tree for [




Use an Intermediate Withess

m We will show that, we can construct from OPT,; a withess graph H,
such that

m Note that, the construction of H Is imaginary, and
the graph H is only used in the analysis.

- Since OPT; is unknown,
we cannot actually construct anything from it.




Constructing the graph H p -

Clearly, w(K) = 2 - w(OPTy}),
since each edge in OPT; is

m Let OPT; be an optimal Steiner tree for I. traversed exactly most twice.
1. Use DFS to compute an Eulerian trail of OPT;. 7
Letit be K.

.%ﬁéf

I,

OPT,; The Eulerian trail K




Clearly, w(K) = 2 - w(OPT)),
since each edge in OPT; is

1. Use DFS to compute an Eulerian trail of OPT;. traversed exactly most twice.

Let it be K.

m Let OPT, be an optimal Steiner tree for I.

2. Shortcut the trail K by discarding the non-terminal vertices

between terminal vertices. Clearly,

Let H be the resulting Hamiltonian cycle on A. w(H) < w(K) =2 -w(OPT)).

N

The Eulerian trail K The Hamiltonian cycle H on A




The cost of H

m We have created a Hamiltonian cycle H on A from OPT,;
with w(H) < 2 - w(OPT),).

- Since T is an MST for 4, we must have w(T) < w(H).

- Hence, w(T) < 2 -w(OPT)),

and T is a 2-approximation for I.




What we have actually done

m From our key observation, we have shown that,
there exists a Hamiltonian cycle of A with cost at most 2 - w(OPT)).

m Then, MST always performs no worse than H.

R N

< Some Hamiltonian = 7. Optimal Steiner
o Cyc'e HonA o tree for [




