
Introduction to

Approximation Algorithms

Mong-Jen Kao (高孟駿)

Friday 13:20 – 15:10

Design & Analysis

of Approximation Algorithms

Some general concepts.

Finding & Deriving the Bounds

■ A great part of Approximation Algorithms is about finding bounds.

– Upper-bounds / Lower-bounds

for

Our algorithm / Optimal solution

Often more conceivable.

Takes some imaginations and

sometimes deep observations.

Let’s try to review this part

for every algorithm we are talking about.

Outline

■ Metric Steiner Tree

– Factor-Preserving Reduction

– MST-based 2-approximation

■ Metric Traveling Salesman Problem (TSP)

– 3/2-approximation

– A PTAS for the Euclidean TSP*

Metric Traveling Salesman Problem

(TSP)

The Traveling Salesman Problem (TSP)

■ Given a complete graph 𝐺 = (𝑉, 𝐸) with nonnegative edge costs,

find a minimum cost cycle visiting every vertex exactly once.

– This is the most general form of the TSP problem.

– However, this problem cannot be approximated at all.

Theorem.

The TSP problem cannot be approximated to a factor of 𝛼 𝑛 ,

for any polynomial-time computable function 𝛼 𝑛 , unless P = NP.

The (Metric) Traveling Salesman Problem (TSP)

■ Given a complete graph 𝐺 = (𝑉, 𝐸) with nonnegative edge costs that

satisfy the triangle inequality, find a minimum cost cycle

visiting every vertex exactly once.

A Simple 2-approximation Algorithm

Algorithm 𝐴 for Metric TSP

1. Compute an MST 𝑇 for 𝐺.

2. Double every edge of the 𝑇 to obtain an Eulerian graph.

3. Find an Eulerian tour 𝜏 on this graph.

4. Shortcutting 𝜏 to obtain a TSP tour 𝐶 and output 𝐶.

An Improved 3/2-approximation Algorithm

Algorithm 𝐴 for Metric TSP

1. Compute an MST 𝑇 for 𝐺.

2. Compute a min-cost perfect matching 𝑀 on the set of

odd-degree vertices of 𝑇.

3. Add 𝑀 to 𝑇 to obtain an Eulerian graph.

4. Find an Eulerian tour 𝜏 on this graph.

5. Shortcutting 𝜏 to obtain a TSP tour 𝐶 and output 𝐶.

The Metric Steiner Tree Problem

The Graph Steiner Tree Problem

■ Given an undirected graph 𝐺 = (𝑉, 𝐸) with nonnegative edge weight

and a subset of vertices 𝐴 ⊆ 𝑉, called the terminals,

the Steiner tree problem is to compute a minimum weight tree in 𝐺

that contains all the terminals of 𝐴.

5

56

2

2

2

2

2
4

4
3

3

13

5

56

2

2

2

2

2
4

4
3

3

13
terminalterminal

terminal

terminal

The Graph Steiner Tree Problem

■ The graph Steiner tree problem is one type of min-cost connected

subgraph problems in graphs.

– When all vertices are terminals, i.e., 𝐴 = 𝑉,

the problem is exactly the Minimum Spanning Tree (MST) problem.

– When the number of terminals is two, i.e., 𝐴 = 2,

the problem becomes the shortest path (SP) problem.

– The Steiner tree problem addresses the rest situations in between.

We will see that, it reduces to the Metric Steiner Tree Problem.

The (Metric) Steiner Tree Problem

■ In the (Metric) Steiner Tree problem, we are given as input :

– An undirected complete graph 𝐺 = (𝑉, 𝐸),

– An edge weight function 𝑤 ∶ 𝑉 → 𝑅≥0 that satisfies

the triangle inequality, i.e.,

𝑤 𝑢, 𝑣 ≤ 𝑤 𝑢, 𝑡 + 𝑤 𝑡, 𝑣 ∀𝑢, 𝑣, 𝑡 ∈ 𝑉, and

– A set of terminals 𝐴 ⊆ 𝑉,

The goal is to compute a minimum weight tree in 𝐺 that spans

all the terminals of 𝐴.

𝑢

𝑣

𝑡

A Factor-Preserving Reduction

from Graph Steiner Tree

to Metric Steiner Tree

Hence, it suffices to consider the metric case.

Approximation Factor Preserving Reduction

■ Let Π1, Π2 be two optimization problems.

An approximation factor preserving reduction from Π1 to Π2 consists of two

polynomial-time algorithms 𝑓 and 𝑔, such that

– For any instance 𝐼1 of Π1,

𝐼2 ≔ 𝑓(𝐼1) is an instance of Π2 whose optimal value is no worse than 𝐼1.

– For any solution 𝑡 of 𝐼2,

𝑠 ≔ 𝑔 𝐼1, 𝑡 is a solution of 𝐼1 whose objective is no worse than that of 𝑡.

For minimization problems, the definition requires

• 𝑂𝑃𝑇Π2 𝐼2 ≤ 𝑂𝑃𝑇Π1 𝐼1

• 𝑜𝑏𝑗Π1 𝐼1, 𝑠 ≤ 𝑜𝑏𝑗Π2 𝐼2, 𝑡

Minimization problem Π1 Minimization problem Π2

Instance 𝐼1 of Π1 Instance 𝐼2 of Π2

Solution 𝑡
for 𝐼2

Solution 𝑠
for 𝐼1

Algorithm 𝒇

𝑂𝑃𝑇 𝐼2 ≤ 𝑂𝑃𝑇(𝐼1)

Algorithm 𝒈

𝑜𝑏𝑗 𝐼1, 𝑠
≤ 𝑜𝑏𝑗(𝐼2, 𝑡)

Approximation factor preserving

reduction (𝒇, 𝒈) from Π1 to Π2.

Approximation Factor Preserving Reduction

■ Let (𝑓, 𝑔) be an approximation factor preserving reduction from Π1 to Π2.

Then, from the definition, it follows that

– 𝑂𝑃𝑇Π1 𝐼1 = 𝑂𝑃𝑇Π2 𝐼2 , where 𝐼2 ≔ 𝑓(𝐼1).

– An 𝛼-approximation algorithm for Π2 gives an 𝛼-approximation

solution for Π1 via 𝑔.

■ Provided that such a reduction exists,

to approximate 𝛱1, it suffices to develop approximation algorithms for 𝛱2.

Minimization problem Π1 Minimization problem Π2

Instance 𝐼1 of Π1 Instance 𝐼2 of Π2

Solution 𝑡
for 𝐼2

Solution 𝑠
for 𝐼1

Algorithm 𝒇

𝑂𝑃𝑇 𝐼2 ≤ 𝑂𝑃𝑇(𝐼1)

Algorithm 𝒈

𝑜𝑏𝑗 𝐼1, 𝑠
≤ 𝑜𝑏𝑗(𝐼2, 𝑡)

Approximation factor preserving

reduction (𝒇, 𝒈) from Π1 to Π2.

𝜶-approximation

algorithm for 𝚷𝟐𝛼-approximation solution for 𝐼1

■ Let 𝐼 = 𝐺 = (V, E), 𝑤, 𝐴 be an instance of the graph Steiner tree problem.

■ We create an instance 𝑰′ = 𝑮′, 𝒘′, 𝑨 for the metric Steiner tree problem

as follows.

– Let 𝐺′ be the complete graph defined on 𝑉.

– For each 𝑢, 𝑣 ∈ 𝑉, define 𝑤′ 𝑢, 𝑣 ≔ 𝑑𝑤(𝑢, 𝑣), where 𝑑𝑤 𝑢, 𝑣 is the

shortest distance between 𝑢 and 𝑣 in 𝐺 with respect to 𝑤.

■ That is, we define (𝐺′, 𝑤′) to be the closure of (𝐺, 𝑤).

Lemma.

There is an approximation factor preserving reduction

from the graph Steiner tree problem to the metric Steiner tree problem.

■ Clearly, the construction can be done in polynomial time.

■ Let 𝑇 be an optimal Steiner tree for 𝐼.

Then,

𝑤′ 𝑇 = ෍

𝑢,𝑣 ∈𝑇

𝑤′ 𝑢, 𝑣 ≤ ෍

𝑢,𝑣 ∈𝑇

𝑤 𝑢, 𝑣 = 𝑤 𝑇 .

– Since 𝑇 is also a Steiner tree for 𝐼′,

for any optimal Steiner tree 𝑇′ for 𝐼′, we have 𝑤′ 𝑇′ ≤ 𝑤′ 𝑇 .

– Hence, 𝑂𝑃𝑇 𝐼′ = 𝑤′ 𝑇′ ≤ 𝑤 𝑇 = 𝑂𝑃𝑇 𝐼 .

Lemma.

There is an approximation factor preserving reduction

from the graph Steiner tree problem to the metric Steiner tree problem.

■ Let 𝑇′ be a Steiner tree for 𝐼′.

■ From 𝑇′, construct a Steiner tree 𝑇 for 𝐼 as follows.

1. Replace each edge of 𝑇′, say, edge 𝑢, 𝑣 , by a shortest path

between 𝑢 and 𝑣 in 𝐺 with respect to 𝑤.

Let 𝐻 be the resulting graph.

2. Break cycles in 𝐻 arbitrarily to get a tree.

Let it be 𝑇.

■ Clearly, the construction is in polynomial time.

Lemma.

There is an approximation factor preserving reduction

from the graph Steiner tree problem to the metric Steiner tree problem.

■ By the construction of 𝑇,

𝐴 ⊆ 𝑉 𝑇′ ⊆ 𝑉 𝐻 = 𝑉 𝑇

and 𝑇 is a Steiner tree for 𝐼.

■ We also have

𝑤 𝑇 ≤ 𝑤 𝐻 ≤ ෍

𝑢,𝑣∈𝑉

𝑤′ 𝑢, 𝑣 = 𝑤′ 𝑇′ .

■ Hence 𝑜𝑏𝑗 𝐼, 𝑇 ≤ 𝑜𝑏𝑗 𝐼′, 𝑇′ .

Lemma.

There is an approximation factor preserving reduction

from the graph Steiner tree problem to the metric Steiner tree problem.

This completes the reduction.

(Brief)

Status of the Steiner Tree Problem

The Steiner Tree Problem

■ The Steiner tree problem is NP-hard.

– It is also APX-complete, which means that, unless P = NP,

it is not possible to approximate this problem arbitrarily close to 1.

■ This problem can be approximated to ln 4 ≈ 1.39 by Linear Programming

(LP) and iterative randomized rounding techniques. [Byrka et al., STOC, 2010]

– Approximating this problem within a ratio 96/95 ≈ 1.0105 is NP-hard.

■ This problem is an important fundamental problem and has practical

applications in circuit layout and network designs.

The Steiner Tree Problem

■ When the underlying metric is Euclidean,

i.e., the Euclidean Steiner tree, there is a PTAS.

■ Many special cases and further generalizations have been considered.

For example, the rectilinear Steiner tree, further connectivity constraints,

parameterized complexity, etc.

■ In this lecture,

we will examine a simple 2-approximation via an MST-based algorithm.

MST-Based 2-Approximation

Connecting the Terminals – How?

■ The goal of the Steiner tree problem is to connect the terminals in 𝐺,

using a tree structure.

■ Non-terminal nodes can be used if necessary.

5

56

2

2

2

2

2
4

4
3

3

13 terminalterminal

terminal

terminal

2

2

2

2
4

Connecting the Terminals – How?

■ Minimum spanning tree (MST) connects the given set of vertices

using the minimum cost possible.

– Intuitively, with triangle inequality, the cost of MST should not be

too bad compared to the optimal Steiner tree.

terminalterminal

terminal

terminal

The Price of Ignoring All Non-terminal Nodes

■ Locally, triangle inequality guarantees low-cost when non-terminal

nodes are ignored.

– Globally, ignoring all non-terminal nodes doesn’t seem to

behave too bad, either.

𝑎

𝑏

𝑐

𝑑
Triangle inequality promises

that
𝑎𝑑 ≤ 𝑎𝑏 + 𝑏𝑐 + 𝑐𝑑 .

This key observation leads us to

a 2-approximation guarantee.

2-Approximation Algorithm for Steiner Tree

■ Let 𝐼 = 𝐺 = (V, E), 𝑤, 𝐴 be an instance of Steiner tree.

■ The algorithm goes as follows.

1. Compute an MST 𝑇 of the induced subgraph of 𝐴 in 𝐺,

i.e., the graph consists of the vertices in 𝐴 and the edges.

2. Output 𝑇 as the approximate Steiner tree for 𝐼.

Question:

How do we bound the cost of 𝑇 in terms of 𝑂𝑃𝑇𝐼 ?

How do we compare 𝑇 to 𝑂𝑃𝑇𝐼 ?

■ Intuitively, we feel that, MST does not perform too bad.

How do we formally establish a bound ?

Optimal Steiner

tree for 𝐼
MST 𝑇 for 𝐴

How to compare?

Use an Intermediate Witness

Optimal Steiner

tree for 𝐼
MST 𝑇 for 𝐴

Intermediate

witness graph 𝐻

𝑤 𝐻 ≤ 2 ⋅ 𝑤 𝑂𝑃𝑇𝐼𝑤 𝑇 ≤ 𝑤 𝐻

■ We will show that, we can construct from 𝑂𝑃𝑇𝐼 a witness graph 𝐻,

such that

𝑤 𝑇 ≤ 𝑤 𝐻 ≤ 2 ⋅ 𝑤 𝑂𝑃𝑇𝐼 .

≤ 2 ⋅≤

Use an Intermediate Witness

■ We will show that, we can construct from 𝑂𝑃𝑇𝐼 a witness graph 𝐻,

such that

𝑤 𝑇 ≤ 𝑤 𝐻 ≤ 2 ⋅ 𝑤 𝑂𝑃𝑇𝐼 .

■ Note that, the construction of 𝐻 is imaginary, and

the graph 𝐻 is only used in the analysis.

– Since 𝑂𝑃𝑇𝐼 is unknown,

we cannot actually construct anything from it.

Constructing the graph 𝐻

■ Let 𝑂𝑃𝑇𝐼 be an optimal Steiner tree for 𝐼.

1. Use DFS to compute an Eulerian trail of 𝑂𝑃𝑇𝐼.

Let it be 𝐾.

Clearly, 𝑤 𝐾 = 2 ⋅ 𝑤 𝑂𝑃𝑇𝐼 ,

since each edge in 𝑂𝑃𝑇𝐼 is

traversed exactly most twice.

𝑂𝑃𝑇𝐼 The Eulerian trail 𝐾

■ Let 𝑂𝑃𝑇𝐼 be an optimal Steiner tree for 𝐼.

1. Use DFS to compute an Eulerian trail of 𝑂𝑃𝑇𝐼.

Let it be 𝐾.

2. Shortcut the trail 𝐾 by discarding the non-terminal vertices

between terminal vertices.

Let 𝐻 be the resulting Hamiltonian cycle on 𝐴.

Clearly, 𝑤 𝐾 = 2 ⋅ 𝑤 𝑂𝑃𝑇𝐼 ,

since each edge in 𝑂𝑃𝑇𝐼 is

traversed exactly most twice.

The Eulerian trail 𝐾 The Hamiltonian cycle 𝐻 on 𝐴

Clearly,

𝑤 𝐻 ≤ 𝑤 𝐾 = 2 ⋅ 𝑤 𝑂𝑃𝑇𝐼 .

The cost of 𝐻

■ We have created a Hamiltonian cycle 𝐻 on 𝐴 from 𝑂𝑃𝑇𝐼

with 𝑤 𝐻 ≤ 2 ⋅ 𝑤 𝑂𝑃𝑇𝐼 .

– Since 𝑇 is an MST for 𝐴, we must have 𝑤 𝑇 ≤ 𝑤 𝐻 .

– Hence, 𝑤 𝑇 ≤ 2 ⋅ 𝑤 𝑂𝑃𝑇𝐼 ,

and 𝑇 is a 2-approximation for 𝐼.

What we have actually done

Optimal Steiner

tree for 𝐼
MST 𝑇 for 𝐴

Some Hamiltonian

cycle 𝐻 on 𝐴

■ From our key observation, we have shown that,

there exists a Hamiltonian cycle of 𝐴 with cost at most 2 ⋅ 𝑤 𝑂𝑃𝑇𝐼 .

■ Then, MST always performs no worse than 𝐻.

≤ 2 ⋅≤

