Introduction to Approximation Algorithms

Mong-Jen Kao (高孟駿)

Friday 13:20 – 15:10

Design & Analysis

of Approximation Algorithms

Finding & Deriving the Bounds

- A great part of Approximation Algorithms is about <u>finding bounds</u>.
 - Upper-bounds / Lower-bounds

for

Our algorithm / Optimal solution

Takes **some imaginations** and **sometimes deep observations**.

Often more conceivable.

Let's try to <u>review this part</u> <u>for every algorithm</u> we are talking about.

Outline

- Metric Steiner Tree
 - Factor-Preserving Reduction
 - MST-based 2-approximation
- Metric Traveling Salesman Problem (TSP)
 - 3/2-approximation
 - A PTAS for the Euclidean TSP*

Metric Traveling Salesman Problem (TSP)

The Traveling Salesman Problem (TSP)

- Given a complete graph G = (V, E) with <u>nonnegative edge costs</u>, find a minimum cost cycle <u>visiting every vertex</u> exactly once.
 - This is the most general form of the TSP problem.
 - However, this problem cannot be approximated at all.

Theorem.

The TSP problem cannot be approximated to a factor of $\alpha(n)$, for any polynomial-time computable function $\alpha(n)$, unless **P** = **NP**.

The (Metric) Traveling Salesman Problem (TSP)

Given a complete graph G = (V, E) with <u>nonnegative edge costs</u> that satisfy <u>the triangle inequality</u>, find a minimum cost cycle visiting every vertex exactly once.

A Simple 2-approximation Algorithm

Algorithm A for Metric TSP

- 1. Compute an MST T for G.
- 2. Double every edge of the *T* to obtain an Eulerian graph.
- 3. Find an Eulerian tour τ on this graph.
- 4. Shortcutting τ to obtain a TSP tour C and output C.

An Improved 3/2-approximation Algorithm

Algorithm A for Metric TSP

- 1. Compute an MST *T* for *G*.
- 2. Compute a <u>min-cost perfect matching</u> M on the set of odd-degree vertices of T.
- 3. Add *M* to *T* to obtain an Eulerian graph.
- 4. Find an Eulerian tour τ on this graph.
- 5. Shortcutting τ to obtain a TSP tour C and output C.

The Metric Steiner Tree Problem

The Graph Steiner Tree Problem

Given an undirected graph G = (V, E) with nonnegative edge weight and a subset of vertices $A \subseteq V$, called the terminals,

the Steiner tree problem is to compute a *minimum weight tree* in *G* that contains all the terminals of *A*.

The Graph Steiner Tree Problem

- The graph Steiner tree problem is one type of *min-cost connected* subgraph problems in graphs.
 - When all vertices are terminals, i.e., A = V, the problem is exactly the <u>Minimum Spanning Tree</u> (MST) problem.
 - When the number of terminals is two, i.e., |A| = 2, the problem becomes the *shortest path* (SP) problem.
 - The Steiner tree problem addresses the rest situations in between.

The (Metric) Steiner Tree Problem

- In the (Metric) Steiner Tree problem, we are given as input:
 - An undirected **complete graph** G = (V, E),
 - An edge weight function $w: V \to R^{\geq 0}$ that satisfies the <u>triangle inequality</u>, i.e.,

$$w(u,v) \le w(u,t) + w(t,v) \quad \forall u,v,t \in V$$
, and

- A set of terminals $A \subseteq V$,

The goal is to compute a *minimum weight tree in G* that spans all the terminals of A.

A Factor-Preserving Reduction from Graph Steiner Tree to Metric Steiner Tree

Hence, it suffices to consider the metric case.

Approximation Factor Preserving Reduction

- Let Π_1 , Π_2 be two optimization problems. An approximation factor preserving reduction from Π_1 to Π_2 consists of two polynomial-time algorithms f and g, such that
 - For any instance I_1 of Π_1 , $I_2 \coloneqq f(I_1)$ is an instance of Π_2 whose optimal value is <u>no worse than</u> I_1 .
 - For any solution t of I_2 , $s \coloneqq g(I_1, t)$ is a solution of I_1 whose objective is <u>no worse than</u> that of t.

For *minimization problems*, the definition requires

- $OPT_{\Pi_2}(I_2) \leq OPT_{\Pi_1}(I_1)$
- $obj_{\Pi_1}(I_1,s) \leq obj_{\Pi_2}(I_2,t)$

Approximation factor preserving reduction (f, g) from Π_1 to Π_2 .

Approximation Factor Preserving Reduction

- Let (f,g) be an approximation factor preserving reduction from Π_1 to Π_2 . Then, from the definition, it follows that
 - $OPT_{\Pi_1}(I_1) = OPT_{\Pi_2}(I_2)$, where $I_2 := f(I_1)$.
 - An α -approximation algorithm for Π_2 gives an α -approximation solution for Π_1 via g.

Provided that such a reduction exists, to approximate Π_1 , it suffices to develop approximation algorithms for Π_2 . Approximation factor preserving reduction (f, g) from Π_1 to Π_2 .

There is an approximation factor preserving reduction from the graph Steiner tree problem to the metric Steiner tree problem.

- Let I = (G = (V, E), w, A) be an instance of the graph Steiner tree problem.
- We create an instance I' = (G', w', A) for the metric Steiner tree problem as follows.
 - Let G' be the complete graph defined on V.
 - For each $u, v \in V$, define $w'(u, v) := d_w(u, v)$, where $d_w(u, v)$ is the shortest distance between u and v in G with respect to w.
 - That is, we define (G', w') to be the *closure* of (G, w).

There is an approximation factor preserving reduction from the graph Steiner tree problem to the metric Steiner tree problem.

- Clearly, the construction can be done in polynomial time.
- Let T be an optimal Steiner tree for I.

Then,

$$w'(T) = \sum_{(u,v)\in T} w'(u,v) \le \sum_{(u,v)\in T} w(u,v) = w(T).$$

- Since T is also a Steiner tree for I', for any optimal Steiner tree T' for I', we have $w'(T') \le w'(T)$.
- Hence, $OPT(I') = w'(T') \le w(T) = OPT(I)$.

There is an approximation factor preserving reduction from the graph Steiner tree problem to the metric Steiner tree problem.

- Let T' be a Steiner tree for I'.
- \blacksquare From T', construct a Steiner tree T for I as follows.
 - Replace each edge of T', say, edge (u, v), by a shortest path between u and v in G with respect to w.
 Let H be the resulting graph.
 - 2. Break cycles in *H* arbitrarily to get a tree. Let it be *T*.
- Clearly, the construction is in polynomial time.

There is an approximation factor preserving reduction from the graph Steiner tree problem to the metric Steiner tree problem.

 \blacksquare By the construction of T,

$$A \subseteq V(T') \subseteq V(H) = V(T)$$

and T is a Steiner tree for I.

We also have

$$w(T) \le w(H) \le \sum_{u,v \in V} w'(u,v) = w'(T').$$

■ Hence $obj(I,T) \leq obj(I',T')$.

(Brief)

Status of the Steiner Tree Problem

The Steiner Tree Problem

- The Steiner tree problem is *NP-hard*.
 - It is also <u>APX-complete</u>, which means that, unless P = NP,
 it is not possible to approximate this problem arbitrarily close to 1.
- This problem can be approximated to $ln(4) \approx 1.39$ by Linear Programming (LP) and iterative randomized rounding techniques. [Byrka et al., STOC, 2010]
 - Approximating this problem within a ratio $96/95 \approx 1.0105$ is *NP-hard*.
- This problem is an *important fundamental problem* and has practical applications in circuit layout and network designs.

The Steiner Tree Problem

- When the underlying metric is Euclidean,
 i.e., the Euclidean Steiner tree, there is a PTAS.
- Many special cases and further generalizations have been considered. For example, the rectilinear Steiner tree, further connectivity constraints, parameterized complexity, etc.
- In this lecture, we will examine a simple 2-approximation via an MST-based algorithm.

MST-Based 2-Approximation

Connecting the Terminals – How?

- The goal of the Steiner tree problem is to connect the terminals in G, using a tree structure.
 - Non-terminal nodes can be used if necessary.

Connecting the Terminals – How?

- Minimum spanning tree (MST) connects the given set of vertices using the minimum cost possible.
 - Intuitively, with triangle inequality, the cost of MST should not be too bad compared to the optimal Steiner tree.

The Price of Ignoring All Non-terminal Nodes

- Locally, triangle inequality guarantees low-cost when non-terminal nodes are ignored.
 - Globally, ignoring all non-terminal nodes doesn't seem to behave too bad, either.

This key observation leads us to a 2-approximation guarantee.

2-Approximation Algorithm for Steiner Tree

- Let I = (G = (V, E), w, A) be an instance of Steiner tree.
- The algorithm goes as follows.
 - Compute an MST T of the induced subgraph of A in G,
 i.e., the graph consists of the vertices in A and the edges.
 - 2. Output *T* as the approximate Steiner tree for *I*.

Question:

How do we bound the cost of T in terms of OPT_I ?

How do we compare T to OPT_I ?

■ Intuitively, we feel that, *MST does not perform too bad*.

How do we *formally establish a bound*?

Use an Intermediate Witness

■ We will show that, we can *construct from* OPT_I a witness graph H, such that

$$w(T) \leq w(H) \leq 2 \cdot w(OPT_I).$$

Use an Intermediate Witness

■ We will show that, we can *construct from* OPT_I a witness graph H, such that

$$w(T) \leq w(H) \leq 2 \cdot w(OPT_I).$$

- Note that, the construction of *H* is imaginary, and the graph *H* is *only used in the analysis*.
 - Since OPT_I is unknown,
 we cannot actually construct anything from it.

Constructing the graph *H*

- Let OPT_I be an optimal Steiner tree for I.
 - 1. Use DFS to compute an Eulerian trail of OPT_I . Let it be K.

Clearly, $w(K) = 2 \cdot w(OPT_I)$, since each edge in OPT_I is traversed exactly most twice.

- Let OPT_I be an optimal Steiner tree for I.
 - 1. Use DFS to compute an Eulerian trail of OPT_I . Let it be K.

Clearly, $w(K) = 2 \cdot w(OPT_I)$, since each edge in OPT_I is traversed exactly most twice.

2. Shortcut the trail K by discarding the non-terminal vertices

between terminal vertices.

Let *H* be the resulting *Hamiltonian cycle* on *A*.

Clearly, $w(H) \le w(K) = 2 \cdot w(OPT_I)$.

The Eulerian trail K

The Hamiltonian cycle *H* on *A*

The cost of *H*

- We have created a Hamiltonian cycle H on A from OPT_I with $w(H) \le 2 \cdot w(OPT_I)$.
 - Since T is an MST for A, we must have $w(T) \le w(H)$.
 - Hence, $w(T) \le 2 \cdot w(OPT_I)$, and T is a 2-approximation for I.

What we have actually done

- From our key observation, we have shown that, there exists a Hamiltonian cycle of A with cost at most $2 \cdot w(OPT_I)$.
- \blacksquare Then, MST always performs no worse than H.

