Decision Problems,

The complexity classes P & NP




Decision Problem

m Adecision problem is a problem

whose answer to each instance is either “yes” or “no”.

- Reachability — Given a graph ¢ = (V,E) and s,t € V, determine if
there exists an s-t path in G.

- Connectivity — Given a graph G, determine if G Is connected.

- Partition — Given A = {a,, a,, ..., a,}, determine if there exists a
way to partition A into two equal-sum subsets.

- eflc.




The complexity class P

m The complexity class P consists of the problems that can be solved
efficiently in time polynomial in its input length.

- Aproblem IT is in P, Iif there exists an algorithm that computes
the answer for each input instance in polynomial-time.

- For example,

Connectivity, Reachability, Shortest-Path, Maximum Flow, etc.




The complexity class NP

m (Slightly informally speaking)
The complexity class NP consists of the problems whose answers can
be verified efficiently in time polynomial in its input length.

- Aproblem II is in NP,
If there exists an algorithm that correctly verifies any attempt of

a “yes’-claim for each instance in polynomial-time.

A: Hey, the answer of the input
instance is “Yes”. Here’s a proof.

Yes —

B: OK. Let me quickly verify it. Trust mel!

No =




The complexity class NP

m More formally speaking, a problem Il is in NP, if there exists a
polynomial-time algorithm Ap such that,

- For each “yes"-instance I of II, there exists a (proof) y such that,
the algorithm A accepts the input (7, y).

- For each “no”-instance I of II,
the algorithm Ap rejects the input (I, y) for all possible y.




The complexity class NP

m More formally speaking, a problem Il is in NP, if there exists a
polynomial-time algorithm Ay such that,

- For each “yes"-instance I of II, there exists a (proof) y such that,
the algorithm A accepts the input (7, y).

- For each “no’-instance I of II,
the algorithm Ap rejects the input (7, y) for all possible y.

m Informally speaking, a problem is in NP, if there exists a proof system
for its instances that can be correctly verified in polynomial-time.



The complexity class NP

m For example, the following problems are in NP.

- Reachability — Given a graph ¢ = (V,E) and s,t € V, determine if
there exists an s-t path in G.

The proof system can be a valid s-t path in G.

m For a “yes’-instance, there exists an s-t path, and it can be
verified in polynomial-time.

m Fora “no’-instance, there exists no s-t path, and there exists
no s-t path that can fool the algorithm.




The complexity class NP

m For example, the following problems are in NP.

- Partition — Given A = {a4, a,, ..., a,,}, determine if there exists a way

to partition A into two equal-sum subsets.

The proof system can be a valid partition A, A, of A.

m The validity of A;, A, can be checked in polynomial-time, I.e.,
whether or not




The complexity class NP

m For example, the following problems are in NP.

- Connectivity — Given a graph G, determine if G Is connected.

The proof system can be a DFS-tree (resulted by a traversal) of G.

m We can verify the validity of the DFS tree in polynomial-time
and check If it contains all the vertices.




An Alternative Way to View P

m Provided the definition & interpretation of NP,
the following is a natural way to view the complexity class P.

- AproblemIlisin P,
If there exists an algorithm that writes a valid proof

for each input instance (including “yes”- and “no’-instances)
In polynomial-time.

Imagine that...,
for an algorithm that solves the problem in polynomial-time,
the process of its computation process is exactly a proof that can be verified.




P versus NP

m From the definitions,
It Is easy to see that P € NP.

? . . . .
m Whether or not NP € P is a major open problem in computer science.

- From our previous interpretations,
the open question states:

Are problems that are easy to verify also easy to prove?

- Alternatively,
Is writing proofs as easy as verifying proofs?




Basic Concepts & Definitions




For example,

Optl m|zat|0n PrObIemS the shortest s — t path problem.

m An optimization problem, II, consists of the following:

Agraph G = (V,E) with s,t € V.
A set of valid instances, Dy;.

The size (length) of an instance I € Dy, denoted |I|, is the number of bits needed

towrite I In blnary representation. The set of all s — ¢ paths.

Each instance I € Dy has a nonempty set of feasible solutions S (/).

An objective function that assigns a value to each pair (1,s), where s € Sy(I).

[T is specified to be either a minimization or a maximization problem. The length
of the paths.

m The goal of an optimization problem II is to pick the “best” solution from the
feasible solutions of the input instance I € Dy;.

Compute the shortest s — t path in G.



Approximate Solutions for Optimization Problems

m A feasible solution s for an instance I of an optimization problem II is said to be

a d-approximate solution if
- objg(I,s) < 6 - objg(I,opt), if I1 is a minimization problem,

- objgy(,s) = 6 - obj(I,opt), if I1 is a maximization problem,

where objy Is the objective function of IT and opt is an optimal solution of .

For minimization For maximization
problems T & objg(l, opt) problems =+ objn(, opt)
objy(l,s) -+ objn(l,s) |
not too large | not too small T 6:-o0bjg(,opt)

compared to opt i Obj I (I ’ Opt) compared to opt




Approximation Algorithms for Optimization Problems

m An algorithm A is said to be a §-approximation algorithm for an optimization II If,
for each instance I of II, the algorithm A produces a §-approximate solution for I and

the running time of A is bounded by a polynomial of |I].

- J Isreferred to as the approximation ratio, approximation factor, or,
approximation guarantee, of A.

For any given, fixed, constant e,

we have just seen a (1 — e)-approximation algorithm for the Knapsack problem .



Approximation Schemes

m An algorithm A is said to be an approximation scheme for an optimization II if,
on input instance I and error parameter € > 0, the algorithm A produces

- a (1 + e)-approximate solution for I, if IT is a minimization problem,

- a (1 — e)-approximate solution for I, if IT is a maximization problem.

m  An approximation scheme A4 is said to be

- Apolynomial-time approximation scheme, abbreviated PTAS,
If its running time is bounded by a polynomial in |I].

- Afully polynomial-time approximation scheme, abbreviated FPTAS,
If its running time is bounded by a polynomial in || and 1 /€.




Some Fundamental Concepts




Decision Problem vs Optimization Problem

m Adecision problem is a problem whose answer to each instance is

either “yes” or “no.”

- Ex. Reachability, Connectivity, etc.

m An optimization problem is a problem whose goal is to pick the “best”

solution from a set of feasible solutions.

- We have an objective function which associates each feasible

solution a value.

- EXx. Shortest-Path, MST, Knapsack, etc.




Decision Version of Optimization Problems

m An optimization problem can also be formulated in a decision form.

- Instead of optimizing the solution, we ask,
“is there a solution whose value is at least ( at most ) c,
for a given constantc ? “

m [hen...

- Optimization form implies Decision form. E L EEIE

- Interestingly, Decision form also implies Optimization form!

m When the objective is polynomially bounded.




Decision Version of Optimization Problems

m Then...
- Optimization form implies Decision form.

- Interestingly, Decision form also implies Optimization form!
m When the objective is polynomially bounded.

m |.e., we can use decision version to solve the optimization version.

m SO, in general, for optimization problems,
we don’t need to bother with their decision forms.




NP-hard and NP-complete Problems

m A problem is said to be NP-hard if it can be used to “solve”
all problems in NP.

- More formally speaking, each problem in NP can be transformed
(reduced) to this problem.

- In some sense,
an NP-hard problem is at least as hard as all the problems in NP.

m An NP-hard problem is said to be NP-complete if it is also in NP.




