
Decision Problems,

The complexity classes P & NP



Decision Problem

■ A decision problem is a problem 

whose answer to each instance is either “yes” or “no”.

– Reachability – Given a graph 𝐺 = (𝑉, 𝐸) and 𝑠, 𝑡 ∈ 𝑉, determine if 

there exists an 𝑠-𝑡 path in 𝐺.

– Connectivity – Given a graph 𝐺, determine if 𝐺 is connected.

– Partition – Given 𝐴 = 𝑎1, 𝑎2, … , 𝑎𝑛 , determine if there exists a 

way to partition 𝐴 into two equal-sum subsets.

– etc.



The complexity class P

■ The complexity class P consists of the problems that can be solved 

efficiently in time polynomial in its input length.

– A problem Π is in P, if there exists an algorithm that computes 

the answer for each input instance in polynomial-time.

– For example, 

Connectivity, Reachability, Shortest-Path, Maximum Flow, etc.



The complexity class NP

■ (Slightly informally speaking)

The complexity class NP consists of the problems whose answers can 

be verified efficiently in time polynomial in its input length.

– A problem Π is in NP, 

if there exists an algorithm that correctly verifies any attempt of 

a “yes”-claim for each instance in polynomial-time.

B: OK. Let me quickly verify it.
Yes

No

A: Hey, the answer of the input 

instance is “Yes”. Here’s a proof.

Trust me!



The complexity class NP

■ More formally speaking, a problem Π is in NP, if there exists a 

polynomial-time algorithm 𝐴Π such that, 

– For each “yes”-instance 𝐼 of Π, there exists a (proof) 𝑦 such that, 

the algorithm 𝐴Π accepts the input (𝐼, 𝑦).

– For each “no”-instance 𝐼 of Π, 

the algorithm 𝐴Π rejects the input (𝐼, 𝑦) for all possible 𝑦.



The complexity class NP

■ More formally speaking, a problem Π is in NP, if there exists a 

polynomial-time algorithm 𝐴Π such that, 

– For each “yes”-instance 𝐼 of Π, there exists a (proof) 𝑦 such that, 

the algorithm 𝐴Π accepts the input (𝐼, 𝑦).

– For each “no”-instance 𝐼 of Π, 

the algorithm 𝐴Π rejects the input (𝐼, 𝑦) for all possible 𝑦.

■ Informally speaking, a problem is in NP, if there exists a proof system 

for its instances that can be correctly verified in polynomial-time.



The complexity class NP

■ For example, the following problems are in NP.

– Reachability – Given a graph 𝐺 = (𝑉, 𝐸) and 𝑠, 𝑡 ∈ 𝑉, determine if 

there exists an 𝑠-𝑡 path in 𝐺.

The proof system can be a valid 𝑠-𝑡 path in 𝐺.

■ For a “yes”-instance, there exists an 𝑠-𝑡 path, and it can be 

verified in polynomial-time.

■ For a “no”-instance, there exists no 𝑠-𝑡 path, and there exists 

no 𝑠-𝑡 path that can fool the algorithm.



The complexity class NP

■ For example, the following problems are in NP.

– Partition – Given 𝐴 = 𝑎1, 𝑎2, … , 𝑎𝑛 , determine if there exists a way 

to partition 𝐴 into two equal-sum subsets.

The proof system can be a valid partition 𝐴1, 𝐴2 of 𝐴.

■ The validity of 𝐴1, 𝐴2 can be checked in polynomial-time, i.e., 

whether or not

෍

𝑖∈𝐴1

𝑎𝑖 = ෍

𝑖∈𝐴2

𝑎𝑖 .



The complexity class NP

■ For example, the following problems are in NP.

– Connectivity – Given a graph 𝐺, determine if 𝐺 is connected.

The proof system can be a DFS-tree (resulted by a traversal) of 𝐺.

■ We can verify the validity of the DFS tree in polynomial-time 

and check if it contains all the vertices.



An Alternative Way to View P

■ Provided the definition & interpretation of NP, 

the following is a natural way to view the complexity class P.

– A problem Π is in P, 

if there exists an algorithm that writes a valid proof 

for each input instance (including “yes”- and “no”-instances) 

in polynomial-time.

Imagine that…, 

for an algorithm that solves the problem in polynomial-time, 

the process of its computation process is exactly a proof that can be verified.



P versus NP

■ From the definitions, 

it is easy to see that 𝑷 ⊆ 𝑵𝑷.

■ Whether or not 𝑵𝑷 ⊆ 𝑷 is a major open problem in computer science.

– From our previous interpretations,

the open question states:

Are problems that are easy to verify also easy to prove?

– Alternatively,

Is writing proofs as easy as verifying proofs?

?



Basic Concepts & Definitions



Optimization Problems

■ An optimization problem, Π, consists of the following:

– A set of valid instances, 𝐷Π. 

The size (length) of an instance 𝐼 ∈ 𝐷Π, denoted 𝐼 , is the number of bits needed 

to write 𝐼 in binary representation.

– Each instance 𝐼 ∈ 𝐷Π has a nonempty set of feasible solutions 𝑆Π 𝐼 .

– An objective function that assigns a value to each pair 𝐼, 𝑠 , where s ∈ 𝑆Π 𝐼 .

– Π is specified to be either a minimization or a maximization problem.

■ The goal of an optimization problem Π is to pick the “best” solution from the 

feasible solutions of the input instance 𝐼 ∈ 𝐷Π.

For example, 

the shortest 𝑠 − 𝑡 path problem.

A graph 𝐺 = 𝑉, 𝐸 with 𝑠, 𝑡 ∈ 𝑉.

The set of all 𝑠 − 𝑡 paths.

The length 

of the paths.

Compute the shortest 𝑠 − 𝑡 path in 𝐺.



Approximate Solutions for Optimization Problems

■ A feasible solution 𝑠 for an instance 𝐼 of an optimization problem Π is said to be 

a 𝛿-approximate solution if

– 𝑜𝑏𝑗Π 𝐼, 𝑠 ≤ 𝛿 ⋅ 𝑜𝑏𝑗Π(𝐼, 𝑜𝑝𝑡), if Π is a minimization problem,

– 𝑜𝑏𝑗Π 𝐼, 𝑠 ≥ 𝛿 ⋅ 𝑜𝑏𝑗Π(𝐼, 𝑜𝑝𝑡), if Π is a maximization problem,

where 𝑜𝑏𝑗Π is the objective function of Π and 𝑜𝑝𝑡 is an optimal solution of 𝐼.

𝑜𝑏𝑗Π(𝐼, 𝑜𝑝𝑡)

𝛿 ⋅ 𝑜𝑏𝑗Π(𝐼, 𝑜𝑝𝑡)
For minimization

problems 𝑜𝑏𝑗Π(𝐼, 𝑜𝑝𝑡)

𝛿 ⋅ 𝑜𝑏𝑗Π(𝐼, 𝑜𝑝𝑡)

For maximization

problems

𝑜𝑏𝑗Π(𝐼, 𝑠)

not too large

compared to opt

𝑜𝑏𝑗Π(𝐼, 𝑠)

not too small

compared to opt



Approximation Algorithms for Optimization Problems

■ An algorithm 𝐴 is said to be a 𝛿-approximation algorithm for an optimization Π if, 

for each instance 𝐼 of Π, the algorithm 𝐴 produces a 𝛿-approximate solution for 𝐼 and 

the running time of 𝐴 is bounded by a polynomial of 𝐼 .

– 𝛿 is referred to as the approximation ratio, approximation factor, or, 

approximation guarantee, of 𝐴.

For any given, fixed, constant 𝜖, 

we have just seen a (1 − 𝜖)-approximation algorithm for the Knapsack problem .



Approximation Schemes

■ An algorithm 𝐴 is said to be an approximation scheme for an optimization Π if, 

on input instance 𝐼 and error parameter 𝜖 > 0, the algorithm 𝐴 produces 

– a (1 + 𝜖)-approximate solution for 𝐼, if Π is a minimization problem,

– a (1 − 𝜖)-approximate solution for 𝐼, if Π is a maximization problem.

■ An approximation scheme 𝐴 is said to be 

– A polynomial-time approximation scheme, abbreviated PTAS, 

if its running time is bounded by a polynomial in 𝐼 .

– A fully polynomial-time approximation scheme, abbreviated FPTAS, 

if its running time is bounded by a polynomial in 𝐼 and 1/𝜖.



Some Fundamental Concepts



Decision Problem vs Optimization Problem

■ A decision problem is a problem whose answer to each instance is 

either “yes” or “no.”

– Ex. Reachability, Connectivity, etc.

■ An optimization problem is a problem whose goal is to pick the “best”

solution from a set of feasible solutions.

– We have an objective function which associates each feasible 

solution a value.

– Ex. Shortest-Path, MST, Knapsack, etc.



Decision Version of Optimization Problems

■ An optimization problem can also be formulated in a decision form.

– Instead of optimizing the solution, we ask,  

“is there a solution whose value is at least ( at most ) c, 

for a given constant c ? “

■ Then…

– Optimization form implies Decision form.

– Interestingly, Decision form also implies Optimization form!

■ When the objective is polynomially bounded.

By applying binary search.



Decision Version of Optimization Problems

■ Then…

– Optimization form implies Decision form.

– Interestingly, Decision form also implies Optimization form!

■ When the objective is polynomially bounded.

■ i.e., we can use decision version to solve the optimization version.

■ So, in general, for optimization problems,

we don’t need to bother with their decision forms.



NP-hard and NP-complete Problems

■ A problem is said to be NP-hard if it can be used to “solve”

all problems in NP.

– More formally speaking, each problem in NP can be transformed 

(reduced) to this problem.

– In some sense, 

an NP-hard problem is at least as hard as all the problems in NP.

■ An NP-hard problem is said to be NP-complete if it is also in NP.


