Decision Problems,

The complexity classes P & NP

Decision Problem

- A decision problem is a problem whose answer to each instance is either "yes" or "no".
 - Reachability Given a graph G = (V, E) and $s, t \in V$, determine if there exists an s-t path in G.
 - Connectivity Given a graph G, determine if G is connected.
 - Partition Given $A = \{a_1, a_2, ..., a_n\}$, determine if there exists a way to partition A into two equal-sum subsets.
 - etc.

- The complexity class **P** consists of the problems that can be solved efficiently in time polynomial in its input length.
 - A problem Π is in P, if there exists an algorithm that computes
 the answer for each input instance in polynomial-time.
 - For example,
 Connectivity, Reachability, Shortest-Path, Maximum Flow, etc.

- (Slightly informally speaking)
 The complexity class NP consists of the problems whose answers can be verified efficiently in time polynomial in its input length.
 - A problem Π is in NP,
 if there exists an algorithm that <u>correctly verifies</u> any attempt of a "yes"-claim for each instance in polynomial-time.

B: OK. Let me quickly verify it.

No

A: Hey, the answer of the input instance is "Yes". Here's a proof.

Trust me!

- More formally speaking, a problem Π is in NP, if there exists a polynomial-time algorithm A_{Π} such that,
 - For each "yes"-instance I of Π , there exists a (proof) y such that, the algorithm A_{Π} accepts the input (I, y).
 - For each "no"-instance I of Π , the algorithm A_{Π} rejects the input (I, y) for all possible y.

- More formally speaking, a problem Π is in NP, if there exists a polynomial-time algorithm A_{Π} such that,
 - For each "yes"-instance I of Π , there exists a (proof) y such that, the algorithm A_{Π} accepts the input (I, y).
 - For each "no"-instance I of Π , the algorithm A_{Π} rejects the input (I, y) for all possible y.
- Informally speaking, a problem is in NP, if there exists a proof system for its instances that can be correctly verified in polynomial-time.

- For example, the following problems are in NP.
 - Reachability Given a graph G = (V, E) and $s, t \in V$, determine if there exists an s-t path in G.

The proof system can be a valid s-t path in G.

- For a "yes"-instance, there exists an *s*-*t* path, and it can be verified in polynomial-time.
- For a "no"-instance, there exists no s-t path, and there exists no s-t path that can fool the algorithm.

- For example, the following problems are in NP.
 - Partition Given $A = \{a_1, a_2, ..., a_n\}$, determine if there exists a way to partition A into two equal-sum subsets.

The proof system can be a valid partition A_1 , A_2 of A.

The validity of A_1 , A_2 can be checked in polynomial-time, i.e., whether or not

$$\sum_{i \in A_1} a_i = \sum_{i \in A_2} a_i .$$

- For example, the following problems are in NP.
 - Connectivity Given a graph G, determine if G is connected.

The proof system can be a DFS-tree (resulted by a traversal) of G.

We can verify the validity of the DFS tree in polynomial-time and check if it contains all the vertices.

An Alternative Way to View P

- Provided the definition & interpretation of NP, the following is a natural way to view the complexity class P.
 - A problem Π is in P,
 if there exists an algorithm that writes a valid proof
 for each input instance (including "yes"- and "no"-instances)
 in polynomial-time.

Imagine that..., for an algorithm that solves the problem in polynomial-time, the process of its computation process is exactly a proof that can be verified.

P versus NP

- From the definitions, it is easy to see that $P \subseteq NP$.
- Whether or not $NP \stackrel{?}{\subseteq} P$ is <u>a major open problem</u> in computer science.
 - From our previous interpretations,
 the open question states:

Are problems that are easy to verify also easy to prove?

- Alternatively,

Is writing proofs as easy as verifying proofs?

Basic Concepts & Definitions

Optimization Problems

For example, the shortest s - t path problem.

An optimization problem, Π, consists of the following:

A graph G = (V, E) with $s, t \in V$.

- A set of valid instances, D_{Π} . The size (length) of an instance $I \in D_{\Pi}$, denoted |I|, is the number of bits needed to write I in binary representation. The set of all s-t paths.
- Each instance $I \in D_{\Pi}$ has a nonempty set of feasible solutions $S_{\Pi}(I)$.
- An objective function that assigns a value to each pair (I, s), where $s \in S_{\Pi}(I)$.
- Π is specified to be either a minimization or a maximization problem.

The length of the paths.

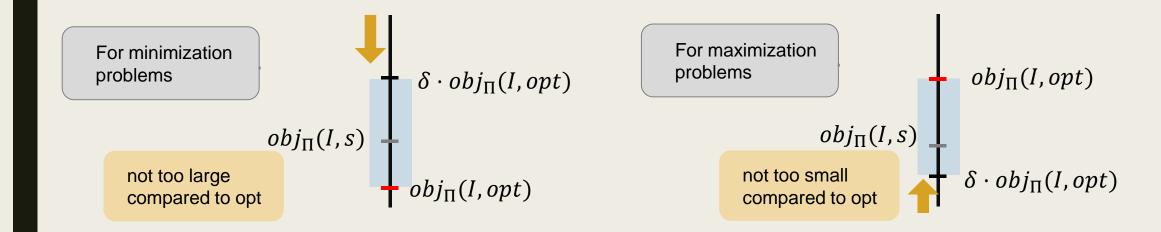
The goal of an *optimization problem* Π is to pick the "best" solution from the feasible solutions of the input instance $I \in D_{\Pi}$.

Compute the shortest s - t path in G.

Approximate Solutions for Optimization Problems

- **A** feasible solution s for an instance I of an optimization problem Π is said to be a δ-approximate solution if
 - $obj_{\Pi}(I,s) \leq \delta \cdot obj_{\Pi}(I,opt)$, if Π is a minimization problem,
 - $obj_{\Pi}(I,s) \ge \delta \cdot obj_{\Pi}(I,opt)$, if Π is a maximization problem,

where obj_{Π} is the objective function of Π and opt is an optimal solution of I.



Approximation Algorithms for Optimization Problems

- An algorithm A is said to be a δ -approximation algorithm for an optimization Π if, for each instance I of Π , the algorithm A produces a δ -approximate solution for I and the running time of A is bounded by a polynomial of |I|.
 - δ is referred to as the *approximation ratio*, *approximation factor*, or, *approximation guarantee*, of A.

For any \underline{given} , \underline{fixed} , $\underline{constant}$ $\underline{\epsilon}$, we have just seen a $(1-\epsilon)$ -approximation algorithm for the Knapsack problem .

Approximation Schemes

- An algorithm A is said to be an approximation scheme for an optimization Π if, on input instance I and error parameter $\epsilon > 0$, the algorithm A produces
 - a $(1 + \epsilon)$ -approximate solution for I, if Π is a minimization problem,
 - a (1ϵ) -approximate solution for I, if Π is a maximization problem.
- An approximation scheme *A* is said to be
 - A polynomial-time approximation scheme, abbreviated PTAS,
 if its running time is bounded by a polynomial in |I|.
 - A *fully polynomial-time approximation scheme*, abbreviated **FPTAS**, if its running time is bounded by a polynomial in |I| and $1/\epsilon$.

Some Fundamental Concepts

Decision Problem vs Optimization Problem

- A *decision problem* is a problem whose answer to each instance is either "yes" or "no."
 - Ex. Reachability, Connectivity, etc.
- An *optimization problem* is a problem whose goal is to pick the "*best*" solution from a set of feasible solutions.
 - We have an <u>objective function</u> which associates each feasible solution a value.
 - Ex. Shortest-Path, MST, Knapsack, etc.

Decision Version of Optimization Problems

- An optimization problem can also be formulated in a *decision form*.
 - Instead of optimizing the solution, we ask,
 "is there a solution whose value is at least (at most) c,
 for a given constant c?"

- Then...
 - Optimization form implies Decision form.

By applying binary search.

- Interestingly, **Decision form also implies Optimization form!**
 - When the objective is polynomially bounded.

Decision Version of Optimization Problems

- Then...
 - Optimization form implies Decision form.
 - Interestingly, Decision form also implies Optimization form!
 - When the objective is polynomially bounded.
 - i.e., we can use decision version to solve the optimization version.

So, in general, for optimization problems,
 we don't need to bother with their decision forms.

NP-hard and NP-complete Problems

- A problem is said to be NP-hard if it can be used to "solve" all problems in NP.
 - More formally speaking, each problem in NP can be transformed (reduced) to this problem.
 - In some sense,
 an NP-hard problem is <u>at least as hard as</u> all the problems in NP.
- An NP-hard problem is said to be *NP-complete* if it is also in **NP**.