Introduction to
Approximation Algorithms

Mong-Jen Kao (5 % 54)

Friday 13:20 — 15:10

The Complexity Class NP
&
Proof Checking

{ The classic point of view }

The Complexity Class NP

m Alanguage Lisin NP

If there is a nondeterministic Turing machine (NTM) M

that decides it in polynomial-time.

For any string x,

- If x € L, then there exists a computation path of M that accepts x.

- If x € L, then all computation paths of M reject x.

{ An equivalent point of view }

The Complexity Class NP

m AproblemIlisin NP,

If there is a polynomial-time algorithm A such that

for any instance [of II,

- If I is a “Yes"-instance, then
there is a proof « € {0,1}P°(™ sych that 4 accepts on (I, 7).

- If I is a “No’-instance, then 4 rejects (I,) for all = € {0,1}Pey(™),

{ An equivalent point of view }

The Complexity Class NP

m Aproblem ITis in NP if there is a proof system

for its yes answers to be verified efficiently in polynomial-time.

- (Completeness)

For each “yes’-instance, there is a proof that leads to accept.

- (Soundness)

For each “no’-instance, no proof leads to accepts.

Assume a valid proof system for Il

that can be efficiently verified by an algorithm A.

Request a proof

Verifier |
(Algorithm A) < |

Present a proof

Prover

With unlimited
computation power

With limited computation power

{ The classic point of view }

The Complexity Class P

m Alanguage Lisin P
If there is a deterministic Turing machine M that decides it

In polynomial-time.

For any string x,
- If x € L, then M accepts x in polynomial-time.

- If x € L, then M rejects x in polynomial-time.

A Turing machine is actually an algorithm, so...

{ The classic point of view }

The Complexity Class P

m AproblemIlisinP

If there is a polynomial-time algorithm A that decides it.

For any instance I,

- A answers “Yes” if I is a “Yes’-instance, and

“No” if Iis a “No”-instance.

m The complexity class P consists of

problems that can be solved efficiently in polynomial-time.

The Complexity Classes P vs NP

m From the proof-verifying perspective,

- Problems in P are those, whose proof can be computed
(composed) efficiently in polynomial-time.

m Obviously, P S NP.

m Whether or not NP € P is a major open problem in CS.

- Is writing proofs as easy as verifying them?

{ Do you believe so? :) J

Probabillistically Checkable Proofs
(PCP)

How much effort does it require to check a proof for a problem in NP?

The Complexity Class PCP(r(n),q(n))

m Alanguage L is in PCP(r(n),q(n))
If there is a polynomial-time randomized algorithm V such that
on any input string x € {0,1}",

- (Efficiency)
V uses 0(r(n)) random bits,

makes 0(q(n)) queries to a given proof & € {0, 1}*, and

accepts / rejects.

Assume a valid proof system for II
that can be efficiently verified by a randomized algorithm A.

With unlimited
____________________________ uery a part :
Query a p computation power

___________ of the proof
')
Prover

Verifier
(Algorithm A)

-

ueried
. Possesses a proof

[With limited computation power }
that can be very, very, very long.

-

II
j Present the part
I

|
!

The Complexity Class PCP(r(n),q(n))

m Alanguage L is in PCP(r(n),q(n))
If there is a polynomial-time randomized algorithm V such that

on any input string x € {0,1}",

- (Completeness)

If x € L, then there exists a proof m € {0,1}* such that
Pr| V*(x) accepts | = 1.

- (Soundness)
If x ¢ L, then forany m € {0,1}*, Pr[V™(x) accepts| < 1/2.

The PCP Theorem

m The PCP theorem says that,

NP = PCP(logn,1).

m Every language in NP has a proof system that can be verified

probabilistically using 0 (logn) random bits and
0(1) queries to the proof.

The PCP Theorem

m The PCP theorem has several equivalent formulations.

- Probabillistically checkable proofs,
Graph version,

Error-correcting code version, etc.

The PCP Theorem (Inapproximability Version)

m Definition. (g—CSP)

An instance of g—CSP consist of a set of alphabet X,
a set of variables X = {X,, ..., X,,} with X; € ¥, and

a set of constraints ¢4, ..., ¢,,,, where ¢; : X — {0,1} depends on
at most g variables.

The value of the instance is the maximum fraction of the
constraints that can be satisfied by any assignment.

For example, vertex cover is a 2-CSP problem.

The PCP Theorem (Inapproximability Version)

m There exist g € N and |X| > 1 such that,

given a g-CSP instance I over alphabet %,

It iIs NP-hard to distinguish between the two cases:
- val(l) =1, or
- val(l) < 1/2.

m Then, the ratio of the gap corresponds to the hardness of
approximating the q-CSP problem.

The PCP Theorem (Inapproximability Version)

m Definition. (p—Gap q—CSP)

Given an instance of q—CSP problem, distinguish between
the following two cases:

- val(l) =1, or
- val(l) < p.

m There exists g € Nand p € (0,1) such that
p—Gap q—CSP is NP-hard.

The PCP Theorem (Inapproximability Version)

m Definition. (Label Cover)
An instance of label cover consist of (G = (V;,V5, E), %, 1T), where
- G Is a bipartite graph.
- Forany edge e € E, there is a constraint I1,: X — X.

A labelling of the vertices o:V — X Is said to satisfy an edge
e = (u,v)withu € V;,v €V, if and only If

He(a(u)) = o(v).

The value of the instance is the maximum fraction of edges
that can be satisfied by any labelling.

The PCP Theorem (Inapproximability Version)

m Definition. (GapLabelCover; (X))

Given an instance of I of Label Cover, distinguish between
the following two cases:

- val(l) =1, or
- val(l) < e.

m For any e > 0, there exists a constant |X| such that
GapLabelCover, .(Z) is NP-hard.

Equivalent Views of
PCP Theorem

The PCP Theorem

m We have defined the language class PCP(r(n), q(n)).

Theorem 1. (PCP Theorem, proof verifying view)

NP = PCP(0(logn), 0(1)).

The PCP Theorem

Theorem 2. (PCP Theorem, hardness of approximation view)

There exists p < 1 such that,
for every language L € NP, there is a polynomial-time mapping
f :{0,1}* » 3CNFs
such that
XEL = Val(f(x)) =1

x¢&L > Val(f(x)) <p.

The PCP Theorem

m We have defined the gap version of CSP problems.

Theorem 2. (PCP Theorem, CSP view)

There exists g € N, p € (0,1) such that pGAPqCSP is NP-hard.

Theorem 1 = Theorem 3

m Suppose that NP = PCP(O(log n), 0(1)).

m |t suffices to construct a pGAPgCSP instance from a PCP verifier
V of an NP language, say, 3-SAT.

- Formulate the execution of IV as a CSP constraint.

- V uses 0(logn) random bits.
So, at most poly(n) different constraints.

- V makes g = 0(1) random bits.
Each constraint has arity q.

Theorem 1 = Theorem 3

m It suffices to construct a pGAPgCSP instance from a PCP verifier
V of an NP language, say, 3-SAT.

- Number of variables = q - poly(n) = poly(n).
- Hence, the CSP instance has polynomial size.

- The instance has completeness 1 and soundness p = 1/2.

m Since 3-SAT is NP-hard,
the gap instance is NP-hard to decide.

Theorem 3 = Theorem 1

m It suffices to construct a PCP verifier for pGAPqCSP.

The verifier expects the proof to be the assignment of
the variables.

Pick a constant ¢ > 1 such that p¢ < 1/2.
Pick ¢ random constraints and test them.

Number of random bits = ¢ - logm.
Number of queries = cq = 0(1).

The verifier has completeness 1 and soundness 1/2.

Mapping of Concepts between Different Views

Proof verifying view

PCP verifier V

Execution of Verifier

Probability
that V accepts

Number of random bits r

CSP view

(hardness of approx.)

CSP instance ¢

CSP constraint

Value of ¢

Logarithm of number of
constraints logm

Proof verifying view

Length of proof
(to be accessed)

PCP proof

Number of queries g

Soundness parameter
(usually 1/2)

CSP view

(hardness of approx.)

Number of variables

Assignment to variables

Arity of constraints g

Maximum value of
any No instance

Proof verifying view

Theorem 1.
NP = PCP(0(logn),0(1))

CSP view
(hardness of approx.)

Theorem 3.
pGAPqCSP is NP-hard

Theorem 2.
pGAP-3SAT is NP-hard

Corollary.
(p — €)-approximation
for Max-3SAT is NP-hard

Theorem 3 = Theorem 2

m Suppose that pGAP-3SAT is NP-hard.

m 3SAT is a gCSP problem with g = 3.

- An algorithm that decides pGAPqCSP can be used
to decide pGAP-3SAT.

m Hence, pGAPqCSP must also be NP-hard to decide.

Theorem 2 = Theorem 3

m Now suppose that pGAPgCSP is NP-hard.

m Given an instance of pGAPgCSP,
we construct an instance of p’ GAP-3SAT with p’ = p/(q29).

- Then, p’GAP-3SAT must be NP-hard to decide.

Theorem 2 = Theorem 3

m First, each CSP constraint, say, ¢; = ¢;(y1,y2, .-, ¥4), can be
transformed to an equivalent g-CNF with at most 29 clauses.

- Collect all configurations of y,,y,, ..., ¥, that make ¢; false.

- This corresponds to a g-DNF with at most 29 clauses.

- Taking negation, we get a g-CNF as claimed.

Theorem 2 = Theorem 3

m Next, we can apply the Cook-Levin technigue to transform
the g-CNF into an equivalent 3-CNF.

m Repeat the following two steps until we have a 3-CNF.

- Pick a clause with size at least 4, 1

The number of literals
say, y; Vy, V@', where |[¢']| = 2.

IS decreased by 1.

- Add a new variable z and replace the clause with

L VY, V2 A(ZV). P .

The number of variables
and clauses are

Increased by 1.
- /

m Repeat the following two steps until we have a 3-CNF.

say, @' =y, Vy, Vo', where || = 2. The number of literals

- Pick a clause with size at least 4,
IS decreased by 1. }

- Introduce a new variable z and replace ¢’ with

1 VyVZ)A(ZVPT). — T N

The number of variables

m If ¢’ is satisfied, then there exists z € {0,1} %Z?ecgzgzesya{e

such that (y; Vy, Vz) A(ZV ¢") is satisfied. - J

m If ¢’ is not satisfied, then no z € {0,1} can simultaneously
satisfy (y; Vy, vz)and (zVv ¢").

Theorem 2 = Theorem 3

m Next, we can apply the Cook-Levin technique to transform
the g-CNF into an equivalent 3-CNF.

m From the g-CNF with n variables and 29m clauses,
we obtain a 3-CNF with n + gm variables and g29m clauses.

- The completeness is 1.

- Each unsatisfied clause in g-CNF results in at least one
unsatisfied clause in 3-CNF.

- The soundnessis p' = p/(q29).

