Introduction to Approximation Algorithms

Mong-Jen Kao (高孟駿)

Friday 13:20 – 15:10

The Complexity Class NP

&

Proof Checking

The classic point of view

The Complexity Class NP

A language L is in NP if there is a <u>nondeterministic Turing machine</u> (NTM) M that decides it in polynomial-time.

For any string x,

- If $x \in L$, then there exists a computation path of M that accepts x.
- If $x \notin L$, then all computation paths of M reject x.

An equivalent point of view

The Complexity Class NP

- A problem Π is in NP,
 if there is a *polynomial-time algorithm A* such that
 for any instance *I* of Π,
 - If I is a "Yes"-instance, then there is a **proof** $\pi \in \{0,1\}^{poly(n)}$ such that A accepts on (I,π) .
 - If *I* is a "No"-instance, then *A* rejects (I, π) for all $\pi \in \{0,1\}^{poly(n)}$.

An equivalent point of view

The Complexity Class NP

- A problem Π is in NP if there is a <u>proof system</u>
 for its <u>yes answers</u> to be verified efficiently in polynomial-time.
 - (Completeness)
 For each "yes"-instance, there is a proof that leads to accept.
 - (Soundness)
 For each "no"-instance, no proof leads to accepts.

Assume a *valid proof system* for Π that can be <u>efficiently verified</u> by an **algorithm** A.

With <u>limited</u> computation power

With <u>unlimited</u> computation power

The classic point of view

The Complexity Class P

A language L is in P if there is a deterministic Turing machine M that decides it in polynomial-time.

For any string x,

- If $x \in L$, then M accepts x in polynomial-time.
- If $x \notin L$, then M rejects x in polynomial-time.

A *Turing machine* is actually an *algorithm*, so...

The classic point of view

The Complexity Class P

A problem Π is in P
 if there is a polynomial-time algorithm A that decides it.

For any instance *I*,

A answers "Yes" if I is a "Yes"-instance, and
 "No" if I is a "No"-instance.

The complexity class P consists of
 problems that can be solved efficiently in polynomial-time.

The Complexity Classes P vs NP

- From the proof-verifying perspective,
 - Problems in P are those, whose proof can be computed (composed) efficiently in polynomial-time.
- Obviously, $P \subseteq NP$.
- Whether or not $NP \subseteq P$ is <u>a major open problem</u> in CS.
 - Is writing proofs as easy as verifying them?

Probabilistically Checkable Proofs (PCP)

The Complexity Class PCP(r(n),q(n))

- A language L is in PCP(r(n),q(n)) if there is a polynomial-time randomized algorithm V such that on any input string $x \in \{0,1\}^n$,
 - (Efficiency) $V \text{ uses } O\big(r(n)\big) \text{ random bits,}$ $\text{makes } O\big(q(n)\big) \text{ queries to a given proof } \pi \in \{\mathbf{0},\mathbf{1}\}^*, \text{ and accepts / rejects.}$

Assume a *valid proof system* for Π that can be <u>efficiently verified</u> by a randomized **algorithm** A.

Verifier (Algorithm A)

With *limited* computation power

Query a part of the proof

Present the part queried

With <u>unlimited</u> computation power

Prover

Possesses a proof that can be very, very, very long.

The Complexity Class PCP(r(n),q(n))

- A language L is in PCP(r(n),q(n))

 if there is a polynomial-time randomized algorithm V such that on any input string $x \in \{0,1\}^n$,
 - (Completeness)

 If $x \in L$, then there exists a proof $\pi \in \{0,1\}^*$ such that $\Pr[V^{\pi}(x) \text{ accepts }] = 1$.
 - (Soundness) If $x \notin L$, then for any $\pi \in \{0,1\}^*$, $\Pr[V^{\pi}(x) \text{ accepts }] \leq 1/2$.

■ The PCP theorem says that,

$$NP = PCP(\log n, 1).$$

Every language in NP <u>has a proof system</u> that can be verified probabilistically using $O(\log n)$ random bits and O(1) queries to the proof.

- The PCP theorem has several equivalent formulations.
 - Probabilistically checkable proofs,
 - Graph version,
 - Error-correcting code version, etc.

Definition. (q-CSP)

An instance of q-CSP consist of a set of alphabet Σ , a set of variables $X = \{X_1, ..., X_n\}$ with $X_i \in \Sigma$, and a set of constraints $\phi_1, ..., \phi_m$, where $\phi_i : X \to \{0,1\}$ depends on at most q variables.

The <u>value</u> of the instance is the <u>maximum fraction</u> of the constraints that can be satisfied by any assignment.

For example, vertex cover is a 2-CSP problem.

- There exist $q \in \mathbb{N}$ and $|\Sigma| > 1$ such that, given a q-CSP instance I over alphabet Σ , it is NP-hard to distinguish between the two cases:
 - val(I) = 1, or
 - val(I) < 1/2.

■ Then, the ratio of the gap corresponds to the hardness of approximating the q-CSP problem.

- Definition. (ρ-Gap q-CSP)
 Given an instance of q-CSP problem, distinguish between the following two cases:
 - val(I) = 1, or
 - $val(I) < \rho$.
- There exists $q \in \mathbb{N}$ and $\rho \in (0,1)$ such that ρ -Gap q-CSP is NP-hard.

■ **Definition.** (Label Cover)

An instance of label cover consist of $(G = (V_1, V_2, E), \Sigma, \Pi)$, where

- G is a bipartite graph.
- For any edge $e \in E$, there is a constraint $\Pi_e: \Sigma \to \Sigma$.

A labelling of the vertices $\sigma: V \to \Sigma$ is said to satisfy an edge e = (u, v) with $u \in V_1, v \in V_2$ if and only if

$$\Pi_e(\sigma(u)) = \sigma(v).$$

The <u>value</u> of the instance is the <u>maximum fraction</u> of edges that can be satisfied by any labelling.

■ **Definition.** (GapLabelCover_{1, ϵ}(Σ))

Given an instance of *I* of Label Cover, distinguish between the following two cases:

- val(I) = 1, or
- $val(I) < \epsilon$.

■ For any $\epsilon > 0$, there exists a constant $|\Sigma|$ such that $\text{GapLabelCover}_{1,\epsilon}(\Sigma)$ is NP-hard.

Equivalent Views of PCP Theorem

■ We have defined the language class PCP(r(n), q(n)).

Theorem 1. (PCP Theorem, proof verifying view)

$$NP = PCP(O(\log n), O(1)).$$

Theorem 2. (PCP Theorem, hardness of approximation view)

There exists ρ < 1 such that,

for every language $L \in NP$, there is a polynomial-time mapping

$$f: \{0,1\}^* \mapsto 3CNFs$$

such that

$$x \in L \Rightarrow \operatorname{val}(f(x)) = 1$$

$$x \notin L \Rightarrow \operatorname{val}(f(x)) < \rho$$
.

We have defined the gap version of CSP problems.

Theorem 2. (PCP Theorem, CSP view)

There exists $q \in \mathbb{N}$, $\rho \in (0,1)$ such that ρ GAPqCSP is NP-hard.

Theorem $1 \Longrightarrow \text{Theorem } 3$

- Suppose that $NP = PCP(O(\log n), O(1))$.
- It suffices to construct a ρ GAPqCSP instance from a PCP verifier V of an NP language, say, 3-SAT.
 - Formulate the execution of V as a CSP constraint.
 - V uses O(log n) random bits.
 So, at most poly(n) different constraints.
 - V makes q = O(1) random bits. Each constraint has arity q.

Theorem $1 \Longrightarrow \text{Theorem } 3$

- It suffices to construct a ρ GAPqCSP instance from a PCP verifier V of an NP language, say, 3-SAT.
 - Number of variables = $q \cdot poly(n) = poly(n)$.
 - Hence, the CSP instance has polynomial size.
 - The instance has completeness 1 and soundness $\rho = 1/2$.
- Since 3-SAT is NP-hard, the gap instance is NP-hard to decide.

Theorem $3 \Rightarrow$ Theorem 1

- It suffices to construct a PCP verifier for ρ GAPqCSP.
 - The verifier expects the proof to be the assignment of the variables.
 - Pick a constant $c \ge 1$ such that $\rho^c \le 1/2$.
 - Pick c random constraints and test them.
 - Number of random bits = $c \cdot \log m$. Number of queries = cq = O(1).
 - The verifier has completeness 1 and soundness 1/2.

Mapping of Concepts between Different Views

Proof verifying view

<u>CSP view</u> (hardness of approx.)

PCP verifier V

CSP instance ϕ

Execution of Verifier

CSP constraint

Probability that *V* accepts

Value of ϕ

Number of random bits r

Logarithm of number of constraints $\log m$

Proof verifying view

<u>CSP view</u> (hardness of approx.)

Length of proof (to be accessed)

Number of variables

PCP proof π

Assignment to variables

Number of queries q

Arity of constraints *q*

Soundness parameter (usually 1/2)

Maximum value of any No instance

Proof verifying view

<u>CSP view</u> (hardness of approx.)

Theorem 1. $NP = PCP(O(\log n), O(1))$

Theorem 3. ρ GAPqCSP is NP-hard

Corollary. $(\rho - \epsilon)$ -approximation for Max-3SAT is NP-hard

Theorem $3 \Longrightarrow$ Theorem 2

- Suppose that ρ GAP-3SAT is NP-hard.
- 3SAT is a qCSP problem with q = 3.
 - An algorithm that decides ρ GAPqCSP can be used to decide ρ GAP-3SAT.
- Hence, ρ GAPqCSP must also be NP-hard to decide.

Theorem $2 \Longrightarrow$ Theorem 3

- Now suppose that ρ GAPqCSP is NP-hard.
- Given an instance of ρ GAPqCSP, we construct an instance of ρ' GAP-3SAT with $\rho' = \rho/(q2^q)$.
 - Then, ρ' GAP-3SAT must be NP-hard to decide.

Theorem $2 \Longrightarrow$ Theorem 3

- First, each CSP constraint, say, $\phi_i = \phi_i(y_1, y_2, ..., y_q)$, can be transformed to an equivalent q-CNF with at most 2^q clauses.
 - Collect all configurations of $y_1, y_2, ..., y_q$ that make ϕ_i false.
 - This corresponds to a q-DNF with at most 2^q clauses.
 - Taking negation, we get a q-CNF as claimed.

Theorem $2 \Rightarrow$ Theorem 3

- Next, we can apply the Cook-Levin technique to transform the *q*-CNF into an equivalent 3-CNF.
- Repeat the following two steps until we have a 3-CNF.
 - Pick a clause with size at least 4, say, $y_1 \vee y_2 \vee \phi'$, where $|\phi'| \geq 2$.

The number of literals is decreased by 1.

Add a new variable z and replace the clause with

$$(y_1 \lor y_2 \lor z) \land (\bar{z} \lor \phi')$$
.

The number of variables and clauses are increased by 1.

- Repeat the following two steps until we have a 3-CNF.
 - Pick a clause with size at least 4, say, $\phi' = y_1 \vee y_2 \vee \phi''$, where $|\phi'| \geq 2$.

The number of literals is decreased by 1.

- Introduce a new variable z and replace ϕ' with

$$(y_1 \lor y_2 \lor z) \land (\bar{z} \lor \phi'')$$
.

If ϕ' is satisfied, then there exists $z \in \{0,1\}$ such that $(y_1 \lor y_2 \lor z) \land (\bar{z} \lor \phi'')$ is satisfied.

The number of variables and clauses are increased by 1.

If ϕ' is not satisfied, then no $z \in \{0,1\}$ can simultaneously satisfy $(y_1 \lor y_2 \lor z)$ and $(\bar{z} \lor \phi'')$.

Theorem $2 \Longrightarrow$ Theorem 3

- Next, we can apply the Cook-Levin technique to transform the *q*-CNF into an equivalent 3-CNF.
- From the q-CNF with n variables and $2^q m$ clauses, we obtain a 3-CNF with n+qm variables and $q2^q m$ clauses.
 - The completeness is 1.
 - Each unsatisfied clause in *q*-CNF results in at least one unsatisfied clause in 3-CNF.
 - The soundness is $\rho' = \rho/(q2^q)$.