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The Complexity Class NP

&

Proof Checking



The Complexity Class NP

■ A language L is in NP 

if there is a nondeterministic Turing machine (NTM) 𝑀

that decides it in polynomial-time.

For any string 𝑥,

– If 𝑥 ∈ 𝐿, then there exists a computation path of 𝑀 that accepts 𝑥. 

– If 𝑥 ∉ 𝐿, then all computation paths of 𝑀 reject 𝑥. 

The classic point of view



The Complexity Class NP

■ A problem Π is in NP, 

if there is a polynomial-time algorithm 𝑨 such that

for any instance 𝐼 of Π,

– If 𝐼 is a “Yes”-instance, then 

there is a proof 𝜋 ∈ 0,1 𝑝𝑜𝑙𝑦 𝑛 such that 𝐴 accepts on 𝐼, 𝜋 . 

– If 𝐼 is a “No”-instance, then 𝐴 rejects 𝐼, 𝜋 for all 𝜋 ∈ 0,1 𝑝𝑜𝑙𝑦 𝑛 . 

An equivalent point of view



The Complexity Class NP

■ A problem Π is in NP if there is a proof system

for its yes answers to be verified efficiently in polynomial-time.

– (Completeness)

For each “yes”-instance, there is a proof that leads to accept.

– (Soundness)

For each “no”-instance, no proof leads to accepts.

An equivalent point of view



Assume a valid proof system for Π

that can be efficiently verified by an algorithm 𝑨.

Verifier

(Algorithm A)
Prover

Request a proof

Present a proof
With unlimited

computation power
With limited computation power



The Complexity Class P

■ A language L is in P 

if there is a deterministic Turing machine 𝑀 that decides it 

in polynomial-time.

For any string 𝑥,

– If 𝑥 ∈ 𝐿, then 𝑀 accepts 𝑥 in polynomial-time. 

– If 𝑥 ∉ 𝐿, then 𝑀 rejects 𝑥 in polynomial-time. 

The classic point of view

A Turing machine is actually an algorithm, so…



The Complexity Class P

■ A problem Π is in P 

if there is a polynomial-time algorithm 𝐴 that decides it.

For any instance 𝐼,

– 𝐴 answers   “Yes”  if 𝐼 is a “Yes”-instance, and

“No”   if 𝐼 is a “No”-instance.

■ The complexity class P consists of 

problems that can be solved efficiently in polynomial-time.

The classic point of view



The Complexity Classes P vs NP

■ From the proof-verifying perspective,

– Problems in P are those, whose proof can be computed 

(composed) efficiently in polynomial-time. 

■ Obviously, 𝑷 ⊆ 𝑵𝑷.

■ Whether or not 𝑵𝑷 ⊆ 𝑷 is a major open problem in CS.

– Is writing proofs as easy as verifying them?

Do you believe so?  : )



Probabilistically Checkable Proofs 

(PCP)

How much effort does it require to check a proof for a problem in NP?



The Complexity Class PCP(r(n),q(n))

■ A language L is in PCP(r(n),q(n)) 

if there is a polynomial-time randomized algorithm 𝑉 such that 

on any input string 𝑥 ∈ 0,1 𝑛,

– (Efficiency)  

𝑉 uses 𝑂 𝑟 𝑛 random bits, 

makes 𝑂 𝑞 𝑛 queries to a given proof 𝝅 ∈ 𝟎, 𝟏 ∗, and

accepts / rejects.



Assume a valid proof system for Π

that can be efficiently verified by a randomized algorithm 𝑨.

Prover

Query a part 

of the proof

Present the part

queried

With unlimited

computation power

Possesses a proof

that can be very, very, very long.

………

Verifier

(Algorithm A)

With limited computation power



The Complexity Class PCP(r(n),q(n))

■ A language L is in PCP(r(n),q(n)) 

if there is a polynomial-time randomized algorithm 𝑉 such that 

on any input string 𝑥 ∈ 0,1 𝑛,

– (Completeness)

If 𝑥 ∈ 𝐿, then there exists a proof 𝜋 ∈ 0,1 ∗ such that

Pr 𝑉𝜋 𝑥 accepts = 1.

– (Soundness)

If 𝑥 ∉ 𝐿, then for any 𝜋 ∈ 0,1 ∗,   Pr 𝑉𝜋 𝑥 accepts ≤ 1/2.



The PCP Theorem

■ The PCP theorem says that,

NP = PCP log 𝑛 , 1 .

■ Every language in NP has a proof system that can be verified 

probabilistically using 𝑂 log 𝑛 random bits and 

𝑂 1 queries to the proof.



The PCP Theorem

■ The PCP theorem has several equivalent formulations.

– Probabilistically checkable proofs, 

Graph version, 

Error-correcting code version, etc.



The PCP Theorem (Inapproximability Version)

For example, vertex cover is a 2-CSP problem.

■ Definition. (𝑞−CSP)

An instance of 𝑞−CSP consist of a set of alphabet Σ, 

a set of variables 𝑋 = 𝑋1, … , 𝑋𝑛 with 𝑋i ∈ Σ, and 

a set of constraints 𝜙1, … , 𝜙𝑚, where 𝜙𝑖 ∶ 𝑋 → 0,1 depends on 

at most 𝑞 variables.

The value of the instance is the maximum fraction of the 

constraints that can be satisfied by any assignment.



The PCP Theorem (Inapproximability Version)

■ There exist 𝑞 ∈ ℕ and Σ > 1 such that, 

given a 𝑞-CSP instance 𝐼 over alphabet Σ, 

it is NP-hard to distinguish between the two cases:

– val 𝐼 = 1, or

– val 𝐼 < 1/2.

■ Then, the ratio of the gap corresponds to the hardness of 

approximating the 𝑞-CSP problem.



The PCP Theorem (Inapproximability Version)

■ Definition. (𝜌−Gap q−CSP)

Given an instance of q−CSP problem, distinguish between 

the following two cases:

– val 𝐼 = 1, or

– val 𝐼 < 𝜌.

■ There exists 𝑞 ∈ ℕ and 𝜌 ∈ 0,1 such that

𝜌−Gap q−CSP is NP-hard.



The PCP Theorem (Inapproximability Version)

■ Definition. (Label Cover)

An instance of label cover consist of 𝐺 = 𝑉1, 𝑉2, 𝐸 , Σ, Π , where

– 𝐺 is a bipartite graph.

– For any edge 𝑒 ∈ 𝐸, there is a constraint Π𝑒: Σ → Σ.

A labelling of the vertices 𝜎: 𝑉 → Σ is said to satisfy an edge 

𝑒 = (𝑢, 𝑣) with 𝑢 ∈ 𝑉1, 𝑣 ∈ 𝑉2 if and only if 

Π𝑒 𝜎 𝑢 = 𝜎 𝑣 .

The value of the instance is the maximum fraction of edges 

that can be satisfied by any labelling.



The PCP Theorem (Inapproximability Version)

■ Definition. (GapLabelCover1,𝜖 Σ )

Given an instance of 𝐼 of Label Cover, distinguish between 

the following two cases:

– val 𝐼 = 1, or

– val 𝐼 < 𝜖.

■ For any 𝜖 > 0, there exists a constant Σ such that 

GapLabelCover1,𝜖 Σ is NP-hard.



Equivalent Views of 

PCP Theorem



The PCP Theorem

■ We have defined the language class PCP 𝑟 𝑛 , 𝑞 𝑛 .

Theorem 1. (PCP Theorem, proof verifying view)

NP = PCP 𝑂 log 𝑛 , 𝑂 1 .



The PCP Theorem

Theorem 2. (PCP Theorem, hardness of approximation view)

There exists 𝜌 < 1 such that, 

for every language 𝐿 ∈ NP, there is a polynomial-time mapping

𝑓 ∶ 0,1 ∗ ↦ 3𝐶𝑁𝐹𝑠

such that

𝑥 ∈ 𝐿 ⇒ val 𝑓 𝑥 = 1

𝑥 ∉ 𝐿 ⇒ val 𝑓 𝑥 < 𝜌 .



The PCP Theorem

Theorem 2. (PCP Theorem, CSP view)

There exists 𝑞 ∈ ℕ, 𝜌 ∈ 0,1 such that 𝜌GAP𝑞CSP is NP-hard.

■ We have defined the gap version of CSP problems.



Theorem 1 ⟹ Theorem 3

■ Suppose that NP = PCP 𝑂 log 𝑛 , 𝑂 1 .

■ It suffices to construct a 𝜌GAP𝑞CSP instance from a PCP verifier 

𝑉 of an NP language, say, 3-SAT.

– Formulate the execution of 𝑉 as a CSP constraint.

– 𝑉 uses 𝑂 log 𝑛 random bits.

So, at most 𝑝𝑜𝑙𝑦 𝑛 different constraints.

– 𝑉 makes 𝑞 = 𝑂 1 random bits. 

Each constraint has arity 𝑞.



Theorem 1 ⟹ Theorem 3

■ It suffices to construct a 𝜌GAP𝑞CSP instance from a PCP verifier 

𝑉 of an NP language, say, 3-SAT.

– Number of variables = 𝑞 ⋅ 𝑝𝑜𝑙𝑦 𝑛 = 𝑝𝑜𝑙𝑦 𝑛 .

– Hence, the CSP instance has polynomial size.

– The instance has completeness 1 and soundness 𝜌 = 1/2.

■ Since 3-SAT is NP-hard, 

the gap instance is NP-hard to decide.



Theorem 3 ⟹ Theorem 1

■ It suffices to construct a PCP verifier for 𝜌GAP𝑞CSP. 

– The verifier expects the proof to be the assignment of 

the variables.

– Pick a constant 𝑐 ≥ 1 such that 𝜌𝑐 ≤ 1/2.

– Pick 𝑐 random constraints and test them.

– Number of random bits = 𝑐 ⋅ log𝑚.

Number of queries = 𝑐𝑞 = 𝑂 1 .

– The verifier has completeness 1 and soundness 1/2.



Mapping of Concepts between Different Views

Proof verifying view
CSP view 

(hardness of approx.)

PCP verifier 𝑉 CSP instance 𝜙

Execution of Verifier CSP constraint

Probability 

that 𝑉 accepts
Value of 𝜙

Number of random bits 𝑟 Logarithm of number of 

constraints log𝑚



Proof verifying view
CSP view 

(hardness of approx.)

Length of proof

(to be accessed)
Number of variables

PCP proof 𝜋 Assignment to variables

Number of queries 𝑞 Arity of constraints 𝑞

Soundness parameter

(usually 1/2)

Maximum value of 

any No instance



Proof verifying view
CSP view 

(hardness of approx.)

Theorem 1.

NP = PCP 𝑂 log 𝑛 , 𝑂 1

Theorem 3.

𝜌GAP𝑞CSP is NP-hard

Theorem 2.

𝜌GAP-3SAT is NP-hard

Corollary.

(𝜌 − 𝜖)-approximation 

for Max-3SAT is NP-hard



Theorem 3 ⟹ Theorem 2

■ Suppose that 𝜌GAP-3SAT is NP-hard.

■ 3SAT is a 𝑞CSP problem with 𝑞 = 3. 

– An algorithm that decides 𝜌GAP𝑞CSP can be used 

to decide 𝜌GAP-3SAT. 

■ Hence, 𝜌GAP𝑞CSP must also be NP-hard to decide.



Theorem 2 ⟹ Theorem 3

■ Now suppose that 𝜌GAP𝑞CSP is NP-hard.

■ Given an instance of 𝜌GAP𝑞CSP, 

we construct an instance of 𝜌′GAP-3SAT with 𝜌′ = 𝜌/(𝑞2𝑞). 

– Then, 𝜌′GAP-3SAT must be NP-hard to decide. 



Theorem 2 ⟹ Theorem 3

■ First, each CSP constraint, say, 𝜙𝑖 = 𝜙𝑖 𝑦1, 𝑦2, … , 𝑦𝑞 , can be 

transformed to an equivalent 𝑞-CNF with at most 2𝑞 clauses.

– Collect all configurations of 𝑦1, 𝑦2, … , 𝑦𝑞 that make 𝜙𝑖 false.

– This corresponds to a 𝑞-DNF with at most 2𝑞 clauses.

– Taking negation, we get a 𝑞-CNF as claimed.



Theorem 2 ⟹ Theorem 3

■ Next, we can apply the Cook-Levin technique to transform 

the 𝑞-CNF into an equivalent 3-CNF.

■ Repeat the following two steps until we have a 3-CNF.

– Pick a clause with size at least 4, 

say, 𝑦1 ∨ 𝑦2 ∨ 𝜙
′, where 𝜙′ ≥ 2.

– Add a new variable 𝑧 and replace the clause with

𝑦1 ∨ 𝑦2 ∨ 𝑧 ∧ ҧ𝑧 ∨ 𝜙′ .
The number of variables 

and clauses are 

increased by 1.

The number of literals  

is decreased by 1.



■ Repeat the following two steps until we have a 3-CNF.

– Pick a clause with size at least 4, 

say, 𝜙′ = 𝑦1 ∨ 𝑦2 ∨ 𝜙
′′, where 𝜙′ ≥ 2.

– Introduce a new variable 𝑧 and replace 𝜙′ with

𝑦1 ∨ 𝑦2 ∨ 𝑧 ∧ ҧ𝑧 ∨ 𝜙′′ .

■ If 𝜙′ is satisfied, then there exists 𝑧 ∈ 0,1

such that 𝑦1 ∨ 𝑦2 ∨ 𝑧 ∧ ҧ𝑧 ∨ 𝜙′′ is satisfied.

■ If 𝜙′ is not satisfied, then no 𝑧 ∈ 0,1 can simultaneously 

satisfy 𝑦1 ∨ 𝑦2 ∨ 𝑧 and ҧ𝑧 ∨ 𝜙′′ . 

The number of variables 

and clauses are 

increased by 1.

The number of literals  

is decreased by 1.



Theorem 2 ⟹ Theorem 3

■ Next, we can apply the Cook-Levin technique to transform 

the 𝑞-CNF into an equivalent 3-CNF.

■ From the 𝑞-CNF with 𝑛 variables and 2𝑞𝑚 clauses, 

we obtain a 3-CNF with 𝑛 + 𝑞𝑚 variables and 𝑞2𝑞𝑚 clauses.

– The completeness is 1.

– Each unsatisfied clause in 𝑞-CNF results in at least one 

unsatisfied clause in 3-CNF.

– The soundness is 𝜌′ = 𝜌/(𝑞2𝑞).


