
Introduction to

Approximation Algorithms

Mong-Jen Kao (高孟駿)

Friday 13:20 – 15:10

Strict Quadratic Program (SQP)

&

Vector Programming Relaxation

When ILP & LP relaxation do not work well,

higher-degree programs can be a possibility.

The Flowchart for VP (SDP) rounding

Problem 𝚷 of Interests

An SQP

Formulation for 𝚷

Design (properly)

Relax (properly)

VP (SDP)

Relaxation (*) for 𝜫
Bounds the

optimal value

of SQP Solve (*) (approximately)

for optimal vectors.

{𝒗𝒊
∗} optimal

for (*)

ෝ𝒙 integral & feasible

for 𝚷

“Round“ 𝒗𝒊
∗ smartly,

i.e., make it integral

while preserving

feasibility & quality

Strict Quadratic Programs (SQP)

■ A quadratic program (QP) is the problem of

– Optimizing a quadratic function subject to quadratic constraints.

■ When each monomial of a QP is of degree 0 or 2,

it is called a strict QP.

optimize ෍

1≤𝑖≤𝑗≤𝑛

𝑎𝑖,𝑗 ⋅ (𝑥𝑖 ⋅ 𝑥𝑗) + 𝑐 (𝑺𝑸𝑷)

s. t. ෍

1≤𝑖≤𝑗≤𝑛

𝑐𝑖,𝑗
(𝑘)

⋅ (𝑥𝑖 ⋅ 𝑥𝑗) ≤ 𝑏𝑘 , ∀1 ≤ 𝑘 ≤ 𝑚,

𝑥𝑖 ∈ ℝ, ∀1 ≤ 𝑖 ≤ 𝑛.

Vector Programs (VP)

■ A vector program (VP) is the problem of

– Optimizing a linear function over linear constraints consisting of

inner products of vector variables.

optimize ෍

1≤𝑖≤𝑗≤𝑛

𝑎𝑖,𝑗 ⋅ (𝑣𝑖 ⋅ 𝑣𝑗) (𝑽𝑷)

s. t. ෍

1≤𝑖≤𝑗≤𝑛

𝑐𝑖,𝑗
(𝑘)

⋅ (𝑣𝑖 ⋅ 𝑣𝑗) ≤ 𝑏𝑘 , ∀1 ≤ 𝑘 ≤ 𝑚,

𝑣𝑖 ∈ ℝ𝑛, ∀1 ≤ 𝑖 ≤ 𝑛.

VPs are Polynomial-time Solvable.

■ Vector programs can be solved within an additive error of 𝜖

in time polynomial in 𝒏 and 𝐥𝐨𝐠(𝟏/𝝐).

■ VP is equivalent to semidefinite programming (SDP).

optimize ෍

1≤𝑖≤𝑗≤𝑛

𝑎𝑖,𝑗 ⋅ (𝑣𝑖 ⋅ 𝑣𝑗) (𝑽𝑷)

s. t. ෍

1≤𝑖≤𝑗≤𝑛

𝑐𝑖,𝑗
(𝑘)

⋅ (𝑣𝑖 ⋅ 𝑣𝑗) ≤ 𝑏𝑘 , ∀1 ≤ 𝑘 ≤ 𝑚,

𝑣𝑖 ∈ ℝ𝑛, ∀1 ≤ 𝑖 ≤ 𝑛.

We will introduce

the concept of SDP later!

VPs as relaxations for Integer SQP

■ Since VPs are approximately poly-time solvable,

they yield good relaxations for integer SQPs.

– Replace scalar variables 𝒙𝒊 with vector variables 𝒗𝒊 ∈ ℝ𝒏

– Replace each quadratic monomial 𝒙𝒊 ⋅ 𝒙𝒋 with inner product 𝒗𝒊 ⋅ 𝒗𝒋

Note that, the number of dimension must be at least 𝑛, the number of scalar variables.

optimize ෍

1≤𝑖≤𝑗≤𝑛

𝑎𝑖,𝑗 ⋅ (𝑥𝑖 ⋅ 𝑥𝑗) + 𝑐 (𝑺𝑸𝑷)

s. t. ෍

1≤𝑖≤𝑗≤𝑛

𝑐𝑖,𝑗
(𝑘)

⋅ (𝑥𝑖 ⋅ 𝑥𝑗) ≤ 𝑏𝑘 , ∀1 ≤ 𝑘 ≤ 𝑚,

𝑥𝑖 ∈ ℝ, ∀1 ≤ 𝑖 ≤ 𝑛.

optimize ෍

1≤𝑖≤𝑗≤𝑛

𝑎𝑖,𝑗 ⋅ (𝑣𝑖 ⋅ 𝑣𝑗) (𝑽𝑷)

s. t. ෍

1≤𝑖≤𝑗≤𝑛

𝑐𝑖,𝑗
(𝑘)

⋅ (𝑣𝑖 ⋅ 𝑣𝑗) ≤ 𝑏𝑘 , ∀1 ≤ 𝑘 ≤ 𝑚,

𝑣𝑖 ∈ ℝ𝑛, ∀1 ≤ 𝑖 ≤ 𝑛.

VPs as relaxations for Integer SQP

■ It may seem that the total number of variables increases

(from 𝑛 to 𝑛2),

they are actually used to model the 𝑛2 quadratic monomials.

optimize ෍

1≤𝑖≤𝑗≤𝑛

𝑎𝑖,𝑗 ⋅ (𝑥𝑖 ⋅ 𝑥𝑗) + 𝑐 (𝑺𝑸𝑷)

s. t. ෍

1≤𝑖≤𝑗≤𝑛

𝑐𝑖,𝑗
(𝑘)

⋅ (𝑥𝑖 ⋅ 𝑥𝑗) ≤ 𝑏𝑘 , ∀1 ≤ 𝑘 ≤ 𝑚,

𝑥𝑖 ∈ ℝ, ∀1 ≤ 𝑖 ≤ 𝑛.

optimize ෍

1≤𝑖≤𝑗≤𝑛

𝑎𝑖,𝑗 ⋅ (𝑣𝑖 ⋅ 𝑣𝑗) (𝑽𝑷)

s. t. ෍

1≤𝑖≤𝑗≤𝑛

𝑐𝑖,𝑗
(𝑘)

⋅ (𝑣𝑖 ⋅ 𝑣𝑗) ≤ 𝑏𝑘 , ∀1 ≤ 𝑘 ≤ 𝑚,

𝑣𝑖 ∈ ℝ𝑛, ∀1 ≤ 𝑖 ≤ 𝑛.

The Maximum Cut Problem

A bipartite classification problem.

Cut & Cut edges

■ Let 𝐺 = (𝑉, 𝐸) be an undirected graph with edge weight function

𝑤 ∶ 𝐸 → 𝑄+.

– A cut 𝑆, ҧ𝑆 is a partition of 𝑉.

– The cut edges of a cut 𝑆, ҧ𝑆 is the set of edges that have one

endpoint in 𝑆 and one endpoint in ҧ𝑆.

– For the sake of convenience, the term “cut” can be used to

indicate either the vertex partition or the edges crossing the cut.

The Maximum Cut Problem

■ Given an undirected graph 𝐺 = (𝑉, 𝐸) with edge weight function

𝑤 ∶ 𝐸 → 𝑄+, the maximum cut (max-cut) problem is to compute a cut

𝑆, ҧ𝑆 with the maximum total weight.

𝑆 ҧ𝑆

Find a cut with the maximum the total weight.

Status of Max-Cut

■ From HW#1, we know that 1/2-approximation can be obtained by

simple greedy algorithm.

■ Natural LP for max-cut has an integrality gap of 1/2.

■ It is known that, (16/17 ≈ 0.941 + 𝜖)-approx. is NP-hard.

– Assuming the unique game conjecture (UGC),

(0.87856 + 𝜖)-approx. is NP-hard.

■ In this lecture,

we will use SDP technique to obtain a 0.87856-approximation.

SQP-formulation for Max-Cut

■ For each 𝑣 ∈ 𝑉, let 𝑦𝑣 ∈ 1,−1 denote the partition decision for 𝑣.

Then it follows that, 𝑦𝑢 ⋅ 𝑦𝑣 ∈ {1,−1} for all 𝑢, 𝑣 ∈ 𝑉, and

the edge (𝑢, 𝑣) is a cut-edge if and only if 𝑦𝑢 ⋅ 𝑦𝑣 = −1.

max
1

2
⋅ ෍

𝑢,𝑣∈𝑉

𝑤𝑢,𝑣 ⋅ (1 − 𝑦𝑢 ⋅ 𝑦𝑣) (𝑺𝑸𝑷 ∗)

s. t. 𝑦𝑢
2 = 1, ∀𝑢 ∈ 𝑉,

𝑦𝑢 ∈ ℝ, ∀𝑢 ∈ 𝑉.

By setting 𝑤𝑢,𝑣 = 0

for all 𝑢, 𝑣 ∉ 𝐸,

we may assume that

𝐺 is a complete graph.

The VP (SDP)-relaxation for Max-Cut

■ From the constraint that 𝑣𝑖 ⋅ 𝑣𝑖 = 1, we know that 𝑣𝑖 = 1.

– 𝑣𝑖 lies on the |𝑉|-dimensional unit sphere.

max
1

2
⋅ ෍

𝑖,𝑗∈𝑉

𝑤𝑖,𝑗 ⋅ (1 − 𝑣𝑖 ⋅ 𝑣𝑗) (𝑽𝑷 ∗)

s. t. 𝑣𝑖 ⋅ 𝑣𝑖 = 1, ∀𝑖 ∈ 𝑉,

𝑣𝑖 ∈ ℝ|𝑉|, ∀𝑖 ∈ 𝑉.

An interpretation of the SDP-relaxation

■ From the constraint that 𝑣𝑖 ⋅ 𝑣𝑖 = 1,

we know that 𝑣𝑖 = 1.

– 𝑣𝑖 lies on the |𝑉|-dimensional

unit sphere.

■ Intuitively, the directions to which the

vectors point indicate how they

should be clustered.

𝑣1

𝑣2

𝑣3

An interpretation of the SDP-relaxation

■ Consider the contribution of any

𝑣𝑖 , 𝑣𝑗 in the objective function.

– We have

1 − 𝑣𝑖 ⋅ 𝑣𝑗 = 1 − cos 𝜃𝑖,𝑗.

■ Intuitively, the larger 𝜽𝒊,𝒋 is,

the more likely 𝑖 and 𝑗 should be

separated in the final cut.

𝑣𝑖 𝑣𝑗

𝜃𝑖,𝑗

𝜃𝑖,𝑗

A simple randomized rounding

Use a random hyperplane to classify the vectors.

A simple randomized rounding for SDP-(*)

1. Solve (approximately) VP-(*) for an optimal 𝑣𝑖
∗
𝑖∈𝑉.

2. Pick a vector 𝑟 on the |𝑉|-dimensional unit sphere uniformly at random. Let

𝑆 ≔ 𝑖 ∈ 𝑉 ∶ 𝑣𝑖
∗ ⋅ 𝑟 ≥ 0. .

3. Output 𝑆, ҧ𝑆 as the approximate cut.

max
1

2
⋅ ෍

𝑖,𝑗∈𝑉

𝑤𝑖,𝑗 ⋅ (1 − 𝑣𝑖 ⋅ 𝑣𝑗) (𝑽𝑷 ∗)

s. t. 𝑣𝑖 ⋅ 𝑣𝑖 = 1, ∀𝑖 ∈ 𝑉,

𝑣𝑖 ∈ ℝ|𝑉|, ∀𝑖 ∈ 𝑉.

A simple randomized rounding for SDP-(*)

■ Intuitively, we pick a random hyperplane,

defined by 𝑟, to classify the vectors.

𝑣1

𝑣2

𝑣3 𝑟

Uniform distribution on the sphere.

■ Let 𝑋 = 𝑋1, 𝑋2, … , 𝑋𝑛 , where

– 𝑋𝑖 ∼ 𝑁(0,1) are i.i.d. random variables and

– 𝑁 0,1 is the normal distribution with mean 0 and standard deviation 1.

■ Then 𝑋/ 𝑋 is a uniform distribution on the unit sphere,

since 𝑋 has pdf

𝑓 𝑥1, 𝑥2, … , 𝑥𝑛 = ෑ

1≤𝑖≤𝑛

1

2𝜋
⋅ 𝑒−

1
2
⋅𝑥𝑖
2

= 2𝜋 −
𝑛
2 ⋅ 𝑒−

1
2
⋅σ1≤𝑖≤𝑛 𝑥𝑖

2

which depends only on σ1≤𝑖≤𝑛 𝑥𝑖
2 = 𝑋 .

Analysis

■ The following lemma follows from

the fact that 𝒓 is sampled from a uniform

distribution on the sphere.

– The probability that the hyperplane falls

between 𝑣𝑖 and 𝑣𝑗 is exactly 𝜃𝑖,𝑗/𝜋.

Lemma 1.

For any 𝑖, 𝑗 ∈ 𝑉,

Pr 𝑣𝑖 and 𝑣𝑗 are separated by 𝑟 =
𝜃𝑖,𝑗

𝜋
.

𝑣𝑖 𝑣𝑗

𝜃𝑖,𝑗

𝜃𝑖,𝑗

■ We have

𝑂𝑃𝑇𝑓 =
1

2
⋅ ෍

𝑖,𝑗∈𝑉

𝑤𝑖,𝑗 ⋅ 1 − 𝑣𝑖
∗ ⋅ 𝑣𝑗

∗ =
1

2
⋅ ෍

𝑖,𝑗∈𝑉

𝑤𝑖,𝑗 ⋅ 1 − cos 𝜃𝑖,𝑗

and

𝐸 ෍
𝑖∈𝑆,

𝑗∈ ҧ𝑆

𝑤𝑖,𝑗 = ෍

𝑖,𝑗∈𝑉

𝑤𝑖,𝑗 ⋅
𝜃𝑖,𝑗

𝜋
≥ ෍

𝑖,𝑗∈𝑉

𝑤𝑖,𝑗 ⋅ 𝛼 ⋅
1 − cos 𝜃𝑖,𝑗

2
= 𝛼 ⋅ 𝑂𝑃𝑇𝑓 ,

where

𝛼 ≔
2

𝜋
⋅ min
0≤𝜃≤𝜋

𝜃

1 − cos 𝜃
.

By Lemma 1. Just compare the coefficients with 𝑂𝑃𝑇𝑓,

𝛼 is the smallest ratio.

Analysis

■ The following lemma can be verify by elementary calculus.

Lemma 2.

𝛼 ≔
2

𝜋
⋅ min
0≤𝜃≤𝜋

𝜃

1 − cos 𝜃
> 0.87856 .

Positive Semidefinite (PSD) Matrices

Positive Semidefinite (PSD) Matrices

■ Let 𝐴 ∈ ℝ𝑛×𝑛 be a real symmetric matrix. Then,

– All the eigenvalues of 𝐴 are real, and

– The eigenvectors of 𝐴 span the entire ℝ𝑛.

■ A real symmetric matrix 𝐴 ∈ ℝ𝑛×𝑛 is said to be positive semidefinite (PSD),

denoted 𝐴 ≽ 0, if all of its eigenvalues are non-negative.

– Intuitively, it means that,

𝐴 as a linear transformation never reverses the direction of a vector,

and the orientation of the vectors is kept.

Positive Semidefinite (PSD) Matrices

■ We will see later that, condition 3 establishes the equivalence between

vector programs (VPs) and semidefinite programs (SDPs).

Theorem 3.

Let 𝐴 ∈ ℝ𝑛×𝑛 be a real symmetric matrix. The followings are equivalent.

1. For any 𝑣 ∈ ℝ𝑛, 𝑣𝑇𝐴𝑣 ≥ 0.

2. All eigenvalues of 𝐴 are nonnegative.

3. There is a matrix 𝑊 ∈ ℝ𝑛×𝑛 such that 𝐴 = 𝑊𝑇𝑊.

■ (3 ⇒ 1): For any 𝑣 ∈ ℝ𝑛, we have

𝑣𝑇𝐴𝑣 = 𝑣𝑇 𝑊𝑇𝑊 𝑣 = 𝑊𝑣 𝑇 𝑊𝑣 ≥ 0.

■ 1 ⇒ 2 : Let (𝜆, 𝑣) be an eigen-pair of 𝐴. Then, by assumption,

𝜆 ⋅ 𝑣𝑇𝑣 = 𝑣𝑇 𝐴𝑣 = 𝑣𝑇𝐴𝑣 ≥ 0.

Since 𝑣𝑇𝑣 ≥ 0 for any 𝑣 ∈ ℝ𝑛, it follows that 𝜆 ≥ 0.

Theorem 3.

Let 𝐴 ∈ ℝ𝑛×𝑛 be a real symmetric matrix. The followings are equivalent.

1. For any 𝑣 ∈ ℝ𝑛, 𝑣𝑇𝐴𝑣 ≥ 0.

2. All eigenvalues of 𝐴 are nonnegative.

3. There is a matrix 𝑊 ∈ ℝ𝑛×𝑛 such that 𝐴 = 𝑊𝑇𝑊.

(2 ⇒ 3): Let 𝜆1, 𝜆2, … , 𝜆𝑛 be eigenvalues of 𝐴 and 𝑣1, 𝑣2, … , 𝑣𝑛 be the

corresponding eigenvectors that form an orthonormal basis of ℝ𝑛.

■ Let 𝑈 = 𝑣1 𝑣2 ⋯ 𝑣𝑛 be the matrix with column vectors 𝑣1, 𝑣2, … , 𝑣𝑛 and

𝐷 = diag 𝜆1, 𝜆2, … , 𝜆𝑛 be the diagonal matrix consisting of 𝜆1, 𝜆2, … , 𝜆𝑛.

Then, 𝐴𝑈 = 𝑈𝐷, 𝑈𝑈𝑇 = 𝐼 and hence 𝑈𝑇 = 𝑈−1.

Let 𝑄 = diag 𝜆1, 𝜆2, … , 𝜆𝑛 . Since 𝜆𝑖 ≥ 0 for all 𝑖, 𝑄 is real. We get

𝐴 = 𝑈𝐷𝑈−1 = 𝑈 ⋅ 𝑄𝑄𝑇 ⋅ 𝑈𝑇 = 𝑈𝑄 ⋅ 𝑈𝑄 𝑇 .

2. All eigenvalues of 𝐴 are nonnegative.

3. There is a matrix 𝑊 ∈ ℝ𝑛×𝑛 such that 𝐴 = 𝑊𝑇𝑊.

Some Remarks.

■ Positive semidefiniteness of a matrix 𝐴 can be verified in polynomial time.

– By applying the Cholesky decomposition to obtain 𝐴 = 𝑈𝐷𝑈𝑇 where

𝐷 is a diagonal matrix consisting of eigenvalues of 𝐴.

■ The decomposition 𝐴 = 𝑊𝑇𝑊 involves square-root computation, which can

be approximated to any desirable degree.

Hence, we can assume that it can be obtained in polynomial time.

(and let the error be absorbed in the error for solving SDPs.)

Semidefinite Programming (SDP)

Some definition

■ Let 𝐴, 𝐵 ∈ ℝ𝑛×𝑛 be a real matrix.

The Frobenius inner product, or, component-wise inner product, of

𝐴 and 𝐵 is defined as

𝐴 ∙ 𝐵 ≔ 𝑡𝑟 𝐴𝑇𝐵 = ෍

1≤𝑖,𝑗≤𝑛

𝑎𝑖,𝑗 ⋅ 𝑏𝑖,𝑗 .

■ A more intuitive way to understand it is that,….

– It’s just the component-wise product of 𝐴 and 𝐵.

Use entities in 𝐴 as the coefficients of the entities in 𝐵.

Semidefinite Programming (SDP)

■ Let 𝑌 ∈ ℝ𝑛×𝑛 be a real matrix.

A semidefinite program (SDP) is a linear program with variables 𝑦𝑖,𝑗 and

the additional constraints that all coefficient matrices are symmetric and

𝑌 are both symmetric and positive semidefinite.

■ Let 𝑀𝑛 ⊂ ℝ𝑛×𝑛 be the set of real symmetric matrices,

𝐶, 𝐷1, 𝐷2, … , 𝐷𝑘 ∈ 𝑀𝑛 and 𝑑1, 𝑑2, … , 𝑑𝑘 ∈ ℝ. SDP has the following form.

optimize 𝐶 ∙ 𝑌 (𝑺𝑫𝑷)

s. t. 𝐷𝑖 ∙ 𝑌 = 𝑑𝑖 , ∀1 ≤ 𝑖 ≤ 𝑘,

𝑌 ≽ 0,

𝑌 ∈ 𝑀𝑛.

LP with symmetric variables 𝑦𝑖,𝑗 and

symmetric coefficient matrices 𝐶, 𝐷𝑖.

𝑌 is PSD.

Semidefinite Programming (SDP)

■ Note that,

is just the concise format of

optimize 𝐶 ∙ 𝑌 (𝑺𝑫𝑷)

s. t. 𝐷𝑖 ∙ 𝑌 = 𝑑𝑖 , ∀1 ≤ 𝑖 ≤ 𝑘,

𝑌 ≽ 0,

𝑌 ∈ 𝑀𝑛.

optimize ෍

1≤𝑖,𝑗≤𝑛

𝑐𝑖,𝑗 ⋅ 𝑦𝑖,𝑗 (𝑺𝑫𝑷)

s. t. ෍

1≤𝑖,𝑗≤𝑛

𝑑𝑖,𝑗
ℓ ⋅ 𝑦𝑖,𝑗 = 𝑑ℓ, ∀1 ≤ ℓ ≤ 𝑘,

𝑌 = 𝑦𝑖,𝑗 1≤𝑖,𝑗≤𝑛
≽ 0, 𝑌 ∈ 𝑀𝑛.

Equivalence between SDP and VP

■ Consider the following two programs.

■ Let 𝑌∗ be a feasible solution for (SDP) and

𝑊 be the matrix given by Theorem 3 with 𝑌 = 𝑊𝑇𝑊.

Then, the column vectors of 𝑊 is feasible for (VP) with the same value.

optimize 𝐶 ∙ 𝑌 (𝑺𝑫𝑷)

s. t. 𝐷𝑖 ∙ 𝑌 = 𝑑𝑖 , ∀1 ≤ 𝑖 ≤ 𝑘,

𝑌 ≽ 0,

𝑌 ∈ 𝑀𝑛.

optimize ෍

1≤𝑖≤𝑗≤𝑛

𝑐𝑖,𝑗 ⋅ (𝑣𝑖 ⋅ 𝑣𝑗) (𝑽𝑷)

s. t. ෍

1≤𝑖≤𝑗≤𝑛

𝑑𝑖,𝑗
(𝑘)

⋅ (𝑣𝑖 ⋅ 𝑣𝑗) = 𝑑𝑘 , ∀1 ≤ 𝑘 ≤ 𝑚,

𝑣𝑖 ∈ ℝ𝑛, ∀1 ≤ 𝑖 ≤ 𝑛.

Equivalence between SDP and VP

■ Consider the following two programs.

■ Conversely, let 𝑣𝑖
∗
1≤𝑖≤𝑛 be a feasible vectors for (VP) and

𝑊 = 𝑣1
∗ 𝑣2

∗⋯𝑣𝑛
∗ be the matrix consisting of 𝑣𝑖

∗
1≤𝑖≤𝑛 as column vectors.

Then, the matrix 𝑌∗ ≔𝑊𝑇𝑊 is PSD by Theorem 3 and

also feasible for (SDP) with the same value.

optimize 𝐶 ∙ 𝑌 (𝑺𝑫𝑷)

s. t. 𝐷𝑖 ∙ 𝑌 = 𝑑𝑖 , ∀1 ≤ 𝑖 ≤ 𝑘,

𝑌 ≽ 0,

𝑌 ∈ 𝑀𝑛.

optimize ෍

1≤𝑖≤𝑗≤𝑛

𝑐𝑖,𝑗 ⋅ (𝑣𝑖 ⋅ 𝑣𝑗) (𝑽𝑷)

s. t. ෍

1≤𝑖≤𝑗≤𝑛

𝑑𝑖,𝑗
(𝑘)

⋅ (𝑣𝑖 ⋅ 𝑣𝑗) = 𝑑𝑘 , ∀1 ≤ 𝑘 ≤ 𝑚,

𝑣𝑖 ∈ ℝ𝑛, ∀1 ≤ 𝑖 ≤ 𝑛.

SDPs are Polynomial-Time Solvable

■ The separation problem of SDPs can be answered in polynomial time.

■ Hence, for any 𝜖 > 0, SDPs can be solved approximately within an additive

error of 𝜖 in time polynomial in 𝑛 and log 1/𝜖 by the Ellipsoid method.

Theorem 4.

For any 𝐴 ∈ ℝ𝑛×𝑛, we can determine in polynomial-time whether or not

𝐴 is feasible for (SDP) and, if not, output a separating hyperplane.

■ The separation problem of SDPs can be answered in polynomial time.

■ If 𝐴 is not symmetric, then 𝑎𝑖,𝑗 > 𝑎𝑗,𝑖 for some 𝑖, 𝑗.

Then 𝑦𝑖,𝑗 ≤ 𝑦𝑗,𝑖 is a separating hyperplane.

■ If 𝐴 is not PSD, then it has an eigen-pair (𝜆, 𝑣) with 𝜆 < 0.

Then 𝑣𝑇𝑌𝑣 = σ1≤𝑖,𝑗≤𝑛 𝑣𝑖𝑣𝑗 ⋅ 𝑦𝑖,𝑗 = 𝑣𝑣𝑇 ∙ 𝑌 ≥ 0 is a separating hyperplane.

■ If any of the linear constraints is violated,

then it directly yields a separating hyperplane.

Theorem 4.

For any 𝐴 ∈ ℝ𝑛×𝑛, we can determine in polynomial-time whether or not

𝐴 is feasible for (SDP) and, if not, output a separating hyperplane.

An SDP Formulation for Max-Cut

■ As an example, the following is the SDP formulation for Max-Cut.

max
1

2
⋅ ෍

𝑖,𝑗∈𝑉

𝑤𝑖,𝑗 ⋅ (1 − 𝑦𝑖,𝑗) (𝑺𝑫𝑷 ∗)

s. t. 𝑦𝑖,𝑖 = 1, ∀𝑖 ∈ 𝑉,

𝑌 = 𝑦𝑖,𝑗 1≤𝑖,𝑗≤𝑛
≽ 0,

𝑌 ∈ 𝑀𝑛.

