Introduction to Approximation Algorithms

Mong-Jen Kao (高孟駿)

Friday 13:20 – 15:10

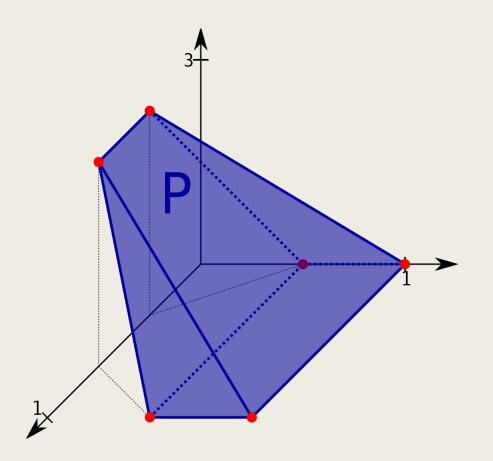
Outline

- Extreme Point Structure of LPs
- Half-Integrality of Vertex Cover
- Unrelated Machine Scheduling
 - A strengthened LP (*) and parametric search
 - Extreme point structure of (*)
 - A 2-approximation algorithm

Extreme Point Structure of LPs

Extreme Points of a Polytope

■ Consider the convex polytope Q defined by $Ax \leq b$, where $x \in \mathbb{R}^n$.



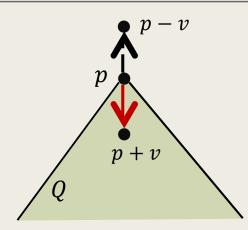
Extreme Points of a Polytope

■ Consider the convex polytope Q defined by $Ax \leq b$, where $x \in \mathbb{R}^n$.

Definition. (Extreme Point)

A point $p \in Q$ is an *extreme point* if for any (vector) $v \in \mathbb{R}^n$, $p + v \in Q$ implies that $p - v \notin Q$.

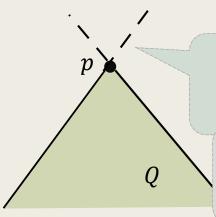
- Such a point is also called a <u>vertex</u> of Q, or, a <u>basic feasible</u> solution for $Ax \le b$.
- An equivalent definition is that, $p \in Q$ is an extreme point if $\nexists q, r \in Q$ such that p = (q + r)/2.



Extreme Points Structure

- Let p be an extreme point for $Ax \leq b$, where $x \in \mathbb{R}^n$.
 - The point p lies in **the hyperplanes** defined by some of the constraints in $Ax \le b$, with the inequality <u>holds with equality</u>.
 - Let A'x = b' be the system formed by these constraints, i.e., those in $Ax \le b$ that hold with equality at p.
 - To <u>uniquely define</u> p,
 the matrix A' must have
 a rank of n.

For any extreme point p, there exists a set of n linearly independent constraints in $Ax \le b$ that hold with equality at p.

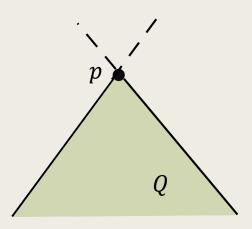


The set of *hyperplanes* that uniquely define p.

The set of constraints in $Ax \le b$ that hold with equality at p.

Obtaining Optimal Extreme Point Solutions

- Most LP solvers compute optimal extreme point solutions for the considered LP.
 - This includes the simplex method, interior-point method, and Ellipsoid method.
 - So, simply apply the solvers and you get an optimal extreme point solution for the LP.



Why Extreme Point Solutions?

■ Let's consider the *simple one-edge example* for vertex cover, and the *linear constraints* for it.

$$x_1 + x_2 \ge 1,$$

$$x_1, x_2 \ge 0.$$

$$v_1$$

$$v_2$$

$$0.3$$

$$v_1$$

$$v_2$$

$$v_1$$

$$0.4$$

$$0.6$$

- For small $\epsilon > 0$, $(0.3 + \epsilon, 0.7 \epsilon)$ and $(0.3 \epsilon, 0.7 + \epsilon)$ are both feasible solutions. So, (0.3, 0.7) is not extreme.
- The only extreme point solutions are (0,1) and (1,0).

The extreme point solution moves the value *greedily* towards some direction.

The Half-Integrality of Vertex Cover

Half-Integrality of Vertex Cover

Consider the natural LP relaxation for the vertex cover problem.

$$\min \sum_{v \in V} x_v \qquad (*)$$
 s.t. $x_u + x_v \ge 1$, $\forall (u, v) \in E$, $x_v \ge 0$, $\forall v \in V$.

- We will show that, any extreme point solution for (*) will set the value of each variable to be either 0, 1/2, or 1.
 - i.e., it will be *half-integral*.

■ Consider any feasible solution x for (*) that is not half-integral, i.e., $\exists v \in V$ such that $x_v \notin \left\{0, \frac{1}{2}, 1\right\}$.

$$\min \sum_{v \in V} x_v \qquad (*)$$
s.t. $x_u + x_v \ge 1$, $\forall (u, v) \in E$, $x_v \ge 0$, $\forall v \in V$.

- \blacksquare We will show that x is not an extreme point solution.
 - The idea is to show that, $\exists p \text{ such that, both } x + p \text{ and } x - p \text{ are feasible for } LP(*).$
 - Let

$$V^{+} = \left\{ v \in V : \frac{1}{2} < x_{v} < 1 \right\}, \text{ and } V^{-} = \left\{ v \in V : 0 < x_{v} < \frac{1}{2} \right\}$$

be the set of large / small vertices that are not half-integrally set.

Let

$$V^+ = \left\{ v \in V : \frac{1}{2} < x_v < 1 \right\}$$
, and $V^- = \left\{ v \in V : 0 < x_v < \frac{1}{2} \right\}$

be the set of large / small vertices that are not half-integrally set.

- Pick a *sufficiently small* $\epsilon > 0$, and define

$$y_{v} \coloneqq \begin{cases} x_{v} + \epsilon, & \text{if } v \in V^{+}, \\ x_{v} - \epsilon, & \text{if } v \in V^{-}, \\ x_{v}, & \text{otherwise,} \end{cases} \quad z_{v} \coloneqq \begin{cases} x_{v} - \epsilon, & \text{if } v \in V^{+}, \\ x_{v} + \epsilon, & \text{if } v \in V^{-}, \\ x_{v}, & \text{otherwise.} \end{cases}$$

Intuitively, for any $v \in V^-$,

 $u \in N(v)$

Any $u \in N(v)$ must belong to V^+ .

Hence, the adjustment in y keeps the constraints satisfied, and y is feasible.

$$\min \sum_{v \in V} x_v \tag{*}$$

s.t.
$$x_u + x_v \ge 1$$
, $\forall (u, v) \in E$, $x_v \ge 0$, $\forall v \in V$.

Let

$$V^+ = \left\{ v \in V : \frac{1}{2} < x_v < 1 \right\}$$
, and $V^- = \left\{ v \in V : 0 < x_v < \frac{1}{2} \right\}$

be the set of large / small vertices that are not half-integrally set.

- Pick a *sufficiently small* $\epsilon > 0$, and define

$$y_v \coloneqq \begin{cases} x_v + \epsilon, & \text{if } v \in V^+, \\ x_v - \epsilon, & \text{if } v \in V^-, \\ x_v, & \text{otherwise,} \end{cases} \quad z_v \coloneqq \begin{cases} x_v - \epsilon, & \text{if } v \in V^+, \\ x_v + \epsilon, & \text{if } v \in V^-, \\ x_v, & \text{otherwise.} \end{cases}$$

Both y and z are feasible for (*), and x = (y + z)/2.

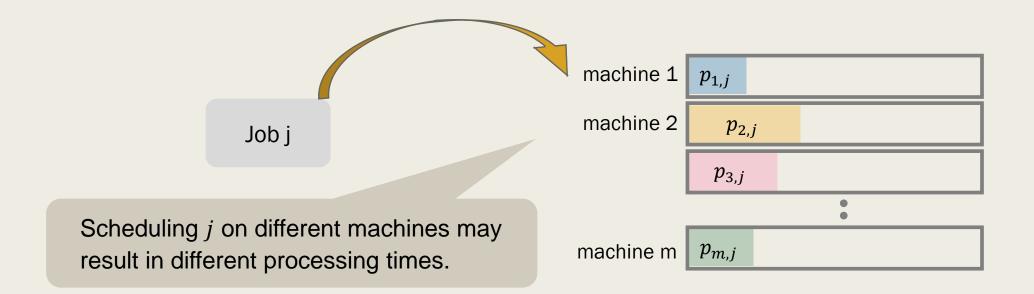
Hence, x is not extreme for (*).

min
$$\sum_{v \in V} x_v$$
 (*)
s.t. $x_u + x_v \ge 1$, $\forall (u, v) \in E$, $x_v \ge 0$, $\forall v \in V$.

Unrelated Machine Scheduling

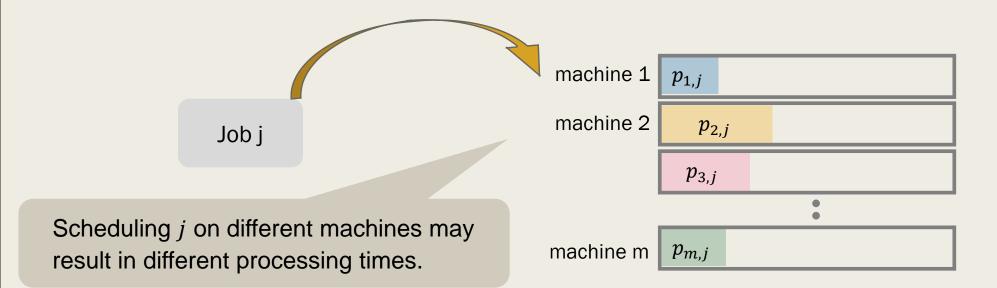
Scheduling on Unrelated Parallel Machines

- Let J be a set of n jobs, M be a set of m machines, and $p_{i,j} \in \mathbb{Z}^+$ for each $j \in J, i \in M$ be the time it takes to process job j on machine i.
 - The



Scheduling on Unrelated Parallel Machines

Given a set J of n jobs, a set M of machines, and for each $j \in J$, $i \in M$, $p_{i,j} \in \mathbb{Z}^+$ which is the time it takes to process job j on machine i, the goal of this problem is to schedule the jobs on the machines so as to *minimize* the *maximum processing time of any machine*, i.e., to minimize the *makespan* of the schedule.



The Natural LP has an Unbounded Integrality Gap

- We can formulate the problem in the following natural way.
 - For each $i \in M, j \in J$, we have a variable $x_{i,j} \in \{0,1\}$. The constraints for feasibility of the schedule:

$$\sum_{i \in M} x_{i,j} = 1, \qquad \forall j \in J.$$

- To model the objective value, we have a variable $t \in \mathbb{Z}^{\geq 0}$.

The constraints for modeling the objective value:

$$\sum_{j\in J} p_{i,j} \cdot x_{i,j} \le t, \qquad \forall i \in M.$$

We obtain a natural LP for this problem.
 However, this LP has an unbounded integrality gap.

Consider the following example.

Suppose that we have m machines and one job j with $p_{i,j} = m$ for all $1 \le i \le m$.

The optimal fractional solution for (*)

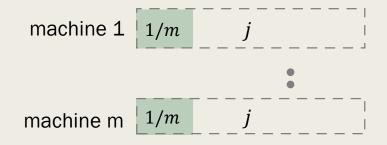
 $\sum_{j \in J} p_{i,j} \cdot x_{i,j} \le t, \qquad \forall i \in M,$ $t \ge 0,$ $x_{i,j} \ge 0, \qquad \forall i \in M, j \in J.$

(*)

 $\forall j \in J$,

min

will set $x_{i,j} = 1/m$ for all $1 \le i \le m$, which results in a makespan of 1, while the optimal integral solution has a makespan of m.



The problem is that, we allow jobs to be assigned to machines which has <u>strictly less completion time</u> than the job's processing time on that machine.

Consider the following example.

Suppose that we have m machines and one job j with $p_{i,j} = m$ for all $1 \le i \le m$.

The optimal fractional solution for (*) will set $x_{i,j} = 1/m$ for all $1 \le i \le m$, which results in a makespan of 1, while the optimal integral solution has a makespan of m.

machine 1	1/m	j
		•
machine m	1/m	j

The problem is that, we allow jobs to be assigned to machines which has <u>strictly less completion time</u> than the job's processing time on that machine.

The situation can be avoid, if we add the constraint to the relaxation:

$$\forall i \in M, j \in J : \text{ if } p_{i,j} > t, \text{ then } x_{i,j} = 0.$$

However, this is not a linear constraint.

Parametric Search for Machine Scheduling

- In the following, we develop a parametric search process for this problem.
- Let t^* denote the optimal makespan and $T \in \mathbb{Z}^+$ be a guess for t^* .
 - Then, we know that, for any $T \ge t^*$, no assignments will be made between any $i \in M, j \in J$ with $p_{i,j} > T$ in the optimal schedule.
 - Let

$$S_T := \left\{ (i,j) : i \in M, j \in J, \quad p_{i,j} \leq T \right\}$$

denote the pairs between which the assignments are allowed w.r.t. the guess T.

- Let t^* denote the optimal makespan and $T \in \mathbb{Z}^+$ be a guess for t^* .
 - Let $S_T \coloneqq \{ (i,j) : i \in M, j \in J, p_{i,j} \le T \}$ denote the pairs between which the assignments are allowed w.r.t. the guess T.
- Then we have the modified feasibility LP defined *for each possible T*.
 - Any integral solution is contained as a feasible solution in one of these LPs.
 - For any T ≥ t*,
 LP-(T) is guaranteed to be feasible.
 - Conversely, whenever LP-(T) is infeasible, then $T < t^*$ must hold.

$$\sum_{i:(i,j)\in S_T} x_{i,j} = 1, \quad \forall j \in J, \quad \text{LP-}(T)$$

$$\sum_{j:(i,j)\in S_T} p_{i,j} \cdot x_{i,j} \leq T, \quad \forall i \in M,$$

$$x_{i,j} \geq 0, \quad \forall (i,j) \in S_T.$$

- Then we have the modified feasibility LP defined *for each possible T*.
 - Any integral solution is contained as a feasible solution in one of these LPs.
 - For any T ≥ t*, LP-(T) is guaranteed to be feasible.
 Conversely, whenever LP-(T) is infeasible, then T < t* must hold.
 - Under the *parametric search framework*, it suffices to show that,
 whenever LP-(T) is feasible,
 we can always round the solution
 properly.

$$\sum_{i:(i,j)\in S_T} x_{i,j} = 1, \quad \forall j \in J, \quad \text{LP-}(T)$$

$$\sum_{j:(i,j)\in S_T} p_{i,j} \cdot x_{i,j} \leq T, \quad \forall i \in M,$$

$$x_{i,j} \geq 0, \quad \forall (i,j) \in S_T.$$

Parametric Search for Machine Scheduling

- We will derive a rounding process for LP-(T) such that the resulting makespan is at most 2T.
 - Then, we can apply binary search to find the smallest T for which LP-(T) is feasible, and it follows that $T \le t^*$.

Then applying the rounding process gives us a 2-approximation.

$$\sum_{i:(i,j)\in S_T} x_{i,j} = 1, \quad \forall j \in J, \quad \text{LP-}(T)$$

$$\sum_{j:(i,j)\in S_T} p_{i,j} \cdot x_{i,j} \leq T, \quad \forall i \in M,$$

$$x_{i,j} \geq 0, \quad \forall (i,j) \in S_T.$$

The Extreme Point Structure for LP-(T)

Extreme Point Solutions for LP-(T)

- The intuition here is that, although $x_{i,j}$ LP-(T) may have a number of variables, it has only a linear number of nontrivial constraints.
 - i.e., it has only |J| + |M| constraints bounding the variables in a nontrivial way.
 - Hence, only a linear number of non-trivial variables can be defined at the extreme points of this LP.
 - In other words, most of the variables must be set zero there.
 - Let n = |J| and m = |M|.

$$\sum_{i:(i,j)\in S_T} x_{i,j} = 1, \qquad \forall j \in J, \qquad \text{LP-}(T)$$

$$\sum_{j:(i,j)\in S_T} p_{i,j} \cdot x_{i,j} \le T, \qquad \forall i \in M,$$

$$x_{i,j} \geq 0, \quad \forall (i,j) \in S_T.$$

Lemma 3.

Any extreme point solution to LP-(T) has at most n + m nonzero variables.

- Lemma 3 is a formal statement of the intuitions in the previous slide.
- The proof is straightforward.
 - Consider any extreme point solution of LP-(T) and the invertible matrix obtained from LP-(T) at that point.
 - At most |J| + |M| = n + m nontrivial constraints can be selected to form the invertible matrix.
 Hence, the remaining constraints are from x_{i,j} ≥ 0 and will set the corresponding variables to zero.

$$\sum_{i:(i,j)\in S_T} x_{i,j} = 1, \quad \forall j \in J, \quad \text{LP-}(T)$$

$$\sum_{i:(i,j)\in S_T} p_{i,j} \cdot x_{i,j} \leq T, \quad \forall i \in M,$$

$$j:(i,j)\in S_T$$

$$x_{i,j} \geq 0, \quad \forall (i,j) \in S_T.$$

■ The following is a direct corollary of Lemma 3.

Corollary 4.

Any extreme point solution to LP-(T) must assign at least n-m jobs integrally.

$$\sum_{i:(i,j)\in S_T} x_{i,j} = 1, \quad \forall j \in J, \quad \text{LP-}(T)$$

$$\sum_{j:(i,j)\in S_T} p_{i,j} \cdot x_{i,j} \leq T, \quad \forall i \in M,$$

$$x_{i,j} \geq 0, \quad \forall (i,j) \in S_T.$$

- Intuitively, Corollary 4 says that, at most *m* jobs are fractionally assigned.
 - The integrally-assigned jobs have a makespan of at most T.
 - Each of the fractionally-assigned jobs will contribute a makespan of at most T. (Since $x_{i,j} > 0$ implies that $p_{i,j} \le T$.)

We will show that, *there exists a matching* from the fractionally-assigned jobs to the machines, and hence, those jobs can be properly assigned.

■ The following is a direct corollary of Lemma 3.

Corollary 4.

Any extreme point solution to LP-(T) must assign at least n-m jobs integrally.

■ The proof of Corollary 4 is also simple.

See the lecture note for the details.

$$\sum_{(i,j)\in S_T} x_{i,j} = 1, \qquad \forall j \in J, \qquad \text{LP-}(T)$$

$$\sum_{j:(i,j)\in S_T} p_{i,j} \cdot x_{i,j} \le T, \qquad \forall i \in M,$$

$$x_{i,j} \geq 0, \quad \forall (i,j) \in S_T.$$

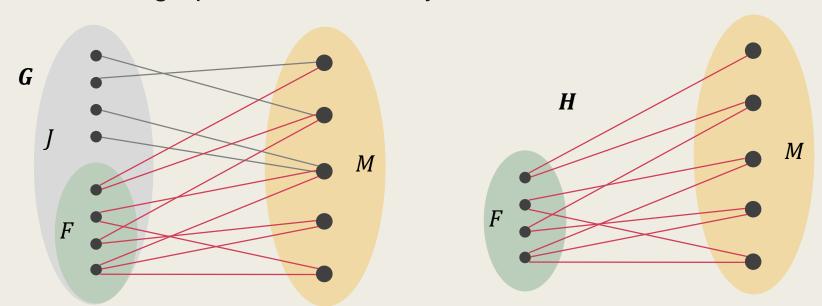
The Assignment Graphs and Properties

The Assignment Graph G and H

■ Let x be an extreme point solution for LP-(T).

Define the bipartite graph G = (J, M, E) with partite set J and M such that $(j, i) \in E$ if and only if $x_{i,j} \neq 0$.

Let $F \subseteq J$ be the set of jobs that are fractionally assigned in x, and H be the subgraph of G induced by $F \cup M$.



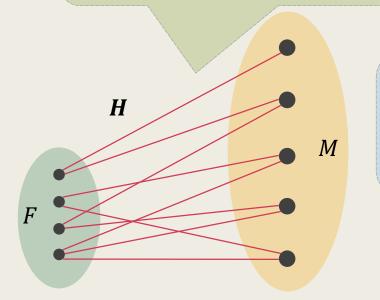
■ Let x be an extreme point solution for LP-(T).

Define the bipartite graph G = (J, M, E) with partite set J and M such that $(j, i) \in E$ if and only if $x_{i,j} \neq 0$.

Let $F \subseteq J$ be the set of jobs that are fractionally assigned in x, and H be the subgraph of G induced by $F \cup M$.

Jobs in J – F have degree 1 in G and contribute a total makespan of $\leq T$.

Each edge (j,i) in H satisfies $p_{i,j} \leq T$. Provided that there exists a matching to M exists, they will contribute a total makespan of $\leq T$.



We will show that, there is a **matching** from jobs in *F* to *M*.

Then, we get a schedule with makespan $\leq 2T$.

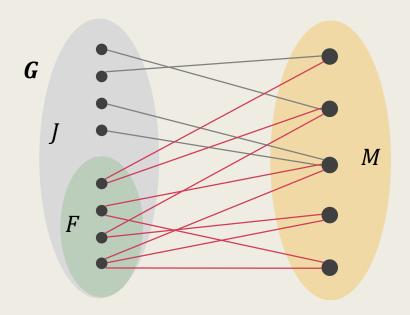
G and H are Pseudo-Forests.

- We say that a connected graph with vertex set V is a pseudo-tree if it has at most |V| edges.
 - i.e., it is either a tree, or a tree plus one edge.
- We say that a graph is a pseudo-forest if each of its connected components is a pseudo-tree.

Lemma 5.

G is a pseudo-forest.

- \blacksquare Consider each connected component in G.
 - We will argue that it's a pseudo-tree.



Lemma 5.

G is a pseudo-forest.

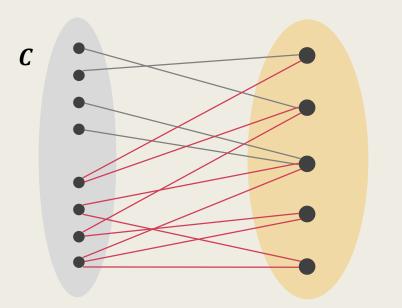
- Consider any connected component, say, C, in G.
 - Consider the variables and constraints to which C corresponds.

Denote the sub-LP by LP- $(T)_C$.

Clearly,

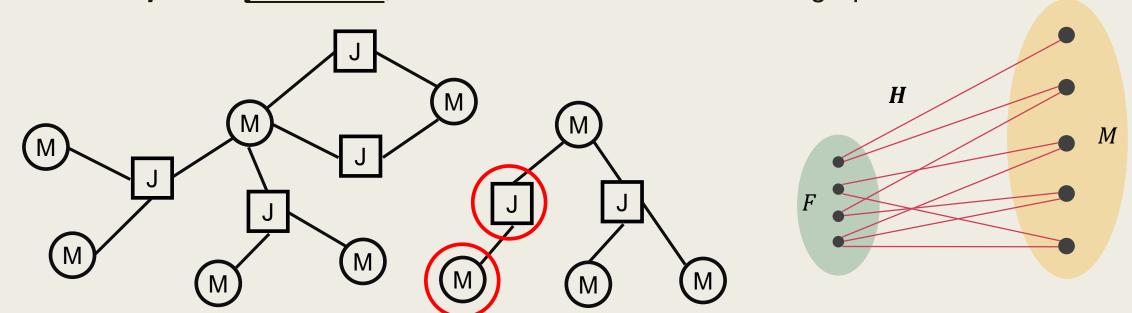
the solution x restricted to C, $x|_C$, must also be extreme for LP- $(T)_C$.

- Hence, C has an equal number of vertices and edges and is a pseudo-tree.
- Since H is obtained by removing some degree-1 vertices from G, it is also a pseudo-forest.

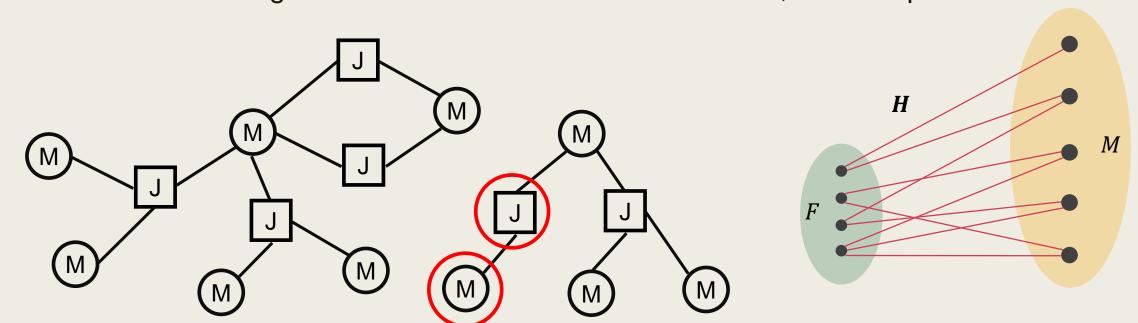


H has a perfect matching (for F to M).

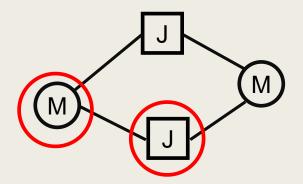
- \blacksquare We have shown that H is a pseudo-forest.
 - Since each job vertex in H has degree at least 2,
 we know that all the leaf vertices in H are machine vertices.
- The idea is to *keep matching* <u>a leaf machine vertex</u> with its parent job vertex, and then remove both from the graph.



- Since each job vertex in H has degree at least 2,
 we know that all the leaf vertices in H are machine vertices.
- We repeat the following process until no more leaf vertex is left.
 - Pick a leaf machine vertex and match it with its parent job vertex.
 - Remove both vertices from the graph.
 Remove isolated vertices.
- Since this process does not change the degree of any other job vertex, the remaining leaf vertices are still machine vertices, *H* is still pseudo-forest.

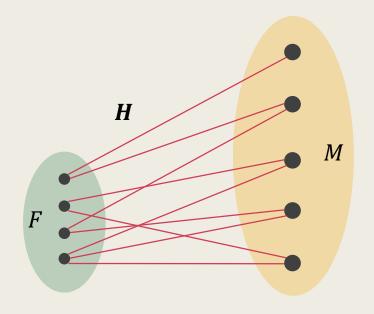


- We repeat the following process until no more leaf vertex is left.
 - Pick a leaf machine vertex and match it with its parent job vertex.
 - Remove both vertices from the graph.
 Remove isolated vertices.
- When this process ends,H is left with even cycles, which can be perfectly matched.



Lemma 6.

H has a perfect matching for F to M.



The Rounding Algorithm \mathcal{A}

Rounding the Extreme Point Solutions for LP-(T)

- The rounding algorithm \mathcal{A} goes as follows.
 - Input: a basic feasible (extreme point) solution x for LP-(T)
 - Output: a schedule with makespan at most 2T
 - 1. Assign all the jobs in J F according to x.

This contributes a makespan of $\leq T$.

- 2. Construct the graph *H* and compute a perfect matching from *F* to *M*. Assign the jobs in *F* according to the matching *M*.
- 3. Output the resulting schedule.

This also contributes a makespan of $\leq T$, since each machine gets at most one job with $p_{i,j} \leq T$.

The 2-approximation algorithm for

Unrelated Machine Scheduling

The 2-Approximation Algorithm

The algorithm goes as follows.

This guarantees that $T \leq t^*$.

- 1. Apply binary search on $\left[0, \sum_{i,j} p_{i,j}\right]$ to find the smallest T such that LP-(T) is feasible.
- 2. Compute an extreme point solution x for LP-(T).
- 3. Apply rounding algorithm \mathcal{A} on x and output the resulting schedule.

The output has a makespan of at most $2T \leq 2t^*$.