
Introduction to

Approximation Algorithms

Mong-Jen Kao (高孟駿)

Friday 13:20 – 15:10

Outline

■ Extreme Point Structure of LPs

■ Half-Integrality of Vertex Cover

■ Unrelated Machine Scheduling

– A strengthened LP (*) and parametric search

– Extreme point structure of (*)

– A 2-approximation algorithm

Extreme Point Structure of LPs

Extreme Points of a Polytope

■ Consider the convex polytope 𝑄 defined by 𝐴𝒙 ≤ 𝑏, where 𝑥 ∈ ℝ𝑛.

Extreme Points of a Polytope

■ Consider the convex polytope 𝑄 defined by 𝐴𝒙 ≤ 𝑏, where 𝑥 ∈ ℝ𝑛.

■ Such a point is also called a vertex of 𝑄, or,

a basic feasible solution for 𝐴𝒙 ≤ 𝑏.

■ An equivalent definition is that,

𝑝 ∈ 𝑄 is an extreme point if

∄𝑞, 𝑟 ∈ 𝑄 such that 𝑝 = (𝑞 + 𝑟)/2.

Definition. (Extreme Point)

A point 𝑝 ∈ 𝑄 is an extreme point if for any (vector) 𝑣 ∈ ℝ𝑛,

𝑝 + 𝑣 ∈ 𝑄 implies that 𝑝 − 𝑣 ∉ 𝑄.

𝑝

𝑝 − 𝑣

Equivalently,

∄𝑞, 𝑟 ∈ 𝑄, 𝑎 ∈ ℝ such that 𝑝 = 𝑎 ⋅ 𝑞 + 1 − 𝑎 ⋅ 𝑟.

𝑝 + 𝑣

𝑄

Extreme Points Structure

■ Let 𝑝 be an extreme point for 𝐴𝒙 ≤ 𝑏, where 𝑥 ∈ ℝ𝑛.

– The point 𝑝 lies in the hyperplanes defined by some of the constraints

in 𝐴𝒙 ≤ 𝑏, with the inequality holds with equality.

– Let 𝐴′𝒙 = 𝑏′ be the system formed by these constraints,

i.e., those in 𝐴𝒙 ≤ 𝑏 that hold with equality at 𝑝.

– To uniquely define 𝑝,

the matrix 𝑨′ must have

a rank of 𝒏.
𝑝

𝑄

The set of hyperplanes

that uniquely define 𝑝.

The set of constraints in 𝐴𝒙 ≤ 𝑏

that hold with equality at 𝑝.

For any extreme point 𝑝, there exists a set

of 𝒏 linearly independent constraints

in 𝐴𝒙 ≤ 𝑏 that hold with equality at 𝑝.

Obtaining Optimal Extreme Point Solutions

■ Most LP solvers compute optimal extreme point solutions

for the considered LP.

– This includes the simplex method, interior-point method, and

Ellipsoid method.

– So, simply apply the solvers and you get an optimal extreme point

solution for the LP.

𝑝

𝑄

Why Extreme Point Solutions?

■ Let’s consider the simple one-edge example for vertex cover, and

the linear constraints for it.

– For small 𝜖 > 0,

(0.3 + 𝜖, 0.7 − 𝜖) and (0.3 − 𝜖, 0.7 + 𝜖) are both feasible solutions.

So, (0.3, 0.7) is not extreme.

– The only extreme point solutions are (0,1) and (1,0).

𝑥1 + 𝑥2 ≥ 1,

𝑥1, 𝑥2 ≥ 0. 𝑣1 𝑣2 𝑣1 𝑣2

0.3 0.7

0.4 0.6

… …

The extreme point solution moves the value greedily towards some direction.

The Half-Integrality of Vertex Cover

Half-Integrality of Vertex Cover

■ Consider the natural LP relaxation for the vertex cover problem.

– We will show that, any extreme point solution for (*) will set the value

of each variable to be either 0, 1/2, or 1.

■ i.e., it will be half-integral.

min ෍

𝑣∈𝑉

𝑥𝑣 (∗)

s. t. 𝑥𝑢 + 𝑥𝑣 ≥ 1, ∀ 𝑢, 𝑣 ∈ 𝐸,

𝑥𝑣 ≥ 0, ∀ 𝑣 ∈ 𝑉.

■ Consider any feasible solution 𝒙 for (∗)

that is not half-integral,

i.e., ∃𝑣 ∈ 𝑉 such that 𝑥𝑣 ∉ 0,
1

2
, 1 .

■ We will show that 𝒙 is not an extreme point solution.

– The idea is to show that,

∃ 𝒑 such that, both 𝒙 + 𝒑 and 𝒙 − 𝒑 are feasible for LP(∗).

– Let

𝑉+ = 𝑣 ∈ 𝑉 ∶
1

2
< 𝑥𝑣 < 1 , and 𝑉− = 𝑣 ∈ 𝑉 ∶ 0 < 𝑥𝑣 <

1

2

be the set of large / small vertices that are not half-integrally set.

min ෍

𝑣∈𝑉

𝑥𝑣 (∗)

s. t. 𝑥𝑢 + 𝑥𝑣 ≥ 1, ∀ 𝑢, 𝑣 ∈ 𝐸,

𝑥𝑣 ≥ 0, ∀ 𝑣 ∈ 𝑉.

– Let

𝑉+ = 𝑣 ∈ 𝑉 ∶
1

2
< 𝑥𝑣 < 1 , and 𝑉− = 𝑣 ∈ 𝑉 ∶ 0 < 𝑥𝑣 <

1

2

be the set of large / small vertices that are not half-integrally set.

– Pick a sufficiently small 𝜖 > 0, and define

𝑦𝑣 ≔ ቐ
𝑥𝑣 + 𝜖, if 𝑣 ∈ 𝑉+,
𝑥𝑣 − 𝜖, if 𝑣 ∈ 𝑉−,
𝑥𝑣 , otherwise,

𝑧𝑣 ≔ ቐ
𝑥𝑣 − 𝜖, if 𝑣 ∈ 𝑉+,
𝑥𝑣 + 𝜖, if 𝑣 ∈ 𝑉−,
𝑥𝑣 , otherwise.

Intuitively, for any 𝑣 ∈ 𝑉−,

min ෍

𝑣∈𝑉

𝑥𝑣 (∗)

s. t. 𝑥𝑢 + 𝑥𝑣 ≥ 1, ∀ 𝑢, 𝑣 ∈ 𝐸,

𝑥𝑣 ≥ 0, ∀ 𝑣 ∈ 𝑉.

𝑣

𝑢 ∈ 𝑁(𝑣)

Any 𝑢 ∈ 𝑁(𝑣) must belong to 𝑉+.

Hence, the adjustment in 𝑦 keeps the

constraints satisfied, and 𝑦 is feasible.

– Let

𝑉+ = 𝑣 ∈ 𝑉 ∶
1

2
< 𝑥𝑣 < 1 , and 𝑉− = 𝑣 ∈ 𝑉 ∶ 0 < 𝑥𝑣 <

1

2

be the set of large / small vertices that are not half-integrally set.

– Pick a sufficiently small 𝜖 > 0, and define

𝑦𝑣 ≔ ቐ
𝑥𝑣 + 𝜖, if 𝑣 ∈ 𝑉+,
𝑥𝑣 − 𝜖, if 𝑣 ∈ 𝑉−,
𝑥𝑣 , otherwise,

𝑧𝑣 ≔ ቐ
𝑥𝑣 − 𝜖, if 𝑣 ∈ 𝑉+,
𝑥𝑣 + 𝜖, if 𝑣 ∈ 𝑉−,
𝑥𝑣 , otherwise.

Both 𝒚 and 𝒛 are feasible for (∗), and

𝒙 = (𝒚 + 𝒛)/2.

Hence, 𝒙 is not extreme for (∗).

min ෍

𝑣∈𝑉

𝑥𝑣 (∗)

s. t. 𝑥𝑢 + 𝑥𝑣 ≥ 1, ∀ 𝑢, 𝑣 ∈ 𝐸,

𝑥𝑣 ≥ 0, ∀ 𝑣 ∈ 𝑉.

Unrelated Machine Scheduling

Scheduling on Unrelated Parallel Machines

■ Let 𝐽 be a set of 𝑛 jobs, 𝑀 be a set of 𝑚 machines, and 𝑝𝑖,𝑗 ∈ ℤ+ for each

𝑗 ∈ 𝐽, 𝑖 ∈ 𝑀 be the time it takes to process job 𝑗 on machine 𝑖.

– The

𝑝1,𝑗

𝑝2,𝑗

𝑝𝑚,𝑗

𝑝3,𝑗

machine 1

machine 2

machine m

Job j

Scheduling 𝑗 on different machines may

result in different processing times.

Scheduling on Unrelated Parallel Machines

■ Given a set 𝐽 of 𝑛 jobs, a set 𝑀 of machines, and for each 𝑗 ∈ 𝐽, 𝑖 ∈ 𝑀,

𝑝𝑖,𝑗 ∈ ℤ+ which is the time it takes to process job 𝑗 on machine 𝑖,

the goal of this problem is to schedule the jobs on the machines

so as to minimize the maximum processing time of any machine,

i.e., to minimize the makespan of the schedule.

𝑝1,𝑗

𝑝2,𝑗

𝑝𝑚,𝑗

𝑝3,𝑗

machine 1

machine 2

machine m

Job j

Scheduling 𝑗 on different machines may

result in different processing times.

The Natural LP has an Unbounded Integrality Gap

■ We can formulate the problem in the following natural way.

– For each 𝑖 ∈ 𝑀, 𝑗 ∈ 𝐽, we have a variable 𝑥𝑖,𝑗 ∈ 0,1 .

The constraints for feasibility of the schedule:

෍

𝑖∈𝑀

𝑥𝑖,𝑗 = 1, ∀𝑗 ∈ 𝐽.

– To model the objective value, we have a variable 𝑡 ∈ ℤ≥0.

The constraints for modeling the objective value:

෍

𝑗∈𝐽

𝑝𝑖,𝑗 ⋅ 𝑥𝑖,𝑗 ≤ 𝑡, ∀𝑖 ∈ 𝑀.

■ We obtain a natural LP for this problem.

However, this LP has an unbounded

integrality gap.

Consider the following example.

Suppose that we have 𝑚 machines and

one job 𝑗 with 𝑝𝑖,𝑗 = 𝑚 for all 1 ≤ 𝑖 ≤ 𝑚.

The optimal fractional solution for (*)

will set 𝑥𝑖,𝑗 = 1/𝑚 for all 1 ≤ 𝑖 ≤ 𝑚, which results in a makespan of 1,

while the optimal integral solution has a makespan of 𝑚.

min 𝑡 (∗)

s. t. ෍

𝑖∈𝑀

𝑥𝑖,𝑗 = 1, ∀ 𝑗 ∈ 𝐽,

෍

𝑗∈𝐽

𝑝𝑖,𝑗 ⋅ 𝑥𝑖,𝑗 ≤ 𝑡, ∀𝑖 ∈ 𝑀,

𝑡 ≥ 0,

𝑥𝑖,𝑗 ≥ 0, ∀ 𝑖 ∈ 𝑀, 𝑗 ∈ 𝐽.

1/𝑚

1/𝑚

𝑗machine 1

𝑗machine m

The problem is that, we allow jobs to be assigned

to machines which has strictly less completion time than

the job’s processing time on that machine.

Consider the following example.

Suppose that we have 𝑚 machines and

one job 𝑗 with 𝑝𝑖,𝑗 = 𝑚 for all 1 ≤ 𝑖 ≤ 𝑚.

The optimal fractional solution for (*)

will set 𝑥𝑖,𝑗 = 1/𝑚 for all 1 ≤ 𝑖 ≤ 𝑚, which results in a makespan of 1,

while the optimal integral solution has a makespan of 𝑚.

The situation can be avoid, if we add the constraint to the relaxation :

∀𝑖 ∈ 𝑀, 𝑗 ∈ 𝐽 ∶ if 𝑝𝑖,𝑗 > 𝑡, then 𝑥𝑖,𝑗 = 0.

However, this is not a linear constraint.

1/𝑚

1/𝑚

𝑗machine 1

𝑗machine m

The problem is that, we allow jobs to be assigned

to machines which has strictly less completion time than

the job’s processing time on that machine.

Can we strengthen the LP?

Parametric Search for Machine Scheduling

■ In the following, we develop a parametric search process for this problem.

■ Let 𝑡∗ denote the optimal makespan and 𝑇 ∈ ℤ+ be a guess for 𝑡∗.

– Then, we know that, for any 𝑇 ≥ 𝑡∗, no assignments will be made

between any 𝑖 ∈ 𝑀, 𝑗 ∈ 𝐽 with 𝑝𝑖,𝑗 > 𝑇 in the optimal schedule.

– Let

𝑆𝑇 ≔ 𝑖, 𝑗 ∶ 𝑖 ∈ 𝑀, 𝑗 ∈ 𝐽 , 𝑝𝑖,𝑗 ≤ 𝑇

denote the pairs between which the assignments are allowed w.r.t. the guess T.

■ Let 𝑡∗ denote the optimal makespan and 𝑇 ∈ ℤ+ be a guess for 𝑡∗.

– Let 𝑆𝑇 ≔ 𝑖, 𝑗 ∶ 𝑖 ∈ 𝑀, 𝑗 ∈ 𝐽 , 𝑝𝑖,𝑗 ≤ 𝑇

denote the pairs between which the assignments are allowed w.r.t. the guess 𝑇 .

■ Then we have the modified feasibility LP defined for each possible 𝑇.

– Any integral solution is contained as a feasible solution

in one of these LPs.

– For any 𝑇 ≥ 𝑡∗,

LP-(T) is guaranteed to be feasible.

Conversely, whenever LP-(T) is

infeasible, then 𝑇 < 𝑡∗ must hold.

෍

𝑖∶(𝑖,𝑗)∈𝑆𝑇

𝑥𝑖,𝑗 = 1, ∀ 𝑗 ∈ 𝐽, LP−(𝑇)

෍

𝑗∶(𝑖,𝑗)∈𝑆𝑇

𝑝𝑖,𝑗 ⋅ 𝑥𝑖,𝑗 ≤ 𝑇, ∀𝑖 ∈ 𝑀,

𝑥𝑖,𝑗 ≥ 0, ∀ 𝑖, 𝑗 ∈ 𝑆𝑇 .

■ Then we have the modified feasibility LP defined for each possible 𝑇.

– Any integral solution is contained as a feasible solution

in one of these LPs.

– For any 𝑇 ≥ 𝑡∗, LP-(T) is guaranteed to be feasible.

Conversely, whenever LP-(T) is infeasible, then 𝑇 < 𝑡∗ must hold.

– Under the parametric search

framework, it suffices to show that,

whenever LP-(T) is feasible,

we can always round the solution

properly.

෍

𝑖∶(𝑖,𝑗)∈𝑆𝑇

𝑥𝑖,𝑗 = 1, ∀ 𝑗 ∈ 𝐽, LP−(𝑇)

෍

𝑗∶(𝑖,𝑗)∈𝑆𝑇

𝑝𝑖,𝑗 ⋅ 𝑥𝑖,𝑗 ≤ 𝑇, ∀𝑖 ∈ 𝑀,

𝑥𝑖,𝑗 ≥ 0, ∀ 𝑖, 𝑗 ∈ 𝑆𝑇 .

Parametric Search for Machine Scheduling

■ We will derive a rounding process for LP-(T) such that the resulting

makespan is at most 2𝑇.

– Then, we can apply binary search to find the smallest 𝑇 for which LP-(T)

is feasible, and it follows that 𝑇 ≤ 𝑡∗.

Then applying the rounding process

gives us a 2-approximation.
෍

𝑖∶(𝑖,𝑗)∈𝑆𝑇

𝑥𝑖,𝑗 = 1, ∀ 𝑗 ∈ 𝐽, LP−(𝑇)

෍

𝑗∶(𝑖,𝑗)∈𝑆𝑇

𝑝𝑖,𝑗 ⋅ 𝑥𝑖,𝑗 ≤ 𝑇, ∀𝑖 ∈ 𝑀,

𝑥𝑖,𝑗 ≥ 0, ∀ 𝑖, 𝑗 ∈ 𝑆𝑇 .

The Extreme Point Structure for LP-(T)

Extreme Point Solutions

for LP-(T)

■ The intuition here is that, although

LP-(T) may have a number of variables,

it has only a linear number of nontrivial constraints.

– i.e., it has only 𝐽 + |𝑀| constraints bounding the variables

in a nontrivial way.

– Hence, only a linear number of non-trivial variables can be defined at

the extreme points of this LP.

In other words, most of the variables must be set zero there.

– Let 𝑛 = |𝐽| and 𝑚 = |𝑀|.

෍

𝑖∶(𝑖,𝑗)∈𝑆𝑇

𝑥𝑖,𝑗 = 1, ∀ 𝑗 ∈ 𝐽, LP− 𝑇

෍

𝑗∶(𝑖,𝑗)∈𝑆𝑇

𝑝𝑖,𝑗 ⋅ 𝑥𝑖,𝑗 ≤ 𝑇, ∀𝑖 ∈ 𝑀,

𝑥𝑖,𝑗 ≥ 0, ∀ 𝑖, 𝑗 ∈ 𝑆𝑇 .

■ Lemma 3 is a formal statement of

the intuitions in the previous slide.

■ The proof is straightforward.

– Consider any extreme point solution of LP-(T) and

the invertible matrix obtained from LP-(T) at that point.

– At most 𝐽 + 𝑀 = 𝑛 +𝑚 nontrivial constraints can be selected to form

the invertible matrix.

Hence, the remaining constraints are from 𝑥𝑖,𝑗 ≥ 0 and will set the

corresponding variables to zero.

෍

𝑖∶(𝑖,𝑗)∈𝑆𝑇

𝑥𝑖,𝑗 = 1, ∀ 𝑗 ∈ 𝐽, LP− 𝑇

෍

𝑗∶(𝑖,𝑗)∈𝑆𝑇

𝑝𝑖,𝑗 ⋅ 𝑥𝑖,𝑗 ≤ 𝑇, ∀𝑖 ∈ 𝑀,

𝑥𝑖,𝑗 ≥ 0, ∀ 𝑖, 𝑗 ∈ 𝑆𝑇 .

Lemma 3.

Any extreme point solution to LP-(T) has

at most 𝑛 + 𝑚 nonzero variables.

■ The following is a direct corollary of

Lemma 3.

■ Intuitively, Corollary 4 says that, at most 𝑚 jobs are fractionally assigned.

– The integrally-assigned jobs have a makespan of at most 𝑇.

– Each of the fractionally-assigned jobs will contribute a makespan of

at most 𝑇. (Since 𝑥𝑖,𝑗 > 0 implies that 𝑝𝑖,𝑗 ≤ 𝑇.)

We will show that, there exists a matching from the fractionally-assigned

jobs to the machines, and hence, those jobs can be properly assigned.

෍

𝑖∶(𝑖,𝑗)∈𝑆𝑇

𝑥𝑖,𝑗 = 1, ∀ 𝑗 ∈ 𝐽, LP− 𝑇

෍

𝑗∶(𝑖,𝑗)∈𝑆𝑇

𝑝𝑖,𝑗 ⋅ 𝑥𝑖,𝑗 ≤ 𝑇, ∀𝑖 ∈ 𝑀,

𝑥𝑖,𝑗 ≥ 0, ∀ 𝑖, 𝑗 ∈ 𝑆𝑇 .

Corollary 4.

Any extreme point solution to LP-(T) must

assign at least 𝑛 −𝑚 jobs integrally.

■ The following is a direct corollary of

Lemma 3.

■ The proof of Corollary 4 is also simple.

See the lecture note for the details.

෍

𝑖∶(𝑖,𝑗)∈𝑆𝑇

𝑥𝑖,𝑗 = 1, ∀ 𝑗 ∈ 𝐽, LP− 𝑇

෍

𝑗∶(𝑖,𝑗)∈𝑆𝑇

𝑝𝑖,𝑗 ⋅ 𝑥𝑖,𝑗 ≤ 𝑇, ∀𝑖 ∈ 𝑀,

𝑥𝑖,𝑗 ≥ 0, ∀ 𝑖, 𝑗 ∈ 𝑆𝑇 .

Corollary 4.

Any extreme point solution to LP-(T) must

assign at least 𝑛 −𝑚 jobs integrally.

The Assignment Graphs and Properties

The Assignment Graph 𝐺 and 𝐻

■ Let 𝒙 be an extreme point solution for LP-(T).

Define the bipartite graph 𝐺 = (𝐽,𝑀, 𝐸) with partite set 𝐽 and 𝑀 such that

𝑗, 𝑖 ∈ 𝐸 if and only if 𝑥𝑖,𝑗 ≠ 0.

Let 𝐹 ⊆ 𝐽 be the set of jobs that are fractionally assigned in 𝒙, and

𝐻 be the subgraph of 𝐺 induced by 𝐹 ∪ 𝑀.

𝐽

𝐹

𝑀

𝑮

𝐹

𝑀

𝑯

■ Let 𝒙 be an extreme point solution for LP-(T).

Define the bipartite graph 𝐺 = (𝐽,𝑀, 𝐸) with partite set 𝐽 and 𝑀 such that

𝑗, 𝑖 ∈ 𝐸 if and only if 𝑥𝑖,𝑗 ≠ 0.

Let 𝐹 ⊆ 𝐽 be the set of jobs that are fractionally assigned in 𝒙, and

𝐻 be the subgraph of 𝐺 induced by 𝐹 ∪ 𝑀.

𝐽

𝐹

𝑀

𝑮

𝐹

𝑀

𝑯
We will show that,

there is a matching

from jobs in 𝑭 to 𝑴.

Then, we get

a schedule with

makespan ≤ 2𝑇.

Jobs in 𝐽 − F have degree 1 in 𝐺 and

contribute a total makespan of ≤ 𝑇.

Each edge (𝑗, 𝑖) in 𝐻 satisfies 𝑝𝑖,𝑗 ≤ 𝑇.

Provided that there exists a matching to M exists,

they will contribute a total makespan of ≤ 𝑇.

𝐺 and 𝐻 are Pseudo-Forests.

■ We say that a connected graph with vertex set 𝑉 is a pseudo-tree

if it has at most 𝑉 edges.

– i.e., it is either a tree, or a tree plus one edge.

■ We say that a graph is a pseudo-forest if each of its connected components

is a pseudo-tree.

■ Consider each connected component in 𝐺.

– We will argue that it’s a pseudo-tree.

𝐽

𝐹

𝑀

𝑮Lemma 5.

𝐺 is a pseudo-forest.

■ Consider any connected component, say, 𝐶, in 𝐺.

– Consider the variables and constraints

to which 𝐶 corresponds.

Denote the sub-LP by LP-(𝑇)𝐶.

Clearly,

the solution 𝒙 restricted to 𝐶, 𝒙|𝐶, must also be extreme for LP-(𝑇)𝐶.

– Hence, 𝐶 has an equal number of vertices and edges and

is a pseudo-tree.

■ Since 𝐻 is obtained by removing some degree-1 vertices from 𝐺,

it is also a pseudo-forest.

𝑪
Lemma 5.

𝐺 is a pseudo-forest.

𝐻 has a perfect matching (for 𝐹 to 𝑀).

■ We have shown that 𝐻 is a pseudo-forest.

– Since each job vertex in 𝐻 has degree at least 2,

we know that all the leaf vertices in 𝐻 are machine vertices.

■ The idea is to keep matching a leaf machine vertex with

its parent job vertex, and then remove both from the graph.

𝐹

𝑀

𝑯

M

J

M
M

M
M

M

J

J

J

J J

M

M

M M

– Since each job vertex in 𝐻 has degree at least 2,

we know that all the leaf vertices in 𝐻 are machine vertices.

■ We repeat the following process until no more leaf vertex is left.

– Pick a leaf machine vertex and match it with its parent job vertex.

– Remove both vertices from the graph.

Remove isolated vertices.

■ Since this process does not change the degree of any other job vertex,

the remaining leaf vertices are still machine vertices, 𝐻 is still pseudo-forest.

𝐹

𝑀

𝑯

M

J

M
M

M
M

M

J

J

J

J J

M

M

M M

■ We repeat the following process until no more leaf vertex is left.

– Pick a leaf machine vertex and match it with its parent job vertex.

– Remove both vertices from the graph.

Remove isolated vertices.

■ When this process ends,

𝐻 is left with even cycles, which can be perfectly matched.

𝐹

𝑀

𝑯

M
M

J

J

Lemma 6.

𝐻 has a perfect matching for 𝐹 to 𝑀.

The Rounding Algorithm 𝒜

Rounding the Extreme Point Solutions for LP-(T)

■ The rounding algorithm 𝒜 goes as follows.

– Input: a basic feasible (extreme point) solution 𝒙 for LP-(T)

– Output: a schedule with makespan at most 2𝑇

1. Assign all the jobs in 𝐽 − 𝐹 according to 𝑥.

2. Construct the graph 𝐻 and compute a perfect matching from 𝐹 to 𝑀.

Assign the jobs in 𝐹 according to the matching 𝑀.

3. Output the resulting schedule.

This contributes a makespan

of ≤ 𝑇.

This also contributes a makespan

of ≤ 𝑇, since each machine gets

at most one job with 𝑝𝑖,𝑗 ≤ 𝑇.

The 2-approximation algorithm for

Unrelated Machine Scheduling

The 2-Approximation Algorithm

■ The algorithm goes as follows.

1. Apply binary search on 0, σ𝑖,𝑗 𝑝𝑖,𝑗 to find the smallest 𝑇

such that LP-(T) is feasible.

2. Compute an extreme point solution 𝒙 for LP-(T).

3. Apply rounding algorithm 𝒜 on 𝒙 and

output the resulting schedule.

This guarantees that 𝑇 ≤ 𝑡∗.

The output has a makespan of at most 2𝑇 ≤ 2𝑡∗.

