
Introduction to

Approximation Algorithms

Mong-Jen Kao (高孟駿)

Friday 14:20 – 17:20

Outline

■ Approximation Algorithm

– What is it and Why?

■ Our First Example

– The Max-3SAT Problem

– Supplementary Material for Max-3SAT

■ General Goal of this Course

Approximation Algorithm –

What is it and Why?

The Big Theme

■ Most important combinatorial optimization problems are known to

be NP-hard.

– That says, it is unlikely that we can compute their optimal

solutions efficiently in polynomial-time,

unless P = NP, which is conjectured & widely believed to be untrue.

– In fact, only very few practical optimization problems can be

solved efficiently in polynomial time.

■ To cope with this unsatisfying fact,

when quitting the hard problems is unfortunately not an option…

1. Derive more clever algorithms, and

live with the super-polynomial running time,

2. Identify special parameters known to be small (in practice) and

derive fixed-parameter tractable (FPT) algorithms.

We will cover this topic in “Topics in Intractable Problems and

Complexity” next semester (hopefully).

What can we do ?

■ To cope with this unsatisfying fact,

when quitting the hard problems is unfortunately not an option…

3. Derive efficient (polynomial-time) algorithms that computes

near-optimal solutions,

i.e., the approximation algorithms.

Natural questions to raise:

■ How do we measure the quality of the solution computed?

■ What is the best guarantee we can make?

What can we do ?

■ To compute a near-optimal solution efficiently…

A feasible solution S

for I

Input instance I of

an optimization

problem Π

Approximation

Algorithm for Π

The value of (unknown)

optimal solution for I

The value of S

We want the relative difference between them to be small.

First Example –

The Max-3SAT Problem

The Max-3SAT Problem

■ Given a Boolean formula in 3-CNF (conjunctive normal form),

what is the maximum number of clauses that can be satisfied

simultaneously?

Clause 𝐶1

Φ = 𝑥2 ∨ 𝑥3 ∨ 𝑥4 ∧ 𝑥2 ∨ 𝑥3 ∨ 𝑥4 ∧ 𝑥1 ∨ 𝑥2 ∨ 𝑥4 ∧ …

𝐶2 𝐶3 𝑥𝑖 ∈ { 0, 1 }

false / true

The Max-3SAT Problem

■ For example,

– Setting 𝑥1, 𝑥2, 𝑥3, 𝑥4 = (0,0,1,1) satisfies 𝐶2, 𝐶3, 𝐶4.

𝐶1 = 𝑥2 ∨ 𝑥3 ∨ 𝑥4

𝐶2 = 𝑥2 ∨ 𝑥3 ∨ 𝑥4

𝐶3 = 𝑥1 ∨ 𝑥2 ∨ 𝑥4

𝐶4 = 𝑥1 ∨ 𝑥2 ∨ 𝑥3

The Max-3SAT Problem

■ Input:

– Boolean variables 𝑥1, 𝑥2, … , 𝑥𝑛.

– Boolean formula Φ = 𝐶1, 𝐶2, … , 𝐶𝑚 , where

𝐶𝑖 = 𝑦𝑖,1, 𝑦𝑖,2, 𝑦𝑖,3 , 𝑦𝑖,𝑗 ∈ 𝑥𝜎𝑖 𝑗 , ҧ𝑥𝜎𝑖 𝑗 .

■ Goal:

– Compute a truth assignment of 𝑥1, 𝑥2, … , 𝑥𝑛 that satisfies the

maximum umber of clauses in Φ.

Status of MAX-3SAT

■ Unsurprisingly, the MAX-3SAT problem is NP-hard to solve.

■ In fact, Max-3SAT is the optimization version of the 3-SAT problem,

a classic NP-hard decision problem.

– In 3-SAT, we ask “Is 𝜱 satisfiable?“

That is,

“Is there a truth assignment that satisfies all the clauses in Φ? ”

Decision Problem

(Yes / No)

Decision Problem

(Yes / No)

Status of MAX-3SAT

■ The Max-3SAT is the optimization version of the 3-SAT problem.

– In Max-3SAT, the philosophy is

“ Provided that 𝛷 is not satisfiable,

what is the maximum number of clauses we can satisfy? ”

■ Since Max-3SAT can be used to answer 3-SAT,

it must be NP-hard to solve as well.

We say that, 3-SAT ∝ (is reducible to) Max-3SAT.

Some Remarks

■ The following conjecture was made in 1999:

– This is a stronger statement than P ≠ NP.

– This hypothesis is unproven but widely believed to be true.

Exponential Time Hypothesis (ETH). [Impagliazzo, Paturi, 1999].

The 3-SAT problem cannot be solved in subexponential time

in the worst case.

A Simple Approximation Algorithm

for Max-3SAT

Flip a fair coin and let it decide!

A randomized algorithm

■ Let 𝐼 = 𝑥𝑖 1≤𝑖≤𝑛, Φ = 𝐶𝑗 1≤𝑗≤𝑚
be an instance of Max 3-SAT.

■ Consider the following algorithm:

1. For each 1 ≤ 𝑖 ≤ 𝑛,

set 𝑥𝑖 to be true with probability
1

2
.

2. Output 𝑥1, 𝑥2, … , 𝑥𝑛 .

How well does this algorithm perform?

The Analysis

■ Consider the following algorithm:

■ Let 𝑋𝑗 = ቊ
1, if clause 𝐶𝑗 is satisfied,

0, otherwise.

■ Then, Pr 𝑋𝑗 = 1 = 1 −
1

2

3
=

7

8
and 𝐸 ∑𝑋𝑗 =

7

8
𝑚.

1. For each 1 ≤ 𝑖 ≤ 𝑛, set 𝑥𝑖 to be true with probability
1

2
.

2. Output 𝑥1, 𝑥2, … , 𝑥𝑛 .

This algorithm can be derandomized to run

deterministically. We will see this later.

The Analysis

■ Let 𝑂𝑃𝑇𝐼 be the optimal value of the instance 𝐼.

■ Then,

𝐸 ∑𝑋𝑗 =
7

8
𝑚 ≥

7

8
𝑂𝑃𝑇𝐼 .

■ The simple algorithm always guarantees an assignment that performs

at least Τ7 8 fraction of what an optimal solution does.

■ It is called a Τ𝟕 𝟖-approximation algorithm for MAX-3SAT.

Since 𝑂𝑃𝑇𝐼 ≤ 𝑚

Notes

■ An 𝛼-approximation algorithm 𝒜 for Max-3SAT guarantees that

Val 𝒜 I ≥ 𝛼 ⋅ Val 𝑂𝑃𝑇𝐼

holds for all input instance 𝐼 of Max-3SAT.

■ We have just seen a simple randomized Τ7 8-approximation

algorithm, which can also be derandomized.

– It means that, 𝛼 = Τ7 8 is possible to achieve.

– So, a very natural question is…

Larger 𝛼 means

better

approximation guarantee.

Can We Do Better than Τ7 8 ?

The Largest 𝛼 Achievable for MAX-3SAT

The value of 𝛼,

towards better approx. for Max-3SAT

0 𝟏𝟕

𝟖
𝛼

Possible Not Possible
???

Implied by

NP-hardness of

MAX-3SAT

Implied by

Our algorithm

Inapproximability Result of MAX-3SAT

■ It means, for any 𝛼 > Τ7 8,

𝛼-approximation algorithm for MAX-3SAT is unlikely to exist.

■ The simple randomized algorithm is the best possible.

Theorem. [Håstad, Johnson, 2001].

It is NP-hard to approximate MAX-3SAT to a ratio better than
7

8
+ 𝜖 ,

for any 𝜖 > 0.

We will see the proof

next semester (hopefully).

■ To cope with this unsatisfying fact,

when quitting the hard problems is unfortunately not an option…

3. Derive efficient (polynomial-time) algorithms that computes

near-optimal solutions,

i.e., the approximation algorithms.

Natural questions to raise:

■ How do we measure the quality of the solution computed?

■ What is the best guarantee we can make?

What can we do ?

Let’s take a break.

Supplements

for the Max-3SAT Problem.

Deterministic

Τ7 8-approximation for Max-3SAT

Derandomizing via Conditional Expectation

■ Consider the simple randomized algorithm for Max-3SAT:

■ We have shown that,

𝐸 ෍

1≤𝑖≤𝑚

𝑋𝑖 ≥
7

8
𝑂𝑃𝑇𝐼 .

1. For each 1 ≤ 𝑖 ≤ 𝑛, set 𝑥𝑖 to be true with probability
1

2
.

2. Output 𝑥1, 𝑥2, … , 𝑥𝑛 .

Derandomizing via Conditional Expectation

■ By the definition of conditional expectation,

we have

𝐸 ෍

1≤𝑖≤𝑚

𝑋𝑖 = ෍

𝑘∈{0,1}

Pr 𝑥1 = 𝑘 ⋅ 𝐸 ቮ෍

1≤𝑖≤𝑚

𝑋𝑖 𝑥1 = 𝑘 .

■ Hence,

max
𝑘∈{0,1}

𝐸 ቮ෍

1≤𝑖≤𝑚

𝑋𝑖 𝑥1 = 𝑘 ≥ 𝐸 ෍

1≤𝑖≤𝑚

𝑋𝑖 .

■ For example, consider the following example:

– We have 𝐸 𝑋3 𝑥1 = 0 = 1 and 𝐸 𝑋3 𝑥1 = 1 =
3

4
.

– Similarly, 𝐸 𝑋1 𝑥1 = 0 = 𝐸 𝑋1 𝑥1 = 1 =
7

8
.

– So, 𝐸 ∑𝑋𝑖 𝑥1 = 0 =
15

4
, 𝐸 ∑𝑋𝑖 𝑥1 = 1 =

13

4
, while 𝐸 ∑𝑋𝑖 =

7

2
.

𝐶1 = 𝑥2 ∨ 𝑥3 ∨ 𝑥4

𝐶2 = 𝑥2 ∨ 𝑥3 ∨ 𝑥4

𝐶3 = 𝑥1 ∨ 𝑥2 ∨ 𝑥4

𝐶4 = 𝑥1 ∨ 𝑥2 ∨ 𝑥3

Derandomizing via Conditional Expectation

■ Continuing with the same argument, we obtain

max
𝑘∈{0,1}

𝐸 ቮ෍

1≤𝑖≤𝑚

𝑋𝑖 𝑥1, 𝑥2, … , 𝑥𝑗−1, 𝑥𝑗 = 𝑘

≥ 𝐸 ቮ෍

1≤𝑖≤𝑚

𝑋𝑖 𝑥1, 𝑥2, … , 𝑥𝑗−1

for all 1 ≤ 𝑗 < 𝑚.

Derandomizing via Conditional Expectation

■ This leads to the following simple algorithm:

– Consider the variables in any order, say, 𝑥1, 𝑥2, … , 𝑥𝑛.

For each variable,

use the value that gives the better conditional expectation.

𝐸 ห∑1≤𝑖≤𝑚𝑋𝑖 𝑥1, … , 𝑥𝑖−1 , 𝒙𝒊 = 𝟎 > 𝐸 ห∑1≤𝑖≤𝑚𝑋𝑖 𝑥1, … , 𝑥𝑖−1 , 𝒙𝒊 = 𝟏
?

Derandomizing via Conditional Expectation

■ This leads to the following algorithm:

1. For each 1 ≤ 𝑖 ≤ 𝑛, do

▪ Let 𝐶 = {𝑥1, 𝑥2, … , 𝑥𝑖−1}.

▪ If 𝐸 ห∑1≤𝑖≤𝑚𝑋𝑖 𝐶, 𝒙𝒊 = 𝟎 > 𝐸 ห∑1≤𝑖≤𝑚𝑋𝑖 𝐶, 𝒙𝒊 = 𝟏 , then

𝑥𝑖 ⟵ 0.

else

𝑥𝑖 ⟵ 1.

2. Output 𝑥1, 𝑥2, … , 𝑥𝑛 .

Derandomizating via Conditional Expectation

■ Clearly, this algorithm is deterministic and

outputs a solution with value at least
7

8
⋅ 𝑂𝑃𝑇𝐼.

Johnson’s

Τ7 8-approximation for Max-3SAT

Another Simple Τ7 8-approximation Algorithm

■ For the Max-3SAT problem, we know that, the expected value is

already large by uniform random assignment.

■ This suggests the following simple algorithm:

– Repeatedly generate a random assignment until at least
7

8
𝑚

clauses are satisfied.

Repeatedly flip the coins until we succeed!

Running Time of this Algorithm

■ Clearly, we have a Τ7 8-approximation when this algorithm terminates.

■ In the following, we bound its running time.

– Consider one round of the algorithm.

– Let 𝑝𝑗 be the probability that exactly 𝑗 clauses are satisfied, and

𝑝 be the probability that at least
7

8
𝑚 clauses are satisfied.

Lemma 1.
𝑝 ≥ Τ1 8𝑚 .

𝑝 is the probability that

we succeed in each round.

■ We have

7

8
𝑚 = 𝐸 ∑𝑋𝑖 = ෍

1≤𝑗≤𝑚

𝑗 ⋅ 𝑝𝑗 = ෍

0≤𝑗<
7
8𝑚

𝑗 ⋅ 𝑝𝑗 + ෍
7
8𝑚≤𝑗≤𝑚

𝑗 ⋅ 𝑝𝑗

≤
7

8
𝑚 −

1

8
⋅ ෍

0≤𝑗<
7
8𝑚

𝑝𝑗 + 𝑚 ⋅ ෍
7
8𝑚≤𝑗≤𝑚

𝑝𝑗

≤
7

8
𝑚 −

1

8
⋅ 1 + 𝑚 ⋅ 𝑝 .

■ Solving for 𝑝 gives 𝑝 ≥ 1/8𝑚.

Lemma 1.
𝑝 ≥ Τ1 8𝑚 .

𝑝 is the probability that

we succeed in each round.

𝑗 ≤
7

8
𝑚 −

1

8
𝑗 ≤ 𝑚

Q: Can you point out where

the slack comes from? :)

■ Lemma 1 says that,

each round of the algorithm has a fair chance to succeed.

■ Let 𝑁 be the number of rounds the algorithm takes.

Then,

Pr 𝑁 = 𝑗 = 1 − 𝑝 𝑗−1 ⋅ 𝑝 .

Lemma 1.
𝑝 ≥ Τ1 8𝑚 .

𝑝 is the probability that

we succeed in each round.

This is the geometric distribution!

■ Let 𝑁 be the number of rounds the algorithm takes.

Then,

Pr 𝑁 = 𝑗 = 1 − 𝑝 𝑗−1 ⋅ 𝑝 .

■ We have

𝐸 𝑁 = ෍

𝑗≥1

𝑗 ⋅ Pr 𝑁 = 𝑗 = ෍

𝑗≥1

𝑗 ⋅ 𝑝 1 − 𝑝 𝑗−1

= −𝑝 ⋅
d

d𝑝
෍

𝑗≥1

1 − 𝑝 𝑗 = −𝑝 ⋅
d

d𝑝

1

𝑝
=

1

𝑝
= 8𝑚.

This is the geometric distribution!

0 ≤ 𝑝 ≤ 1,

so, the series converges to 1/𝑝.

Notes

■ In the analysis, only the assumption 𝐸 ∑𝑋𝑖 = 𝑐′ ⋅ 𝑚 for some 𝑐′ > 0 is

used to prove the 𝑂(𝑚) bound on the number of rounds.

