Introduction to Approximation Algorithms

Mong-Jen Kao (高孟駿)

Friday 14:20 – 17:20

Outline

- Approximation Algorithm
 - What is it and Why?
- Our First Example
 - The Max-3SAT Problem
 - Supplementary Material for Max-3SAT
- General Goal of this Course

Approximation Algorithm –

What is it and Why?

The Big Theme

Most important combinatorial optimization problems are known to be <u>NP-hard</u>.

- That says, it is <u>unlikely</u> that we can compute their optimal solutions <u>efficiently in polynomial-time</u>,
 - unless P = NP, which is conjectured & widely believed to be untrue.
- In fact, only very few practical optimization problems can be solved efficiently in polynomial time.

What can we do?

- To cope with this unsatisfying fact,
 when quitting the hard problems is unfortunately not an option...
 - 1. Derive more clever algorithms, and live with the **super-polynomial running time**,
 - 2. Identify special parameters known to be small (in practice) and derive **fixed-parameter tractable (FPT) algorithms**.

We will cover this topic in "<u>Topics in Intractable Problems and Complexity</u>" next semester (*hopefully*).

What can we do?

■ To cope with this unsatisfying fact,

when quitting the hard problems is unfortunately not an option...

3. Derive *efficient* (*polynomial-time*) *algorithms* that computes *near-optimal solutions*,

i.e., the *approximation algorithms*.

Natural questions to raise:

- How do we *measure the quality of the solution computed*?
- What is *the best guarantee* we can make?

■ To compute a **near-optimal solution** *efficiently*...

First Example –

The Max-3SAT Problem

The Max-3SAT Problem

Given a Boolean formula in <u>3-CNF</u> (conjunctive normal form), what is the *maximum number of clauses* that can be *satisfied* simultaneously?

$$\Phi = \begin{pmatrix} x_2 \vee \overline{x_3} \vee \overline{x_4} \end{pmatrix} \wedge \begin{pmatrix} x_2 \vee x_3 \vee \overline{x_4} \end{pmatrix} \wedge \begin{pmatrix} \overline{x_1} \vee x_2 \vee x_4 \end{pmatrix} \wedge \dots$$

$$Clause C_1 \qquad C_2 \qquad C_3 \qquad x_i \in \{0,1\}$$

The Max-3SAT Problem

■ For example,

$$C_{1} = (x_{2} \lor \overline{x_{3}} \lor \overline{x_{4}})$$

$$C_{2} = (x_{2} \lor x_{3} \lor \overline{x_{4}})$$

$$C_{3} = (\overline{x_{1}} \lor x_{2} \lor x_{4})$$

$$C_{4} = (\overline{x_{1}} \lor \overline{x_{2}} \lor x_{3})$$

- Setting $(x_1, x_2, x_3, x_4) = (0,0,1,1)$ satisfies C_2, C_3, C_4 .

The Max-3SAT Problem

■ Input:

- Boolean variables $x_1, x_2, ..., x_n$.
- Boolean formula $\Phi = \{C_1, C_2, ..., C_m\}$, where

$$C_i = \{y_{i,1}, y_{i,2}, y_{i,3}\}, \qquad y_{i,j} \in \{x_{\sigma_i(j)}, \bar{x}_{\sigma_i(j)}\}.$$

■ Goal:

- Compute a truth assignment of $x_1, x_2, ..., x_n$ that satisfies the maximum umber of clauses in Φ .

Status of MAX-3SAT

- Unsurprisingly, the MAX-3SAT problem is NP-hard to solve.
- In fact, Max-3SAT is the <u>optimization version</u> of the 3-SAT problem, a classic NP-hard <u>decision</u> problem.
 - In 3-SAT, we ask "Is Φ satisfiable?"

Decision Problem (Yes / No)

That is,

"Is there a truth assignment that satisfies all the clauses in Φ ?"

Status of MAX-3SAT

- The Max-3SAT is the *optimization version* of the 3-SAT problem.
 - In Max-3SAT, the philosophy is
 - " Provided that Φ is not satisfiable, what is the maximum number of clauses we can satisfy?"

■ Since Max-3SAT can be used to answer 3-SAT, it must be NP-hard to solve as well.

We say that, 3-SAT \propto (is reducible to) Max-3SAT.

Some Remarks

■ The following conjecture was made in 1999:

Exponential Time Hypothesis (ETH). [Impagliazzo, Paturi, 1999].

The 3-SAT problem cannot be solved in subexponential time in the worst case.

- This is a stronger statement than $P \neq NP$.
- This hypothesis is unproven but widely believed to be true.

A Simple Approximation Algorithm

for Max-3SAT

A randomized algorithm

■ Let
$$I = \left(\{x_i\}_{1 \le i \le n}, \Phi = \{C_j\}_{1 \le j \le m} \right)$$
 be an instance of Max 3-SAT.

Consider the following algorithm:

- 1. For each $1 \le i \le n$, set x_i to be true with probability $\frac{1}{2}$.
- 2. Output $(x_1, x_2, ..., x_n)$.

How well does this algorithm perform?

The Analysis

This algorithm can be <u>derandomized</u> to run *deterministically*. We will see this later.

Consider the following algorithm:

- 1. For each $1 \le i \le n$, set x_i to be true with probability $\frac{1}{2}$.
- 2. Output $(x_1, x_2, ..., x_n)$.

- Let $X_j = \begin{cases} 1, & \text{if clause } C_j \text{ is satisfied,} \\ 0, & \text{otherwise.} \end{cases}$
- Then, $\Pr[X_j = 1] = 1 \left(\frac{1}{2}\right)^3 = \frac{7}{8}$ and $E[\sum X_j] = \frac{7}{8}m$.

The Analysis

- Let OPT_I be the optimal value of the instance I.
- Then,

$$E[\Sigma X_j] = \frac{7}{8}m \geq \frac{7}{8}OPT_I$$
. Since $OPT_I \leq m$

- The simple algorithm always guarantees an assignment that performs at least 7/8 fraction of what an optimal solution does.
- It is called a <u>7/8-approximation algorithm</u> for MAX-3SAT.

Notes

Larger α means better approximation guarantee.

■ An α -approximation algorithm \mathcal{A} for Max-3SAT guarantees that

$$Val(\mathcal{A}(I)) \geq \alpha \cdot Val(OPT_I)$$

holds for all input instance *I* of Max-3SAT.

- We have just seen a simple randomized 7/8-approximation algorithm, which can also be derandomized.
 - It means that, $\alpha = 7/8$ is possible to achieve.
 - So, a very natural question is...

Can We Do Better than 7/8?

The Largest α Achievable for MAX-3SAT

Inapproximability Result of MAX-3SAT

Theorem. [Håstad, Johnson, 2001].

We will see the proof next semester (hopefully).

It is *NP-hard* to approximate MAX-3SAT to a ratio better than $\left(\frac{7}{8} + \epsilon\right)$, for any $\epsilon > 0$.

- It means, for any $\alpha > 7/8$, α -approximation algorithm for MAX-3SAT is unlikely to exist.
- The simple randomized algorithm is the best possible.

What can we do?

■ To cope with this unsatisfying fact,

when quitting the hard problems is unfortunately not an option...

3. Derive *efficient* (*polynomial-time*) *algorithms* that computes *near-optimal solutions*,

i.e., the approximation algorithms.

Natural questions to raise:

- How do we *measure the quality of the solution computed*?
- What is *the best guarantee* we can make?

Let's take a break.

Supplements

for the Max-3SAT Problem.

Deterministic

7/8-approximation for Max-3SAT

■ Consider the simple randomized algorithm for Max-3SAT:

- 1. For each $1 \le i \le n$, set x_i to be true with probability $\frac{1}{2}$.
- 2. Output $(x_1, x_2, ..., x_n)$.

$$E\left[\sum_{1\leq i\leq m}X_i\right]\geq \frac{7}{8}OPT_I.$$

■ By the definition of conditional expectation,

we have

$$E\left[\sum_{1\leq i\leq m}X_i\right] = \sum_{k\in\{0,1\}}\left(\Pr[x_1=k]\cdot E\left[\sum_{1\leq i\leq m}X_i\middle|x_1=k\right]\right).$$

■ Hence,

$$\max_{k \in \{0,1\}} \left(E\left[\sum_{1 \le i \le m} X_i \middle| x_1 = k \right] \right) \ge E\left[\sum_{1 \le i \le m} X_i \right].$$

For example, consider the following example:

$$C_1 = (x_2 \lor \overline{x_3} \lor \overline{x_4}) \qquad C_3 = (\overline{x_1} \lor x_2 \lor x_4)$$

$$C_2 = (x_2 \lor x_3 \lor \overline{x_4}) \qquad C_4 = (\overline{x_1} \lor \overline{x_2} \lor x_3)$$

- We have $E[X_3 | x_1 = 0] = 1$ and $E[X_3 | x_1 = 1] = \frac{3}{4}$.
- Similarly, $E[X_1 | x_1 = 0] = E[X_1 | x_1 = 1] = \frac{7}{8}$.
- So, $E[\sum X_i \mid x_1 = 0] = \frac{15}{4}$, $E[\sum X_i \mid x_1 = 1] = \frac{13}{4}$, while $E[\sum X_i] = \frac{7}{2}$.

Continuing with the same argument, we obtain

$$\max_{k \in \{0,1\}} \left(E\left[\sum_{1 \le i \le m} X_i \middle| x_1, x_2, \dots, x_{j-1}, x_j = k \right] \right)$$

$$\geq E\left[\sum_{1\leq i\leq m} X_i \mid x_1, x_2, \dots, x_{j-1}\right]$$

for all $1 \le j < m$.

■ This leads to the following simple algorithm:

- Consider the variables in any order, say, $x_1, x_2, ..., x_n$.

For each variable,

use the value that gives the **better conditional expectation**.

$$E\left[\sum_{1 \le i \le m} X_i \mid \{x_1, ..., x_{i-1}\}, \mathbf{x_i} = \mathbf{0}\right] > E\left[\sum_{1 \le i \le m} X_i \mid \{x_1, ..., x_{i-1}\}, \mathbf{x_i} = \mathbf{1}\right]$$

■ This leads to the following algorithm:

```
1. For each 1 \le i \le n, do

• Let C = \{x_1, x_2, \dots, x_{i-1}\}.

• If E\left[\sum_{1 \le i \le m} X_i \mid C, \mathbf{x_i} = \mathbf{0}\right] > E\left[\sum_{1 \le i \le m} X_i \mid C, \mathbf{x_i} = \mathbf{1}\right], then x_i \leftarrow 0.

else
x_i \leftarrow 1.
```

2. Output $(x_1, x_2, ..., x_n)$.

■ Clearly, this algorithm is deterministic and outputs a solution with value at least $\frac{7}{8} \cdot OPT_I$.

Johnson's

7/8-approximation for Max-3SAT

Another Simple 7/8-approximation Algorithm

■ For the Max-3SAT problem, we know that, the <u>expected value</u> is already large by uniform random assignment.

■ This suggests the following simple algorithm:

- Repeatedly generate a random assignment until at least $\frac{7}{8}m$ clauses are satisfied.

Running Time of this Algorithm

- Clearly, we have a 7/8-approximation when this algorithm terminates.
- In the following, we bound its running time.
 - Consider one round of the algorithm.
 - Let p_j be the probability that exactly j clauses are satisfied, and p be the probability that at least $\frac{7}{8}m$ clauses are satisfied.

Lemma 1.

$$p \geq 1/8m$$

p is the probability that we succeed in each round.

Lemma 1.

 $p \geq 1/8m$.

p is the probability that we succeed in each round.

We have

$$j \le \left(\frac{7}{8}m - \frac{1}{8}\right)$$

$$j \le m$$

$$\frac{7}{8}m = E[\sum X_i] = \sum_{1 \le j \le m} j \cdot p_j = \sum_{0 \le j < \frac{7}{8}m} j \cdot p_j + \sum_{\frac{7}{8}m \le j \le m} j \cdot p_j$$

$$\leq \left(\frac{7}{8}m - \frac{1}{8}\right) \cdot \sum_{0 \leq j < \frac{7}{8}m} p_j + m \cdot \sum_{\substack{\frac{7}{8}m \leq j \leq m}} p_j$$

$$\leq \left(\frac{7}{8}m - \frac{1}{8}\right) \cdot 1 + m \cdot p.$$

■ Solving for p gives $p \ge 1/8m$.

Q: Can you point out where the slack comes from?:)

Lemma 1.

$$p \geq 1/8m$$
.

p is the probability that we succeed in each round.

- Lemma 1 says that,
 each round of the algorithm has a fair chance to succeed.
- Let *N* be the number of rounds the algorithm takes.

Then,

$$Pr[N = j] = (1 - p)^{j-1} \cdot p$$
.

This is the *geometric distribution*!

■ Let *N* be the number of rounds the algorithm takes.

Then,

$$Pr[N = j] = (1-p)^{j-1} \cdot p$$
.

This is the *geometric distribution*!

We have

$$E[N] = \sum_{j \ge 1} j \cdot \Pr[N = j] = \sum_{j \ge 1} j \cdot p (1 - p)^{j - 1}$$
$$= -p \cdot \frac{d}{dp} \sum_{j \ge 1} (1 - p)^j = -p \cdot \frac{d}{dp} \frac{1}{p} = \frac{1}{p} = 8m.$$

$$0 \le p \le 1$$
,

so, the series converges to 1/p.

Notes

■ In the analysis, only the assumption $E[\sum X_i] = c' \cdot m$ for some c' > 0 is used to prove the O(m) bound on the number of rounds.