Introduction to
Approximation Algorithms

Mong-Jen Kao (5 £§8)

Friday 14:20 — 17:20

Outline

m Approximation Algorithm

- What is it and Why?

m Our First Example

- The Max-3SAT Problem
- Supplementary Material for Max-3SAT

m General Goal of this Course

Approximation Algorithm —

What is it and Why?

The Big Theme

m Most important combinatorial optimization problems are known to
be NP-hard.

- That says, It is unlikely that we can compute their optimal
solutions efficiently in polynomial-time,

unless P = NP, which is conjectured & widely believed to be untrue.

- In fact, only very few practical optimization problems can be
solved efficiently in polynomial time.

L@an we do ? }
m To cope with this unsatisfying fact,

when quitting the hard problems is unfortunately not an option...

1. Derive more clever algorithms, and
live with the super-polynomial running time,

2. ldentify special parameters known to be small (in practice) and
derive fixed-parameter tractable (FPT) algorithms.

a N

We will cover this topic in “Topics in Intractable Problems and

Complexity” next semester (hopefully).

\ /

LVLatcan we do ? }
m To cope with this unsatisfying fact,

when quitting the hard problems is unfortunately not an option...

3. Derive efficient (polynomial-time) algorithms that computes
near-optimal solutions,

l.e., the approximation algorithms.

Natural questions to raise:

m How do we measure the quality of the solution computed?

m What is the best guarantee we can make?

m To compute a near-optimal solution efficiently...

g BN - N
Input instance | of | | N fonsiby i
an optimization ::) Approximation :> easi 1:e S|O ution
problem I1 Algorithm for I1 or

A_/A[The value of S }

The value of (unknown) N

optimal solution for |

L We want the relative difference between them to be small. }

First Example —

The Max-3SAT Problem

The Max-3SAT Problem

m Given a Boolean formula in 3-CNF (conjunctive normal form),

what is the maximum number of clauses that can be satisfied
simultaneously?

D= (x;,Vx3VXy) AN (xV3Vxg) AN (X{VXVXy) A .

e e

{ false / true ’

The Max-3SAT Problem

m For example,

C; =(x,V x3V x4)
C, =(x2Vx3V Xy)

C3=(%1V %3 Vxy)

Ci=(x1V X3 Vx3)

- Setting (x4, x5, x3,x4) = (0,0,1,1) satisfies C,, Cs3, C,.

The Max-3SAT Problem

m Input:
- Boolean variables x4, x5, ..., x,,.
- Boolean formula ® = {C;, C,, ..., C,,;}, Where

C; = {%,1;3’1',2;3’1',3}; Yij € {xai(j);fai(j)}-

m Goal:

- Compute a truth assignment of x4, x5, ..., x,, that satisfies the
maximum umber of clauses in ®.

Status of MAX-3SAT

m Unsurprisingly, the MAX-3SAT problem is NP-hard to solve.

m In fact, Max-3SAT is the optimization version of the 3-SAT problem,

a classic NP-hard decision problem.

- In 3-SAT, we ask “Is @& satisfiable?* Decision Problem
(Yes/No)

That Is,

“Is there a truth assignment that satisfies all the clauses in ®?”

Status of MAX-3SAT

m The Max-3SAT is the optimization version of the 3-SAT problem.

- In Max-3SAT, the philosophy is

* Provided that @ is not satisfiable,
what is the maximum number of clauses we can satisfy? ”

m Since Max-3SAT can be used to answer 3-SAT,

It must be NP-hard to solve as well.

\ T

[We say that, 3-SAT « (is reducible to) Max-3SAT. }

Some Remarks

m The following conjecture was made in 1999:

Exponential Time Hypothesis (ETH). [Impagliazzo, Paturi, 1999].

The 3-SAT problem cannot be solved in subexponential time
In the worst case.

- This Is a stronger statement than P + NP.

- This hypothesis is unproven but widely believed to be true.

A Simple Approximation Algorithm

for Max-3SAT

[Flip a fair coin and let it decide! J

A randomized algorithm

1<jsm

m Let] = ({xi}lsisw ® = {C;}) be an instance of Max 3-SAT.

m Consider the following algorithm:

1. Foreach1l <i<n,

set x; to be true with probability %

2. Output (xq, X9, ..., X7p).

How well does this algorithm perform?

The An aIySiS This algorithm can be derandomized to run

deterministically. We will see this later.

m Consider the following algorithm:

1. Foreach 1 <i <n, set x; to be true with probability %

2. Output (xq, x5, ..., X5).

1, if clause (; is satisfied,
m Let X] = _
0, otherwise.

m Then, Pr|X;=1|=1- (%)3 = and E[XX;| = gm.

The Analysis

Let OPT; be the optimal value of the instance 1.

Then,

7 7 A Since OPT; <m }
E[XX;| = g m = 5 OPT;.

The simple algorithm always guarantees an assignment that performs
at least 7/8 fraction of what an optimal solution does.

It is called a 7/8-approximation algorithm for MAX-3SAT.

Notes

Larger « means
better
approximation guarantee.

/

m An a-approximation algorithm A for Max-3SAT guarantees that

Val(A()) = a-Val(OPT;)
holds for all input instance I of Max-3SAT.

m We have just seen a simple randomized 7 /8-approximation

algorithm, which can also be derandomized.
- It means that, a« = 7/8 is possible to achieve.

- So, avery natural question is...

Can We Do Better than 7/8 ?

The Largest a Achievable for MAX-3SAT

——

Implied by
Our algorithm

The value of «, >

towards better approx. for Max-3SAT

Implied by
NP-hardness of
MAX-3SAT

e e e e e e e e e e e e e e e e e ey e o —

Inapproximability Result of MAX-3SAT

[We will see the proof
L next semester (hopefully).

Theorem. [Hastad, Johnson, 2001].

It is NP-hard to approximate MAX-3SAT to a ratio better than (% + e),

for any € > 0.

m It means, forany a > 7/8,
a-approximation algorithm for MAX-3SAT is unlikely to exist.

m The simple randomized algorithm is the best possible.

LVLatcan we do ? }
m To cope with this unsatisfying fact,

when quitting the hard problems is unfortunately not an option...

3. Derive efficient (polynomial-time) algorithms that computes
near-optimal solutions,

l.e., the approximation algorithms.

Natural questions to raise:

m How do we measure the quality of the solution computed?

m What is the best guarantee we can make?

Let’'s take a break.

Supplements

for the Max-3SAT Problem.

Deterministic

7 /8-approximation for Max-3SAT

Derandomizing via Conditional Expectation

m Consider the simple randomized algorithm for Max-3SAT:

m \We have shown that,

E z X;| = =orT;.

1. Foreach 1 <i <n, set x; to be true with probability % ;
2. Output (xl, X9, ...,xn). é

o

Derandomizing via Conditional Expectation

m By the definition of conditional expectation,

E ZXi = z Pr[x; = k]-E ZXi x; =k
|1<ism |] |

we have

m Hence,

maX(E ZXix1=k)ZE ZXi'
kef0,1}

m For example, consider the following example:

Ci=(x2V X3V xy) C3=(x1V x3Vxy)

Co=(x;Vx3V xy) Co=(%x1V X3 Vx3)

- We have E[X;|x; =0]=1 and E[X;|x, =1]==.

- Similarly, E[X; |2, =0] = E[X; |2, =1] =<

- So, EL ZX;|x =0]=7, E[IX; 1% =1] =", while E[EX] =

Derandomizing via Conditional Expectation

m Continuing with the same argument, we obtain

max E 2 Xilxi, X5, 0., Xi_1,x; = k
ke{0,1} o M i)
_1siSm]

> FE 2 Xi xl,xz,...,xj_l
| 1<sism]

forall 1 <j <m.

Derandomizing via Conditional Expectation

m This leads to the following simple algorithm:

- Consider the variables in any order, say, xq, x5, ..., X;,.

For each variable,
use the value that gives the better conditional expectation.

I)

E[ZiciemXi | O oo xima b i = 0] > E[Ticiam X |00, oo xim1} 2 = 1]

Derandomizing via Conditional Expectation

m This |leads to the following algorithm:

1. Foreach1<i<n,do

Let C = {xl,xZ, ...,xi_l}.

If E[Y1cicmXi|Coxi =0] > E[X1cicmXi | C,x; = 1] , then
Xi < 0.

else

x; «— 1.

2. Output (xq1, x5, ..., Xp).

Derandomizating via Conditional Expectation

m Clearly, this algorithm is deterministic and

outputs a solution with value at least % - OPT;.

Johnson’s

7 /8-approximation for Max-3SAT

Another Simple 7/8-approximation Algorithm

m For the Max-3SAT problem, we know that, the expected value is

already large by uniform random assignment.

m This suggests the following simple algorithm:

- Repeatedly generate a random assignment until at least %m

clauses are satisfied.

[Repeatedly flip the coins until we succeed! }

Running Time of this Algorithm

m Clearly, we have a 7/8-approximation when this algorithm terminates.

m In the following, we bound its running time.

- Consider one round of the algorithm.

- Let p; be the probability that exactly j clauses are satisfied, and
p be the probability that at least %m clauses are satisfied.
/h }

Lemma 1. L p is the probability that

p = 1/8m. we succeed in each round.

q
p is the probability that
Lemma 1. -
> 1/8m. L we succeed in each round.
|
J<|zm-—<
m We have 8 8 jgm
7 .
Esz[ZXi]zz./'pj_ z Jpj t z]P]
1<jsm 0<]<—m
S(m——)2p1+m Ep]
0<]< m
< ’ L 1 +
= 8m 3 m-p.
m Solving for p gives p = 1/8m. Q: Can you point out where

the slack comes from? :)

p is the probability that
we succeed in each round.

Lemma 1.
p = 1/8m.

m Lemma 1 says that,
each round of the algorithm has a fair chance to succeed.

m Let N be the number of rounds the algorithm takes.

Then,
Pr[N=j] = (1—-p) 1 p.

This is the geometric distribution! }

m Let N be the number of rounds the algorithm takes.

Prf[N=j] = (1-p)™? p.
[]] (p) P ﬁThis Is the geometric distribution! }

Then,

m \We have

EIN] = zj'Pr[sz] - Zj.p(l_p)j—l

j=1 j>1

d :E:(l y d 1 1 :
o 2 — = —pr7—— = — =om.
P dp 1 P Papp T o

0<p<1,
S0, the series converges to 1/p.

Notes

m In the analysis, only the assumption E[}X;] = ¢’ - m for some ¢’ > 0 is
used to prove the 0 (m) bound on the number of rounds.

