
Introduction to Algorithms

Mong-Jen Kao (高孟駿)

Tuesday 10:10 – 12:00

Thursday 15:30 – 16:20



Program Assignment - IV



Segment Tree with Lazy Propagation

■ We have seen that segment trees can be used to process & 

answer queries related to “segments” via divide-and-conquer.

■ Upon updates, we have to update the “information” stored in 

some nodes of the tree.

– In lazy propagation scheme, we “queue” the updates

(in the top-most node possible) and perform them only when 

necessary.

i.e., when the deadline comes...



Segment Tree with Lazy Propagation

■ For example, 

consider the union of segments problem.

– Suppose that we have inserted an interval 𝐼1 = 2,6

into the set 𝐴.

– Then, provided that we still have 𝐼1 in 𝐴, 

inserting 𝐼2 = 3,4 or 𝐼3 = 2,5 will have no effect on any 

subsequent queries.

■ The queries can be queued until 𝐼1 is removed.



Segment Tree with Lazy Propagation

■ In lazy propagation scheme, we “queue” the updates

(in the top-most node possible) and perform them only when 

necessary.

■ Two levels of “laziness”

1. Queue the “unnecessary updates” and only execute them 

when necessary.

2. Queue “all the updates” and only execute them upon query.

a bit lazy

so lazy



A – Substring Cut & Paste



Substring Cut & Paste

■ In this problem, we need to deal with split & merge operations 

on an ordered sequence.

– Hence, treap would be an ideal data structure.

■ Note that, we cannot store the indexes of the characters, 

as they change after each operation.

– We can store “the number of nodes” in the left- and in the 

right subtrees, respectively, for each node, and it suffices.

– Implement the operations for treap accordingly.


