Introduction to Algorithms

Mong-Jen Kao (5 £§8)

Tuesday 10:10 — 12:00
Thursday 15:30 — 16:20

Program Assignment - [l|

Segment Tree

m Segment Tree is a data structure that can be used to answer

gueries that are related to “segments”.

m This data structure is applicable when

- For any two “disjoint” segments I; and I,,

the answer for query(/; U I,) can be obtained
from the answers for query(/;) and query(/,).

m |n other words, segment tree can be used when the query can be

solved by “divide-and-conquer”.

Ex 1. Union of Segments

m Givena; < a, < - < a,and an initial empty set 4 := @,
we want to process a sequence of queries of the following types.

- Insert(I) and Delete(I) for some [= [a;, a;| with i < j.

— to insert / delete the segment I = [a;, a;] into A.

- Length.
— to report the length of U,/c,I" .

This is exactly the problem
you have in ProgHW-III-D.

Application — Area of 2D-Rectangles

I Imagine that we scan the
- rectangles with a sweep-line.

m Consider the intersection of the sweep-line with the rectangles.

- As the sweep-line moves, the intersection “integrates” the area.

m Consider the intersection of the sweep-line with the rectangles.

- As the sweep-line moves, the intersection “integrates” the area.

———————————— S ——- When the scan line meets the |
bottom of a rectangle, we insert

the segment into A.

m Consider the intersection of the sweep-line with the rectangles.

- As the sweep-line moves, the intersection “integrates” the area.

When the scan line meets the
top of a rectangle, we delete
the segment from A.

m Consider the intersection of the sweep-line with the rectangles.

- As the sweep-line moves, the intersection “integrates” the area.

The area in between is the
length of the union of the
segments in A times the height.

Ex 2. Range Minimum Query

m Given aq,a,, ..., a,,

we want to answer the following query.

- Minimum(£,r) forsome 1 < ¥ <r < n.
— to report the minimum element between a,, ..., a,.

- Update(i, k) forsome 1 <i < n.
— to change the value of q; to k. e

Segment Tree for Range Minimum Query

m Let's examine how segment tree works for RMQ.

- Forany 1< ¥ <r <n,let | r] denote the numbers ay, ..., a,.

m The segment tree is a complete binary tree with root I :== [1,n],
and each node I, := [¢,r] with £ < r has two children nodes

- Left(v) for the segment [£, mid], where mid = |(£ + 1) /2],
- Right(v) for the segment [mid + 1, r].

- In each node, we store the answer of RMQ for that interval.

14

18,14]

[1,14]

[1,7]

In each node, we store the answer

of RMQ for that interval.

Segment Tree for Range Minimum Query

m We use the following structure to store the segment tree.

struct node {
int left, right, mid;
int rmq;
node *lc, *rc;

} A[maxN*2];

where maxN IS the maximum number of elements.

m Refer to the example code for the procedures.

Building the Segment Tree for RMQ

m Building the tree is straightforward. Simply follow the definition.

A. Setv.left « ¢, v.right =r, and v.mid « (¥ +1r)/2.

B. if £ =r,then // This is a leaf node
set v.rmq = a, and return.

C. Otherwise, create nodes y,z. Setv.lc « y and v.rc « z.
Call Build-Tree(y, ¢, v.mid) and Build-Tree(z, v.mid+ 1, r).

D. Setv.rmq « min(v.lc.rmq, v.rc.rmq).

Querying the Segment Tree for RMQ

m Let], =] v.left, v.right] denote the segment stored in node v.

m Query-Tree(v, ¥, r) -- to return the minimum within [£,r] N I,.

A. [/ the node is completely contained within [2, r].
If £ < v.left and r > v.right, then return v.rmq.

B. If v.mid < ¥, then return Query-Tree(v.rc, ¢, r).
If r < v.mid, then return Query-Tree(v.lc, ¢, r).

C. Return
min(Query-Tree(v.lc,?,r), Query-Tree(v.rc,?,r)).

1 2 3 4 S 7 8 9 14

B [1,14]
~ Query interval is

. [T [8,14]
in the “left” of v. e H
[1,3] [4,7] [8,11] [12,14]
[1,1] 12,3] [4,5] \ [6,7]
[2,2] [3,3] m For example, to query [2,5],

c e we start from the root node.

| I [1,14]
v.midcutsthe [1,7]

~ Query interval. | ° Q
,, -6

[1,3] [4,7] [8,11] [12,14]
-6)
[1,1] 231 /las] \[67]
[2,2] [3,3] m For example, to query [2,5],

G e we start from the root node.

[1,3] ([4,7] [8,11] [12,14]
-6 2
[1,1] 231 /las] \[67]
[2,2] [3,3] m For example, to query [2,5],

c e we start from the root node.

14

8,14

the query interval. S
N S— @
- Noneed to go down [8,11] [12,14]
~ any further. |
S s 6 -2

[1,1] [6,7]
-2
2.2] m For example, to query [2,5],

we start from the root node.

14

m For example, to query [2,5],
we start from the root node.

Analysis of the Procedure Query-Tree

m Let/ := |2, r] denote the query interval and
I, = | v.left, v.right | be the segment stored in node v.

m The procedure starts from the root of the tree.

- Ifthesegmentl, < I,thenInI, = I,, and

we already have the answer v.rmq. INnl,, =09 if v.mid < ¢.

- Otherwise,
INlL, = (INL,;.) U(lUnl,,.),

and the answer Is given by recursive calls to Query-Tree.

Analysis of the Procedure Query-Tree

m For the time-complexity, consider the following cases.

- If I, € I, then the procedure returns immediately.

- fInL,;, =0 or INI,,.. =0,
then the procedure makes exactly one recursive call.

- Otherwise, two recursive calls are made.

Analysis of the Procedure Query-Tree

m The procedure starts from the root of the tree.

- |f at most one recursive call is made all the time,

then the procedure runs in O(logn) time.

- Otherwise, consider the first time for which the procedure

makes two recursive calls.

m This happens when

L < v.mid < r

holds for the first time.

m Otherwise, consider the first time for which the procedure

makes two recursive calls.

- This happens when £ < v.mid < r holds for the first time.

- After that, whenever the procedure makes two recursive calls,
at most one of them can proceed deeper in the tree.

v.left P v. mid v.right

- |
= [|
.
- \

~ Only this call can : This call will return immediately.
~ proceed deeper in the tree. —

m Otherwise, consider the first time for which the procedure
makes two recursive calls.

- This happens when £ < v.mid < r holds for the first time.

- After that, whenever the procedure makes two recursive calls,
at most one of them can proceed deeper in the tree.

- Hence, the query takes 0(logn) time in this case.

m Equivalently, the query procedure divides the query interval into
O(log n) pieces, for which we already have the answer for.

m Equivalently, the query procedure divides the guery interval into

O(log n) pieces, for which we already have the answer for.

v.left p v. mid r v.right

© We are using divide-and-conquer
~ to answer the query.

Updating the Segment Tree for RMQ

m Updating an element q; is straightforward. It takes O(logn) time.

m Update-Tree(v,j) -- called after the value of a; is updated.

A. If v.left = v.right and v.left = j, then

set v.rmq < a; and return.

B. If v.mid < j, then call Update-Tree(v.rc, j).
If j < v.mid, then call Update-Tree(v.lc, j).

C. Setv.rmq <« min(v.lc.rmq, v.rc.rmq) and return.

Ex 2. Range Minimum Query

m Given aq,a,, ..., a,,

we want to answer the following query.

- Minimum(£,r) forsome 1 < ¥ <r < n.
— to report the minimum element between a,, ..., a,.

- Update(i, k) forsome 1 <i < n.

__

— to change the value of a; to k.
After that, each query can be

done in O(logn) time.

Segment Tree for Union of Segments

m For each query interval I to be inserted (or deleted),
we divide the interval into O(log n) pieces and
store (or remove) them in (from) the segment tree.

- We use the standard query procedure to store / remove
the query interval.

- For each node v,
we need to store the following information.

m Number of times I, Is stored.

m Total length of the union of segments within I,,.

m The standard query procedure divides the query interval into

O(log n) pieces, which can be stored in the tree.

v.left v. mid v.right

The query is divided into 0(logn)
pieces and stored separately. |

Segment Tree for Union of Segments

m We use the following way to store the segment tree.

struct node {

int left, right, mid;
int cnt; // number of times [, is stored
int len;

node *lc, *rc;

} A[maxN*2];

where maxN is the maximum number of endpoints.

Segment Tree for Union of Segments

m \We have to think about the leaf nodes.

- Recall that, we are using divide-and-conquer to solve the

considered problem.

- Hence, the leaf nodes correspond to the smallest “atomic”

segment to be considered.

m Inthe RMQ problem, the leaf nodes are associated with
intervals [i, i], which denotes one single element a;.

Segment Tree for Union of Segments

m \We have to think about the leaf nodes.

- Hence, the leaf nodes correspond to the smallest “atomic”

segment to be considered.

m In the RMQ problem, the leaf nodes are associated with
intervals [i, i], which denotes one single element a;.

m In the Unions of Segments problem, the leaf nodes are with
intervals [i,i + 1], which denotes the atomic interval [a;, a;;1].

Area of 2-D Rectangles

m Given n rectangles R, R,, ..., Ry,
the are of their union can be computed in O(nlogn) time.

- Sorting takes O(nlogn) time.
- The segment tree can be built in 0(n) time.

- There are 0(n) queries (insertion, deletion, length),
each can be answered in O(logn) time.

Ex 3. Union of Segments (Adv. Version)

m Givena; < a, < - < a,and an initial empty set 4 := @,
we want to process a sequence of queries of the following types.

- Insert(I) and Delete(I) for some [= [a;, a;| with i < j.

— to insert / delete the segment I = [a;, a;] into A.

- Length for some I := |a;, a;| with i < j.
— to report the length of

INn U I AN

ITed ~ This is a bonus problem
~in ProgHW-III-D.

