
Introduction to Algorithms

Mong-Jen Kao (高孟駿)

Tuesday 10:10 – 12:00

Thursday 15:30 – 16:20

Program Assignment - III

Segment Tree

■ Segment Tree is a data structure that can be used to answer

queries that are related to “segments”.

■ This data structure is applicable when

– For any two “disjoint” segments 𝐼1 and 𝐼2,

the answer for query 𝐼1 ∪ 𝐼2 can be obtained

from the answers for query 𝐼1 and query 𝐼2 .

■ In other words, segment tree can be used when the query can be

solved by “divide-and-conquer”.

Ex 1. Union of Segments

■ Given 𝑎1 < 𝑎2 < ⋯ < 𝑎𝑛 and an initial empty set 𝐴 ≔ ∅,

we want to process a sequence of queries of the following types.

– Insert 𝑰 and Delete 𝑰 for some 𝐼 ≔ 𝑎𝑖 , 𝑎𝑗 with 𝑖 < 𝑗.

– to insert / delete the segment 𝐼 = 𝑎𝑖 , 𝑎𝑗 into 𝐴.

– Length.

– to report the length of ڂ𝐼′∈𝐴 𝐼
′ .

This is exactly the problem

you have in ProgHW-III-D.

Application – Area of 2D-Rectangles

Imagine that we scan the

rectangles with a sweep-line.

■ Consider the intersection of the sweep-line with the rectangles.

– As the sweep-line moves, the intersection “integrates” the area.

■ Consider the intersection of the sweep-line with the rectangles.

– As the sweep-line moves, the intersection “integrates” the area.

When the scan line meets the

bottom of a rectangle, we insert

the segment into 𝐴.

■ Consider the intersection of the sweep-line with the rectangles.

– As the sweep-line moves, the intersection “integrates” the area.

When the scan line meets the

top of a rectangle, we delete

the segment from 𝐴.

■ Consider the intersection of the sweep-line with the rectangles.

– As the sweep-line moves, the intersection “integrates” the area.

The area in between is the

length of the union of the

segments in 𝐴 times the height.

𝒉

Ex 2. Range Minimum Query

■ Given 𝑎1, 𝑎2, … , 𝑎𝑛,

we want to answer the following query.

– Minimum ℓ, 𝑟 for some 1 ≤ ℓ ≤ 𝑟 ≤ 𝑛.

– to report the minimum element between 𝑎ℓ, … , 𝑎𝑟.

– Update 𝑖, 𝑘 for some 1 ≤ 𝑖 ≤ 𝑛.

– to change the value of 𝑎𝑖 to 𝑘.

−2 1 −3 4 −1 2 1 −5 4 -6 2 3 -2 1

Has a minimum of −6.

Segment Tree for Range Minimum Query

■ Let’s examine how segment tree works for RMQ.

– For any 1 ≤ ℓ ≤ 𝑟 ≤ 𝑛, let ℓ, 𝑟 denote the numbers 𝑎ℓ, … , 𝑎𝑟.

■ The segment tree is a complete binary tree with root 𝐼𝑟 ≔ 1, 𝑛 ,

and each node 𝐼𝑣 ≔ ℓ, 𝑟 with ℓ < 𝑟 has two children nodes

– Left 𝑣 for the segment [ℓ,mid], where mid = ℓ + 𝑟 /2 ,

– Right 𝑣 for the segment mid + 1, 𝑟 .

– In each node, we store the answer of RMQ for that interval.

-6

-3 -6

-3 -1 -6 -2

-2 -3 -1

1,7

1,14

8,14

1,3 4,7

1,1 2,3 4,5

8,11 12,14

1

6,7

1

2,2

-3

3,3

⋯⋯ ⋯

−2 1 −3 4 −1 2 1 −5 4 -6 2 3 -2 1

1 2 147 83 4 9

■ In each node, we store the answer

of RMQ for that interval.

Segment Tree for Range Minimum Query

■ We use the following structure to store the segment tree.

struct node {

int left, right, mid;

int rmq;

node *lc, *rc;

} A[maxN*2];

where maxN is the maximum number of elements.

■ Refer to the example code for the procedures.

Building the Segment Tree for RMQ

■ Building the tree is straightforward.

■ Build-Tree 𝑣, ℓ, 𝑟 -- to Build a segment tree for ℓ, 𝑟 at node 𝑣.

A. Set 𝑣. left ← ℓ, 𝑣. right = 𝑟, and 𝑣.mid ← (ℓ + 𝑟)/2.

B. if ℓ = 𝑟, then // This is a leaf node

set 𝑣. rmq = 𝑎ℓ and return.

C. Otherwise, create nodes 𝑦, 𝑧. Set 𝑣. 𝑙𝑐 ← 𝑦 and 𝑣. 𝑟𝑐 ← 𝑧.

Call Build-Tree 𝑦, ℓ, 𝑣.mid and Build-Tree 𝑧, 𝑣.mid + 1, 𝑟 .

D. Set 𝑣. rmq ← min 𝑣. 𝑙𝑐. rmq, 𝑣. 𝑟𝑐. rmq .

Simply follow the definition.

Querying the Segment Tree for RMQ

■ Query-Tree 𝑣, ℓ, 𝑟 -- to return the minimum within ℓ, 𝑟 ∩ 𝐼𝑣.

A. // the node is completely contained within ℓ, 𝑟 .

If ℓ ≤ 𝑣. left and 𝑟 ≥ 𝑣. right, then return 𝑣. rmq.

B. If 𝑣.mid < ℓ, then return Query-Tree(𝑣. 𝑟𝑐, ℓ, 𝑟).

If 𝑟 ≤ 𝑣.mid, then return Query-Tree(𝑣. 𝑙𝑐, ℓ, 𝑟).

C. Return

min(Query-Tree 𝑣. 𝑙𝑐, ℓ, 𝑟 , Query-Tree 𝑣. 𝑟𝑐, ℓ, 𝑟).

Make recursive calls according to the definition.

■ Let 𝐼𝑣 ≔ 𝑣. left, 𝑣. right denote the segment stored in node 𝑣.

Analysis of the Procedure Query-Tree

■ Let 𝐼 ≔ ℓ, 𝑟 denote the query interval and

𝐼𝑣 ≔ 𝑣. left, 𝑣. right be the segment stored in node 𝑣.

■ The procedure starts from the root of the tree.

– If the segment 𝐼𝑣 ⊆ 𝐼, then 𝐼 ∩ 𝐼𝑣 = 𝐼𝑣, and

we already have the answer 𝑣. rmq.

– Otherwise,
𝐼 ∩ 𝐼𝑣 = 𝐼 ∩ 𝐼𝑣.𝑙𝑐 ∪ 𝐼 ∩ 𝐼𝑣.𝑟𝑐 ,

and the answer is given by recursive calls to Query-Tree.

𝐼 ∩ 𝐼𝑣.𝑙𝑐 = ∅ if 𝑣.mid < ℓ.

𝐼 ∩ 𝐼𝑣.𝑟𝑐 = ∅ if 𝑟 ≤ 𝑣.mid.

Analysis of the Procedure Query-Tree

■ For the time-complexity, consider the following cases.

– If 𝐼𝑣 ⊆ 𝐼, then the procedure returns immediately.

– If 𝐼 ∩ 𝐼𝑣.𝑙𝑐 = ∅ or 𝐼 ∩ 𝐼𝑣.𝑟𝑐 = ∅,

then the procedure makes exactly one recursive call.

– Otherwise, two recursive calls are made.

Analysis of the Procedure Query-Tree

■ The procedure starts from the root of the tree.

– If at most one recursive call is made all the time,

then the procedure runs in 𝑂 log 𝑛 time.

– Otherwise, consider the first time for which the procedure

makes two recursive calls.

■ This happens when

ℓ ≤ 𝑣.mid < 𝑟

holds for the first time.

ℓ 𝑟

■ Otherwise, consider the first time for which the procedure

makes two recursive calls.

– This happens when ℓ ≤ 𝑣.mid < 𝑟 holds for the first time.

– After that, whenever the procedure makes two recursive calls,

at most one of them can proceed deeper in the tree.

ℓ 𝑟𝑣. left 𝑣. right𝑣.mid

This call will return immediately.Only this call can

proceed deeper in the tree.

■ Otherwise, consider the first time for which the procedure

makes two recursive calls.

– This happens when ℓ ≤ 𝑣.mid < 𝑟 holds for the first time.

– After that, whenever the procedure makes two recursive calls,

at most one of them can proceed deeper in the tree.

– Hence, the query takes 𝑂 log 𝑛 time in this case.

■ Equivalently, the query procedure divides the query interval into

𝑂 𝑙𝑜𝑔 𝑛 pieces, for which we already have the answer for.

■ Equivalently, the query procedure divides the query interval into

𝑂 𝑙𝑜𝑔 𝑛 pieces, for which we already have the answer for.

ℓ 𝑟𝑣. left 𝑣. right𝑣.mid

𝟖𝒊 + 𝟏

𝟒𝒊 + 𝟏

𝟖𝒊 + 𝟒

𝟑𝟐𝒊 + 𝟑 𝟑𝟐𝒊 + 𝟐𝟎
We are using divide-and-conquer

to answer the query.

Updating the Segment Tree for RMQ

■ Update-Tree 𝑣, 𝑗 -- called after the value of 𝑎𝑗 is updated.

A. If 𝑣. left = 𝑣. right and 𝑣. left = 𝑗, then

set 𝑣. rmq ← 𝑎𝑗 and return.

B. If 𝑣.mid < 𝑗, then call Update-Tree(𝑣. 𝑟𝑐, 𝑗).

If 𝑗 ≤ 𝑣.mid, then call Update-Tree(𝑣. 𝑙𝑐, 𝑗).

C. Set 𝑣. rmq ← min 𝑣. 𝑙𝑐. rmq, 𝑣. 𝑟𝑐. rmq and return.

Make recursive calls according to the definition.

■ Updating an element 𝑎𝑖 is straightforward. It takes 𝑂 log 𝑛 time.

Ex 2. Range Minimum Query

■ Given 𝑎1, 𝑎2, … , 𝑎𝑛,

we want to answer the following query.

– Minimum ℓ, 𝑟 for some 1 ≤ ℓ ≤ 𝑟 ≤ 𝑛.

– to report the minimum element between 𝑎ℓ, … , 𝑎𝑟.

– Update 𝑖, 𝑘 for some 1 ≤ 𝑖 ≤ 𝑛.

– to change the value of 𝑎𝑖 to 𝑘.

Build the segment tree in 𝑂 𝑛 time.

After that, each query can be

done in 𝑂 log 𝑛 time.

After that, each query can be

done in 𝑂 log 𝑛 time.

Segment Tree for Union of Segments

■ For each query interval 𝐼 to be inserted (or deleted),

we divide the interval into 𝑂 𝑙𝑜𝑔 𝑛 pieces and

store (or remove) them in (from) the segment tree.

– We use the standard query procedure to store / remove

the query interval.

– For each node 𝑣,

we need to store the following information.

■ Number of times 𝐼𝑣 is stored.

■ Total length of the union of segments within 𝐼𝑣.

■ The standard query procedure divides the query interval into

𝑂 𝑙𝑜𝑔 𝑛 pieces, which can be stored in the tree.

ℓ 𝑟𝑣. left 𝑣. right𝑣.mid

The query is divided into 𝑂 log 𝑛

pieces and stored separately.

Segment Tree for Union of Segments

■ We use the following way to store the segment tree.

struct node {

int left, right, mid;

int cnt; // number of times 𝐼𝑣 is stored

int len;

node *lc, *rc;

} A[maxN*2];

where maxN is the maximum number of endpoints.

Area of 2-D Rectangles

■ Given 𝑛 rectangles 𝑅1, 𝑅2, … , 𝑅𝑛,

the are of their union can be computed in 𝑂 𝑛 log 𝑛 time.

– Sorting takes 𝑂 𝑛 log 𝑛 time.

– The segment tree can be built in 𝑂 𝑛 time.

– There are 𝑂 𝑛 queries (insertion, deletion, length),

each can be answered in 𝑂 log 𝑛 time.

Ex 3. Union of Segments (Adv. Version)

■ Given 𝑎1 < 𝑎2 < ⋯ < 𝑎𝑛 and an initial empty set 𝐴 ≔ ∅,

we want to process a sequence of queries of the following types.

– Insert 𝑰 and Delete 𝑰 for some 𝐼 ≔ 𝑎𝑖 , 𝑎𝑗 with 𝑖 < 𝑗.

– to insert / delete the segment 𝐼 = 𝑎𝑖 , 𝑎𝑗 into 𝐴.

– Length for some 𝐼 ≔ 𝑎𝑖 , 𝑎𝑗 with 𝑖 < 𝑗.

– to report the length of

𝐼 ∩ ራ

𝐼′∈𝐴

𝐼′ .
This is a bonus problem

in ProgHW-III-D.

