Introduction to **Algorithms**

Mong-Jen Kao (高孟駿) Tuesday 10:10 – 12:00 Thursday 15:30 – 16:20

Program Assignment - III

Segment Tree

- Segment Tree is a <u>data structure</u> that can be used to **answer** queries that are related to "segments".
- This data structure is applicable when
 - For any two "disjoint" segments *I*₁ and *I*₂,
 the answer for query(*I*₁ ∪ *I*₂) can be obtained
 from the answers for query(*I*₁) and query(*I*₂).
- In other words, segment tree can be used <u>when the query can be</u> <u>solved by</u> "divide-and-conquer".

Ex 1. Union of Segments

- Given a₁ < a₂ < ··· < a_n and an initial empty set A ≔ Ø,
 we want to process a sequence of queries of the following types.
 - **Insert**(*I*) and **Delete**(*I*) for some $I \coloneqq [a_i, a_j]$ with i < j.

- to insert / delete the segment $I = [a_i, a_j]$ into A.

- Length.

- to report the length of $\bigcup_{I' \in A} I'$.

This is exactly the problem you have in ProgHW-III-D.

Application – Area of 2D-Rectangles

- Consider the intersection of the sweep-line with the rectangles.
 - As the sweep-line moves, the intersection *"integrates"* the area.

- Consider the intersection of the sweep-line with the rectangles.
 - As the sweep-line moves, the intersection *"integrates"* the area.

- Consider the intersection of the sweep-line with the rectangles.
 - As the sweep-line moves, the intersection *"integrates"* the area.

- Consider the intersection of the sweep-line with the rectangles.
 - As the sweep-line moves, the intersection *"integrates"* the area.

Ex 2. Range Minimum Query

• Given a_1, a_2, \ldots, a_n ,

we want to answer the following query.

- **Minimum**(ℓ, r) for some $1 \le \ell \le r \le n$.

– to report the minimum element between a_{ℓ}, \ldots, a_{r} .

- **Update**(i, k) for some $1 \le i \le n$.

- to change the value of a_i to k.

Has a minimum of -6.

Segment Tree for *Range Minimum Query*

- Let's examine how segment tree works for RMQ.
 - For any $1 \le \ell \le r \le n$, let $[\ell, r]$ denote the numbers a_{ℓ}, \ldots, a_{r} .
- The segment tree is a complete binary tree with root $I_r \coloneqq [1, n]$, and each node $I_v \coloneqq [\ell, r]$ with $\ell < r$ has two children nodes
 - Left(v) for the segment [ℓ , mid], where mid = [$(\ell + r)/2$],
 - Right(v) for the segment [mid + 1,r].
 - In each node, we store the answer of RMQ for that interval.

Segment Tree for *Range Minimum Query*

We use the following structure to store the segment tree.

```
struct node {
    int left, right, mid;
    int rmq;
    node *lc, *rc;
} A[maxN*2];
```

where maxN is the maximum number of elements.

Refer to the example code for the procedures.

Building the Segment Tree for RMQ

Building the tree is straightforward.

Simply follow the definition.

■ Build-Tree(v, ℓ, r) -- to Build a segment tree for $[\ell, r]$ at node v.

- A. Set v. left $\leftarrow \ell$, v. right = r, and v. mid $\leftarrow (\ell + r)/2$.
- B. if $\ell = r$, then // This is a leaf node set $v \cdot rmq = a_{\ell}$ and return.
- C. Otherwise, create nodes y, z. Set $v.lc \leftarrow y$ and $v.rc \leftarrow z$. Call Build-Tree($y, \ell, v.mid$) and Build-Tree(z, v.mid + 1, r).
- D. Set $v.rmq \leftarrow min(v.lc.rmq, v.rc.rmq)$.

Querying the Segment Tree for RMQ

• Let $I_v \coloneqq [v.left, v.right]$ denote the segment stored in node v.

• Query-Tree (v, ℓ, r) -- to return the minimum within $[\ell, r] \cap I_v$.

A. // the node is completely contained within $[\ell, r]$. If $\ell \le v$. left and $r \ge v$. right, then return v. rmq.

B. If $v \text{ mid} < \ell$, then return Query-Tree($v \text{ . } rc, \ell, r$). If $r \leq v \text{ mid}$, then return Query-Tree($v \text{ . } lc, \ell, r$).

C. Return

min(Query-Tree($v.lc, \ell, r$), Query-Tree($v.rc, \ell, r$)).

Make recursive calls according to the definition.

Analysis of the Procedure Query-Tree

- Let $I \coloneqq [\ell, r]$ denote the query interval and $I_v \coloneqq [v. left, v. right]$ be the segment stored in node v.
- The procedure starts from the root of the tree.
 - If the segment $I_v \subseteq I$, then $I \cap I_v = I_v$, and we already have the answer v.rmq.

- Otherwise,

$$I \cap I_{v} = (I \cap I_{v.lc}) \cup (I \cap I_{v.rc}),$$

and the answer is given by recursive calls to Query-Tree.

 $I \cap I_{v.rc} = \emptyset$ if $r \leq v$. mid.

Analysis of the Procedure Query-Tree

- For the time-complexity, consider the following cases.
 - If $I_v \subseteq I$, then the procedure <u>returns immediately</u>.
 - If $I \cap I_{v,lc} = \emptyset$ or $I \cap I_{v,rc} = \emptyset$, then the procedure makes <u>exactly one</u> recursive call.
 - Otherwise, *two recursive calls* are made.

Analysis of the Procedure Query-Tree

- The procedure starts from the root of the tree.
 - If <u>at most one recursive call</u> is made <u>all the time</u>,
 then the procedure runs in O(log n) time.
 - Otherwise, <u>consider the first time</u> for which the procedure <u>makes two recursive calls</u>.

This happens when

 $\ell \leq v. \text{mid} < r$

holds *for the first time*.

- Otherwise, <u>consider the first time</u> for which the procedure <u>makes two recursive calls</u>.
 - This happens when $\ell \leq v \text{ mid} < r$ holds *for the first time*.
 - After that, whenever the procedure makes two recursive calls,
 <u>at most one of them</u> can proceed deeper in the tree.

- Otherwise, <u>consider the first time</u> for which the procedure <u>makes two recursive calls</u>.
 - This happens when $\ell \leq v \text{.mid} < r$ holds *for the first time*.
 - After that, whenever the procedure makes two recursive calls,
 <u>at most one of them</u> can proceed deeper in the tree.
 - Hence, the query takes $O(\log n)$ time in this case.
- Equivalently, the query procedure <u>divides</u> the query interval into $O(\log n)$ pieces, for which we already have the answer for.

Equivalently, the query procedure <u>divides</u> the query interval into O(log n) pieces, for which we already have the answer for.

Updating the Segment Tree for RMQ

- Updating an element a_i is straightforward. It takes $O(\log n)$ time.
 - Update-Tree(v, j) -- called after the value of a_i is updated.
 - A. If v. left = v. right and v. left = j, then set v. rmq $\leftarrow a_i$ and return.
 - B. If v. mid < j, then call Update-Tree(v. rc, j). If $j \le v. \text{mid}$, then call Update-Tree(v. lc, j).
 - C. Set $v.rmq \leftarrow min(v.lc.rmq, v.rc.rmq)$ and return.

Make recursive calls according to the definition.

Ex 2. Range Minimum Query

• Given a_1, a_2, \ldots, a_n ,

we want to answer the following query.

- **Minimum**(ℓ, r) for some $1 \le \ell \le r \le n$.

- to report the minimum element between a_{ℓ}, \ldots, a_{r} .

- **Update**(i, k) for some $1 \le i \le n$.

- to change the value of a_i to k.

After that, each query can be done in $O(\log n)$ time.

Build the segment tree in O(n) time.

Segment Tree for *Union of Segments*

- For each query interval I to be inserted (or deleted), we <u>divide the interval</u> into O(log n) pieces and store (or remove) them in (from) the segment tree.
 - We use the standard query procedure to store / remove the query interval.
 - For each node v,

we need to store the following information.

- Number of times I_v is stored.
- Total length of the union of segments within I_v .

The standard query procedure <u>divides</u> the query interval into O(log n) pieces, which can be stored in the tree.

Segment Tree for *Union of Segments*

We use the following way to store the segment tree.

```
struct node {
    int left, right, mid;
    int cnt; // number of times l<sub>v</sub> is stored
    int len;
    node *lc, *rc;
} A[maxN*2];
```

where maxN is the maximum number of endpoints.

Area of 2-D Rectangles

Given *n* rectangles $R_1, R_2, ..., R_n$, the are of their union can be computed in $O(n \log n)$ time.

- Sorting takes $O(n \log n)$ time.
- The segment tree can be built in O(n) time.
- There are O(n) queries (insertion, deletion, length),
 each can be answered in O(log n) time.

Ex 3. Union of Segments (Adv. Version)

- Given a₁ < a₂ < ··· < a_n and an initial empty set A ≔ Ø,
 we want to process a sequence of queries of the following types.
 - **Insert**(*I*) and **Delete**(*I*) for some $I \coloneqq [a_i, a_j]$ with i < j.

- to insert / delete the segment $I = [a_i, a_j]$ into A.

- **Length** for some $I \coloneqq [a_i, a_j]$ with i < j.

- to report the length of

$$I \cap \bigcup_{I' \in A} I' \ .$$

This is a bonus problem in ProgHW-III-D.