Introduction to Algorithms

Mong-Jen Kao (高孟駿) Tuesday 10:10 – 12:00 Thursday 15:30 – 16:20

Program Assignment - III

Segment Tree

- Segment Tree is a *data structure* that can be used to **answer** *queries* that are *related to "segments".*
- This data structure is applicable when
	- For any two "disjoint" segments I_1 and I_2 , the answer for query $(I_1 \cup I_2)$ can be obtained from the answers for query (I_1) and query (I_2) .
- In other words, segment tree can be used *when the query can be solved by "divide-and-conquer"*.

Ex 1. Union of Segments

- Given $a_1 < a_2 < \cdots < a_n$ and an initial empty set $A = \emptyset$, we want to process a sequence of queries of the following types.
	- **Insert**(*I*) and **Delete**(*I*) for some $I := [a_i, a_j]$ with $i < j$.

– to insert / delete the segment $I = \left[a_i, a_j \right]$ into A .

– **Length**.

- to report the length of $\bigcup_{I' \in A} I'$.

This is exactly the problem you have in ProgHW-III-D.

Application – Area of 2D-Rectangles

- Consider the intersection of the sweep-line with the rectangles.
	- As the sweep-line moves, the intersection *"integrates"* the area.

- Consider the intersection of the sweep-line with the rectangles.
	- As the sweep-line moves, the intersection *"integrates"* the area.

- Consider the intersection of the sweep-line with the rectangles.
	- As the sweep-line moves, the intersection *"integrates"* the area.

- Consider the intersection of the sweep-line with the rectangles.
	- As the sweep-line moves, the intersection *"integrates"* the area.

Ex 2. Range Minimum Query

Given $a_1, a_2, ..., a_n$,

we want to answer the following query.

- **Minimum** (ℓ, r) for some $1 \leq \ell \leq r \leq n$.

– to report the minimum element between $a_{\ell},...,a_{r}.$

- **Update** (i, k) for some $1 \le i \le n$.

– to change the value of a_i to k .

Has a minimum of -6 .

−2 1 −3 4 −1 2 1 −5 4 -6 2 3 -2 1

Segment Tree for *Range Minimum Query*

- Let's examine how segment tree works for RMQ.
	- For any $1 \leq \ell \leq r \leq n$, let $[\ell, r]$ denote the numbers $a_{\ell}, ..., a_{r}$.
- The segment tree is a complete binary tree with root $I_r := [1, n]$, and each node $I_v := [\ell, r]$ with $\ell < r$ has two children nodes
	- Left(v) for the segment [ℓ , mid], where mid = $[(\ell + r)/2]$,
	- Right (v) for the segment $\lceil \text{mid} + 1, r \rceil$.
	- In each node, we *store the answer of RMQ for that interval*.

Segment Tree for *Range Minimum Query*

■ We use the following structure to store the segment tree.

```
struct node {
     int left, right, mid;
     int rmq;
     node *lc,
*rc;
} A[maxN*2];
```
where **maxN** is the maximum number of elements.

■ *Refer to the example code for the procedures.*

Building the Segment Tree for RMQ

■ Building the tree is straightforward.

Simply follow the definition.

■ Build-Tree (v, ℓ, r) -- to Build a segment tree for $[\ell, r]$ at node v .

- A. Set v left $\leftarrow \ell$, v right = r, and v mid $\leftarrow (\ell + r)/2$.
- **B.** if $\ell = r$, then // This is a leaf node set v. rmq = a_{ℓ} and return.
- C. Otherwise, create nodes y, z. Set $v \cdot lc \leftarrow y$ and $v \cdot rc \leftarrow z$. Call Build-Tree(y, ℓ, v mid) and Build-Tree(z, v mid $+1, r$).
- D. Set v rmq \leftarrow min(v lc rmq, v rc rmq).

Querying the Segment Tree for RMQ

- **■** Let $I_v := [v]$ left, v right denote the segment stored in node v .
	- Query-Tree (v, ℓ, r) -- to return the minimum within $[\ell, r] \cap I_{\nu}$.
		- A. // the node is completely contained within $[\ell, r]$. If $\ell \leq \nu$ left and $r \geq \nu$ right, then return ν rmq.
		- B. If v. mid $\langle \ell \rangle$, then return Query-Tree(v , rc , ℓ , r). If $r \leq v$ mid, then return Query-Tree(v , lc , ℓ , r).
		- C. Return

min(Query-Tree (v, lc, ℓ, r) , Query-Tree (v, rc, ℓ, r)).

Make recursive calls according to the definition.

Analysis of the Procedure Query-Tree

- **■** Let $I := [\ell, r]$ denote the query interval and $I_{\nu} \coloneqq [v]$. left, ν . right be the segment stored in node ν .
- The procedure starts from the root of the tree.
	- If the segment $I_{\nu} \subseteq I$, then $I \cap I_{\nu} = I_{\nu}$, and we already have the answer v . rmq.

Otherwise,

$$
I \cap I_{v} = (I \cap I_{v.lc}) \cup (I \cap I_{v.rc}),
$$

and the answer is given by recursive calls to Query-Tree.

 $I \cap I_{\nu r c} = \emptyset$ if $r \leq \nu$ mid.

Analysis of the Procedure Query-Tree

- For the time-complexity, consider the following cases.
	- If $I_v \subseteq I$, then the procedure *returns immediately*.
	- If $I \cap I_{\nu,lc} = \emptyset$ or $I \cap I_{\nu,rc} = \emptyset$, then the procedure makes *exactly one* recursive call.
	- Otherwise, *two recursive calls* are made.

Analysis of the Procedure Query-Tree

- The procedure starts from the root of the tree.
	- If *at most one recursive call* is made *all the time*, then the procedure runs in $O(\log n)$ time.
	- Otherwise, *consider the first time* for which the procedure *makes two recursive calls*.

■ This happens when

 $\ell \leq v$ mid $\lt r$

holds *for the first time*.

- Otherwise, consider the first time for which the procedure **makes two recursive calls**.
	- This happens when $\ell \leq \nu$ mid $\lt r$ holds for the first time.
	- After that, whenever the procedure makes two recursive calls, *at most one of them* can proceed deeper in the tree.

- Otherwise, consider the first time for which the procedure **makes two recursive calls**.
	- This happens when $\ell \leq \nu$ mid $\leq r$ holds for the first time.
	- After that, whenever the procedure makes two recursive calls, *at most one of them* can proceed deeper in the tree.
	- Hence, the query takes $O(\log n)$ time in this case.
- Equivalently, the query procedure *divides* the query interval into *pieces*, for *which we already have the answer* for.

■ Equivalently, the query procedure *divides* the query interval into *pieces*, for *which we already have the answer* for.

Updating the Segment Tree for RMQ

■ Updating an element a_i is straightforward. It takes $O(\log n)$ time.

■ Update-Tree (v, j) -- called after the value of a_j is updated.

A. If v. left $= v$ right and v. left $= j$, then set v . rmq $\leftarrow a_i$ and return.

B. If v. mid $\lt j$, then call Update-Tree(v , rc , j). If $j \leq \nu$ mid, then call Update-Tree(ν , lc , j).

C. Set v rmq \leftarrow min(v . lc. rmq, v rc. rmq) and return.

Make recursive calls according to the definition.

Ex 2. Range Minimum Query

Given $a_1, a_2, ..., a_n$,

we want to answer the following query.

- **Minimum** (ℓ, r) for some $1 \leq \ell \leq r \leq n$.
	- to report the minimum element between $a_{\ell},...,a_{r}.$
- **Update** (i, k) for some $1 \le i \le n$.

– to change the value of a_i to k .

After that, each query can be done in $O(\log n)$ time.

Build the segment tree in $O(n)$ time.

Segment Tree for *Union of Segments*

- \blacksquare For each query interval *I* to be inserted (or deleted), we *divide the interval into* $O(log n)$ *pieces* and store (or remove) them in (from) the segment tree.
	- We use the standard query procedure to store / remove the query interval.
	- For each node v ,

we need to store the following information.

- **Number of times** I_{ν} **is stored.**
- **Total length of the union of segments within** I_{ν} **.**

■ The standard query procedure *divides the query interval into* $O(log n)$ pieces, which can be stored in the tree.

Segment Tree for *Union of Segments*

■ We use the following way to store the segment tree.

```
struct node {
     int left, right, mid;
     int cnt; // number of times I_v is stored
     int len;
     node *lc, *rc;
} A[maxN*2];
```
where **maxN** is the maximum number of endpoints.

Area of 2-D Rectangles

- **Given** *n* rectangles $R_1, R_2, ..., R_n$, the are of their union can be computed in $O(n \log n)$ time.
	- Sorting takes $O(n \log n)$ time.
	- The segment tree can be built in $O(n)$ time.
	- There are $O(n)$ queries (insertion, deletion, length), each can be answered in $O(\log n)$ time.

Ex 3. Union of Segments (Adv. Version)

- Given $a_1 < a_2 < \cdots < a_n$ and an initial empty set $A = \emptyset$, we want to process a sequence of queries of the following types.
	- **Insert**(*I*) and **Delete**(*I*) for some $I := [a_i, a_j]$ with $i < j$.

– to insert / delete the segment $I = \left[a_i, a_j \right]$ into A .

– **Length** for some $I := [a_i, a_j]$ with $i < j$.

– to report the length of

$$
I\cap \bigcup_{I'\in A}I'\ .
$$

This is a bonus problem in ProgHW-III-D.