Introduction to **Algorithms**

Mong-Jen Kao (高孟駿) Tuesday 10:10 – 12:00 Thursday 15:30 – 16:20

Program Assignment - II

Quicksort Algorithm

- Quicksort is a powerful sorting algorithm.
 - It partitions the input into two buckets by a chosen pivot.
 - Then it sorts the two buckets using recursive quicksort.
- If the input is always evenly partitioned, quicksort runs in $O(n \log n)$ time.
- In the worst case, however, quicksort takes $O(n^2)$ time.

Randomized Quicksort

- In the randomized Quicksort algorithm,
 we use a randomly chosen pivot to partition the input.
 - This avoids the worst-case most of the times.
- Let T(n) be the expected number of comparisons made by this algorithm. Then, we have

$$T(n) = (n-1) + \frac{1}{n} \cdot \sum_{0 \le i < n} (T(i) + T(n-i+1)) .$$

- Use a randomly chosen pivot to partition the input.
- Let T(n) be the expected number of comparisons made by this algorithm. Then, we have

$$T(n) = (n-1) + \frac{1}{n} \cdot \sum_{0 \le i < n} (T(i) + T(n-i+1))$$
$$= (n-1) + \frac{2}{n} \cdot \sum_{0 \le i < n} T(i) .$$

 $1 \le i \le n$

• To solve the recurrence, we guess that $T(n) = O(n \log n)$.

Let T(n) be the expected number of comparisons made by this algorithm. Then, we have

$$T(n) = (n-1) + \frac{2}{n} \cdot \sum_{1 \le i < n} T(i)$$
.

• To solve the recurrence, we guess that $T(n) = O(n \log n)$.

Then,

$$T(n) \leq (n-1) + \frac{2}{n} \cdot \sum_{1 \leq i < n} cn \log n$$

$$\leq (n-1) + \frac{2}{n} \cdot \int_{1}^{n} cx \log x \cdot dx \leq cn \log n.$$

For boundary condition, we have T(1) = 0.

holds when $c \ge 2$.

Alternative Analysis

Suppose that the input numbers after sorted are

 $a_1 < a_2 < \dots < a_n$

- Let X be the <u>total number of comparisons</u> made by the randomized quicksort algorithm.
- For any $1 \le i < j \le n$, let $X_{i,j}$ denote the *indicator variable* for the event that a_i and a_j are compared during execution.

• Then
$$E[X] = \sum_{i,j} E[X_{i,j}] = \sum_{i,j} \Pr[X_{i,j} = 1].$$

When does a_i and a_j get compared?

- If some number between a_i and a_j is picked as pivot,
 then a_i and a_j will be put into different bucket.
 - They will never be compared afterwards.
 - Hence, $X_{i,j} = 0$.

When does a_i and a_j get compared?

If one of a_i or a_j is picked as pivot,
 then they are compared in this iteration.

$$- X_{i,j} = 1.$$

- If some number smaller than a_i or some number larger than a_j is picked as pivot, then they are put in the same bucket.
 - They *may or may not* be compared in the future.
 - In the next round, the range becomes smaller.

a_1 a_i a_j a_j

• Let E_t denote the event that some number between a_i and a_j (inclusive) is selected as pivot in the *t*-th round *for the first time*.

Then,

$$\Pr[X_{i,j} = 1 | E_t] = \frac{2}{j - i + 1}$$

Hence,

$$\Pr[X_{i,j} = 1] = \sum_{t \ge 1} \Pr[X_{i,j} = 1 \cap E_t]$$

$$= \sum_{t \ge 1} \Pr[X_{i,j} = 1 | E_t] \cdot \Pr[E_t] = \frac{2}{j - i + 1}$$

Alternative Analysis

Suppose that the input numbers after sorted are

$$a_1 < a_2 < \cdots < a_n$$

We obtain

$$E[X] = \sum_{1 \le i < j \le n} \Pr[X_{i,j} = 1] \le 2nH_n = O(n\log n)$$

■ If the numbers are *not distinct*, the bound *becomes better*.

Problem B

- The number of operations modern CPUs can do in 1 sec is <u>roughly 10⁹</u>.
- You may want to calculate the allowable time complexity of any algorithm for this problem.
 - Design an algorithm that fulfills the task in time.

Problem C

You may want to use the cross-products of 2D-vectors to design a valid test for tangent points.