Introduction to **Algorithms**

Mong-Jen Kao (高孟駿) Tuesday 10:10 – 12:00 Thursday 15:30 – 16:20

Program Assignment - I

General Tips

- Use C++ STL <u>basic data container</u> and <u>basic algorithms</u> to compose your solution.
 - pair, *vector*, *array*, etc.
 - *sort* algorithm with *custom compare function*.
- The loading for program assignment becomes <u>reasonable</u> only when you use these tools properly.
- If unsure, refer to the sample codes and look up the references for C++ STL.

Program Assignment - I

Cross-product of 2D Vectors

■ Let $\vec{u}, \vec{v} \in \mathbb{R}^3$ be two vectors lying in the x - y plane.

$$\vec{u} = (a_1, b_1, 0), \qquad \vec{v} = (a_2, b_2, 0).$$

• Then $\vec{u} \times \vec{v}$ will be parallel to the *z*-axis, i.e.,

 $\vec{u} \times \vec{v} = (0, 0, k)$, where $k = a_1 b_2 - a_2 b_1$.

Furthermore,

the value of k will satisfy the following.

• Let $\vec{u}, \vec{v} \in \mathbb{R}^3$ be two vectors lying in the x - y plane.

$$\vec{u} = (a_1, b_1, 0), \qquad \vec{v} = (a_2, b_2, 0).$$

• Then $\vec{u} \times \vec{v}$ will be parallel to the *z*-axis, i.e.,

 $\vec{v} \qquad \vec{u}$ $a_1b_2 - a_2b_1 > 0$

 $\vec{u} \times \vec{v} = (0, 0, k)$, where $k = a_1 b_2 - a_2 b_1$.

Furthermore,

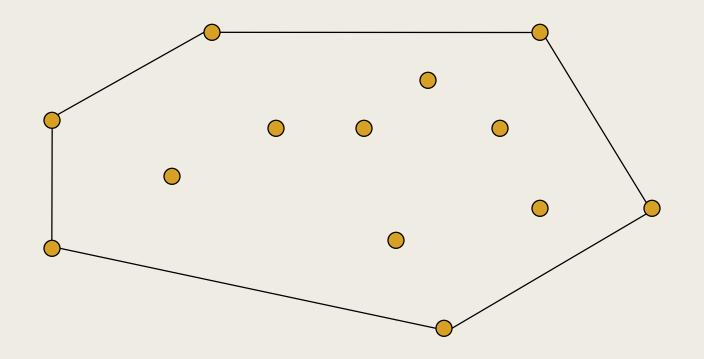
the value of k will satisfy the following.

- If \vec{u} to \vec{v} is a **counter-clockwise** rotation, then k > 0.
- If \vec{u} to \vec{v} is a *clockwise* rotation, then k < 0.
- If \vec{u} and \vec{v} are *parallel*, then k = 0.

The Convex Hull Problem

■ Given a set P of points in the plane,

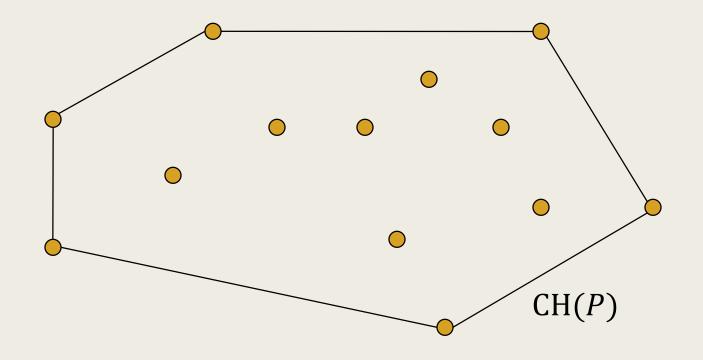
the **Convex Hull** of P is the smallest **convex polygon** that contains P.



The Convex Hull Problem

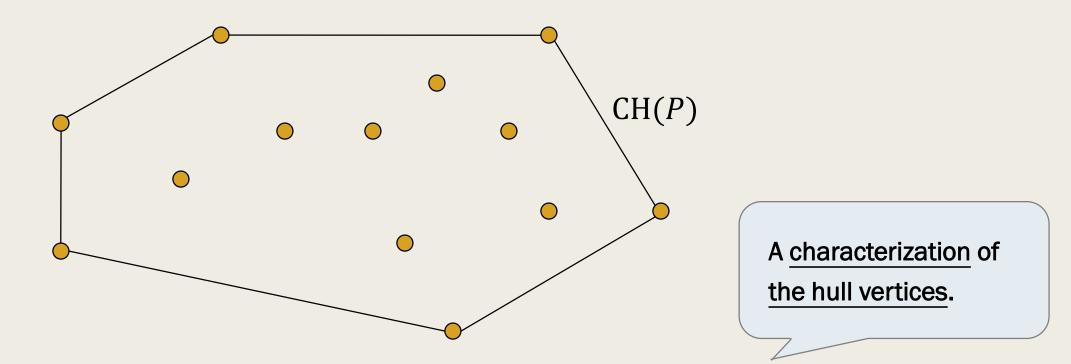
■ Given a set P of points in the plane,

the **Convex Hull** of P is the smallest convex polygon that contains P.



■ Given a set P of points in the plane,

the **Convex Hull** of P is the smallest convex polygon that contains P.



Definition. A point $v \in P$ is a <u>vertex</u> of Convex Hull of P if

there exists no $q, r \in CH(P)$ such that v = (q + r)/2.

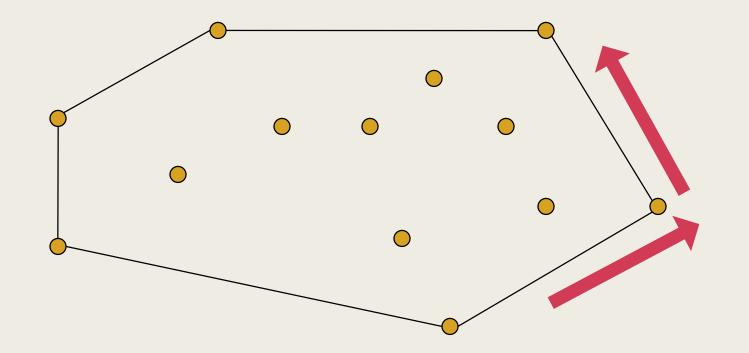
The Convex Hull Problem

■ The Convex Hull can be constructed in O(n log n) time.

- There are many ways to do this.
- In the following, we will see the <u>Graham Scan method</u>,
 which requires only sorting and products of the vectors.

Observation

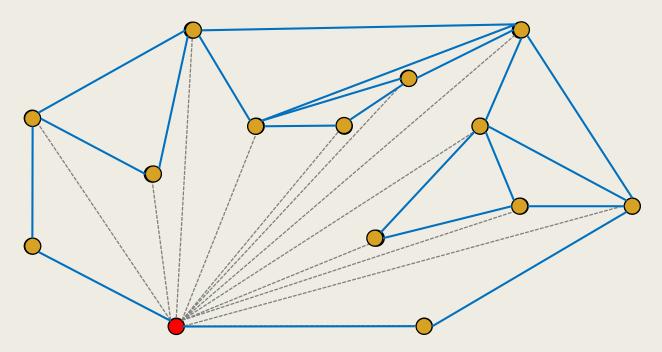
- Imagine that you are walking along the boundary of the convex hull in counter-clockwise order.
 - Then, you always make *left-turns* at the vertices.



The Graham Scan Algorithm

- 1. First, pick the point with smallest y-coordinates. If ties happen, further pick the vertex with the smallest x-coordinate. Let this point be p_1 .
 - p_1 must be one of the vertices of the convex hull.
- 2. Sort the remaining vertices according to the vectors formed from p_1 to them in counter-clockwise order. Break ties according to their lengths.
 - Use cross-product (for counter-clockwise order) and inner-product (for the length) to do the comparison.

- Traverse the points in sorted order to form the hull boundary.
 - During the process, make sure that
 <u>the last three vertices</u> always form a <u>left-turn</u>.
 - <u>If not, the second last vertex is deleted</u> until the above is true or only two vertices are left.



The Graham Scan Algorithm

- 3. Let $L = \{ p_1 \}$ be the initial list of hull vertices.
- 4. Traverse the remaining points in sorted order.
 - Add the current point to the end of L.

- This process takes O(n) time.
- While $|L| \ge 3$ and the last three points of L does not form a left-turn
 - Delete the second-last point from L
- 5. Output *L*.

The overall complexity is $O(n \log n)$.