
Introduction to Algorithms

Mong-Jen Kao (高孟駿)

Tuesday 10:10 – 12:00

Thursday 15:30 – 16:20

Program Assignment - I

General Tips

■ Use C++ STL basic data container and basic algorithms

to compose your solution.

– pair, vector, array, etc.

– sort algorithm with custom compare function.

■ The loading for program assignment becomes reasonable only

when you use these tools properly.

■ If unsure, refer to the sample codes and look up the references

for C++ STL.

Program Assignment - I

Cross-product of 2D Vectors

■ Let 𝑢, Ԧ𝑣 ∈ ℝ3 be two vectors lying in the 𝑥 − 𝑦 plane.

𝑢 = a1, b1, 0 , Ԧ𝑣 = 𝑎2, 𝑏2, 0 .

■ Then 𝑢 × Ԧ𝑣 will be parallel to the 𝑧-axis, i.e.,

𝑢 × Ԧ𝑣 = 0, 0, 𝑘 , where 𝑘 = 𝑎1𝑏2 − 𝑎2𝑏1.

■ Furthermore,

the value of 𝑘 will satisfy the following.

■ Let 𝑢, Ԧ𝑣 ∈ ℝ3 be two vectors lying in the 𝑥 − 𝑦 plane.

𝑢 = a1, b1, 0 , Ԧ𝑣 = 𝑎2, 𝑏2, 0 .

■ Then 𝑢 × Ԧ𝑣 will be parallel to the 𝑧-axis, i.e.,

𝑢 × Ԧ𝑣 = 0, 0, 𝑘 , where 𝑘 = 𝑎1𝑏2 − 𝑎2𝑏1.

■ Furthermore,

the value of 𝑘 will satisfy the following.

– If 𝑢 to Ԧ𝑣 is a counter-clockwise rotation, then 𝒌 > 𝟎.

– If 𝑢 to Ԧ𝑣 is a clockwise rotation, then 𝒌 < 𝟎.

– If 𝑢 and Ԧ𝑣 are parallel, then 𝒌 = 𝟎.

𝑢
Ԧ𝑣

𝑎1𝑏2 − 𝑎2𝑏1 > 0

The Convex Hull Problem

■ Given a set P of points in the plane,

the Convex Hull of P is the smallest convex polygon that contains P.

The Convex Hull Problem

■ Given a set P of points in the plane,

the Convex Hull of P is the smallest convex polygon that contains P.

CH(𝑃)

■ Given a set P of points in the plane,

the Convex Hull of P is the smallest convex polygon that contains P.

Definition. A point v  P is a vertex of Convex Hull of P if

there exists no 𝑞, 𝑟 ∈ CH 𝑃 such that 𝑣 = (𝑞 + 𝑟)/2.

A characterization of

the hull vertices.

CH(𝑃)

The Convex Hull Problem

■ The Convex Hull can be constructed in O(n log n) time.

– There are many ways to do this.

– In the following, we will see the Graham Scan method,

which requires only sorting and products of the vectors.

Observation

■ Imagine that you are walking along the boundary of the convex hull in

counter-clockwise order.

– Then, you always make left-turns at the vertices.

The Graham Scan Algorithm

1. First, pick the point with smallest y-coordinates.

If ties happen, further pick the vertex with the smallest x-coordinate.

Let this point be 𝑝1.

– 𝑝1 must be one of the vertices of the convex hull.

2. Sort the remaining vertices according to the vectors formed from 𝑝1 to

them in counter-clockwise order. Break ties according to their lengths.

– Use cross-product (for counter-clockwise order) and

inner-product (for the length) to do the comparison.

■ Traverse the points in sorted order to form the hull boundary.

– During the process, make sure that

the last three vertices always form a left-turn.

– If not, the second last vertex is deleted until the above is true

or only two vertices are left.

The Graham Scan Algorithm

3. Let L = { 𝑝1 } be the initial list of hull vertices.

4. Traverse the remaining points in sorted order.

– Add the current point to the end of L.

– While 𝐿 ≥ 3 and the last three points of L does not form a left-turn

■ Delete the second-last point from L

5. Output 𝐿.

This process takes 𝑂(𝑛) time.

The overall complexity is 𝑂(𝑛 log 𝑛).

