There are 5 problems, accounting for 100% in total.

Problem 1 (20%). (Problem 1-1, Comparison of running times). For each function f(n) and time t in the following table, determine the largest size n of a problem that can be solved in time t, assuming that the algorithm to solve the problem takes f(n) microseconds.

	1	1	1	1	1	1	1
	second	minute	hour	day	month	year	century
$\log n$							
\sqrt{n}							
n							
$n\log n$							
n^2							
n^3							
2^n							
n!							

Problem 2 (20%). Implement the BucketSort algorithm. Conduct an experiment on "Insertion-Sort", "Merge-Sort", and "Bucket-Sort" algorithms and record the running times of these algorithms for n randomly generated integers for different n. Use a table and a figure to summarize your result.

Problem 3 (20%). Using Figure 2.4 (in the textbook) as a model, illustrate the operation of merge sort on the array $A = \{3, 41, 52, 26, 38, 57, 9, 49\}$.

Problem 4 (20%). Describe a $\Theta(n \log n)$ -time algorithm that, given a set S of n integers and another integer x, determines whether or not there exists two elements in S whose sum is exactly x.

Problem 5 (20%). Prove the following statements.

- 1. If f(n) = O(g(n)) and g(n) = O(h(n)), then f(n) = O(h(n)).
- 2. f(n) = O(g(n)) if and only if

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = O(1).$$

- 3. f(n) = o(g(n)) if and only if $g(n) = \omega(f(n))$.
- 4. f(n) = o(g(n)) if and only if

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = o(1).$$