Introduction to Algorithms

Mong-Jen Kao (5 &%§8)

Tuesday 10:10 — 12:00
Thursday 15:30 — 16:20

Data Structures

Min- (Max-) Heap / Priority Queue

Priority Queue

m Suppose that we want to maintain a set A of elements, each
associated with a key, so as to support the following operations.

- Insert(A, X) —to insert a given element x into A.

- Maximum(A) — to return the largest element in A.

- Extract-Max(A) — to remove and return the largest element from A.

- Increase-Key(A, X, k)
— to increase the value of the elements x’s key to the new value k.

| With max-heap,
Priority Queue ~ these operations can be done in...

m Suppose that we want to maintain a set A of elements, each
associated with a key, so as to support the following operations.

- Insert(A, X) —to insert a given element x into A.

0(1) time. — MaXimum(A) — to return the Iargest element in A. """""""""""""

- Extract-Max(A) — to remove and return the largest element from A.

- Increase-Key(A, X, k)
— to increase the value of the elements x’s key to the new value k.

Maximum Heap

m The maximum heap is a nearly complete binary tree
such that

- The nodes in the tree are comparable to each other.

- (Max-Heap property)

For any non-root node v and its parent p(v),
we always have

p(v) = v .

Maximum Heap —
~ The max-heap property holds

@ ~ atevery non-root vertex.

il tetellutefutiiuintetattuletetuieintetetisietetetteteiul :
~ Except for this part,
a Q G ~ Itisacomplete binary tree.

Representing a Binary Tree

m In general, to record the structure of a binary tree T = (V, E),
for each node v € IV, we need to store the following information.

- The parent node of v, denoted p(v).

- The left- and right- children nodes of v,

denoted ¢(v) and r(v), respectively.

struct node { i
int val; i

node *p, *1, *r; : /

Representing a Nearly-Complete Binary Tree

m For a nearly-complete binary tree T = (V, E),
we can use an array A of size O(|V|) to represent it.

- The root is A[1]. @
- Given anindexi = 1, ’
m Parent(i) = |i/2]. @

m Left(i) = 2i. / \

a Right(i) = 2i+1. @

m For a nearly-complete binary tree T = (V, E),
we can use an array A of size O(|V|) to represent it.

- Therootis A[1].

- Givenanindexi > 1,

m Parent(i) = |i/2]. |

m Left(i) == 2i. @

m Right(i) = 2i+1. / \

(2

1 2 .. V|

Properties of Array-Representation

m Let A be an array representation of a nearly complete binary tree
T = (V,E) and let n = |[V|. We have the following properties.

- Each of the nodes at
In/2] + 1, In/2|+2, - , n

IS a leaf node.

- Forany 1 < h < |logn]| + 1, there are at most

n/2" e .

In the following,

nodes at height h. | _
~we assume array representation.

Maintain the Heap Property

m We introduce a procedure for maintaining a max-heap.

m The Max-Heapify(A4,i) procedure takes as input
- A nearly complete binary tree T with root i, where

- Both of Left(i) and Right(i), if not empty, are both max-heaps.

m The Max-Heapify procedure guarantees that T is a max-heap
after execution in 0(log|T|) time.

m Max-Heapify(4,i)
-- To assure the heap property for the tree rooted at i.
-- Assumption: Left(i) and Right(i), if not empty, are max-heaps.

B. If 2i < heap_size|A] and A[2i] > Alk], then k := 2i.
If 2i + 1 < heap_size|A] and A|2i + 1] > Alk], then k := 2i + 1.

C. If k #1i, then
m Exchange Ali] with A[k].
m Max-Heapify(A4, k).

 The largest element
~ from A[i], A[2i], A[2i +1]. G @

__

The largest element
from Ali], A[2i], A[2i + 1].

The largest element
from Ali], A[2i], A[2i + 1].

The subtree rooted at i Is
now a max-heap.

Building a Heap in O0(n) Time

Building the Heap in O(n) Time
m The Build-Max-Heap(4) procedure takes an array A as input and

builds a max-heap for the elements in A in place.

- This procedure proceeds in a bottom-up manner and
uses the Max-Heapify procedure to guarantee the heap property.

m Build-Max-Heap(4)

A. heap_size[A] := length[A].

B. fori =length[A] downto 1, do
Max-Heapify(4, i).

Analysis of Build-Max-Heap

m Recall that,
the call to Max-Heapify on an element at height h takes 0(h) time.

m Forany 1 < h < |logn| + 1, there are at most |[n/2"| nodes
at height h.

m Hence, the total running time of Build-Max-Heap is

> [alow - ofn g4

1<hs<l|logn|+1 h=0

Analysis of Build-Max-Heap

m To bound },.,h/2", observe that

REES
1—x

120

holds for all x with |x| < 1.

m Differentiating both sides of the equation on x, we obtain that

. 1
Z i-xtt = 1=)2 holds for any |x| < 1.

=1

Analysis of Build-Max-Heap

m Differentiating both sides of the equation w.r.t. x, we obtain that

. 1
2 i-xtTl = =) holds for any |x| < 1.

i>1
m Taking x = 1/2, we obtain that
1/2
z - = 2
2n (1—-1/2)2

h=0

m Hence,

Extracting the Maximum Element

Extracting the Maximum Element

m To extract the maximum element from a max-heap 4,
we swap the root with the last element, and perform Max-Heapify.

- The time it takes is O(logn).

m Extract-Max(A)

A. Exchange A[1] with A|heap_size[A].
B. Decrease heap_size[A] by 1 and call Max-Heapify(4, 1).
C. Return Alheap_size[A] + 1].

The Heapsort Algorithm

Heapsort

m With the procedure we have so far,
we can do sorting in O(nlogn) time with max-heap.

m Heapsort(4)

A. Build-Max-Heap(A4).
B. Fori = length[A] down to 2, do
Extract-Max(A4).

Other Operations

Increase the Value of an Element

m We can change the value of an element. After that, we need to
ensure the heap property. Overall it takes O (logn) time.

- Perform Max-Heapify if the value is decreased.

- Otherwise, we proceed upward if the value Is increased.

m Max-Heap-Increase-Key(4, i, key) -- Assumption: key > Ali].

B. Whilei > 1and Ali/2] < Ali], do
m Exchange A[i] with A[i/2] and seti « i/2.

Insert a new Element

m To insert an element, we insert it at the end of the heap and perform
the increase-key operation.

- The time it takes is O(logn).

m Max-Heap-Insert(4, key)

A. Increase heap_size[A] by 1.

B. Call Max-Heap-Increase-Key(4, heap_size|A], key).

Priority Queues

| With max-heap,
Priority Queue ~ these operations can be done in...

m Suppose that we want to maintain a set A of elements, each
associated with a key, so as to support the following operations.

- Insert(A, X) —to insert a given element x into A.

0(1) time. — MaXimum(A) — to return the Iargest element in A. """""""""""""

- Extract-Max(A) — to remove and return the largest element from A.

- Increase-Key(A, X, k)
— to increase the value of the elements x’s key to the new value k.

Mergeable Heaps — A Note

Mergeable Heaps

m Mergeable Heaps refer to the data structures
that supports the following operations.

- Make Heap() — to create and return an empty heap.
- Insert(H, x) — to insert a given element x into H.
- Minimum(H) — to return the smallest element in H.

- Extract-Min(H) — to remove and return the smallest element from H.

- Union(H¢, H,) — to create and return the union of H; and H,.
The heaps H; and H, are destroyed by this operation.

Mergeable Heaps

m This type of structures often supports the following two operations
as well.

- Decrease-Key(H, x, k) — to assign the element x a smaller key k.

- Delete (H, x) — to delete a given node x from H.

Mergeable Heaps

Make-Heap
Insert
Minimum
Extract-Min
Union
Decrease-Key
Delete

6(1)
O(logn)
6(1)
O(logn)
O(n)
O(logn)
O(logn)

As the semesters are shortened,

0(1)
O(logn)
O(logn)
O(logn)
O(logn)
O(logn)
O(logn)

0(1)
0(1)
0(1)
O(logn)
0(1)
0(1)
O(logn)

we may not be able to examine them in this semester.

