
Introduction to Algorithms

Mong-Jen Kao (高孟駿)

Tuesday 10:10 – 12:00

Thursday 15:30 – 16:20

Data Structures

Particular ways of storing data to support special operations.

Min- (Max-) Heap / Priority Queue

Storing semi-dynamic data to extract the minimum element fast.

Priority Queue

■ Suppose that we want to maintain a set 𝐴 of elements, each

associated with a key, so as to support the following operations.

– Insert(A, x) – to insert a given element 𝑥 into 𝐴.

– Maximum(A) – to return the largest element in 𝐴.

– Extract-Max(A) – to remove and return the largest element from 𝐴.

– Increase-Key(A, x, k)

– to increase the value of the elements 𝑥’s key to the new value 𝑘.

Priority Queue

■ Suppose that we want to maintain a set 𝐴 of elements, each

associated with a key, so as to support the following operations.

– Insert(A, x) – to insert a given element 𝑥 into 𝐴.

– Maximum(A) – to return the largest element in 𝐴.

– Extract-Max(A) – to remove and return the largest element from 𝐴.

– Increase-Key(A, x, k)

– to increase the value of the elements 𝑥’s key to the new value 𝑘.

With max-heap,

these operations can be done in…

𝑂 log 𝑛 time.

𝑂 1 time.

𝑂 log 𝑛 time.

𝑂 log 𝑛 time.

Maximum Heap

■ The maximum heap is a nearly complete binary tree

such that

– The nodes in the tree are comparable to each other.

– (Max-Heap property)

For any non-root node 𝑣 and its parent 𝑝 𝑣 ,

we always have

𝑝 𝑣 ≥ 𝑣 .

Maximum Heap

16

14 10

8 7 9 3

2 4 1

The max-heap property holds

at every non-root vertex.

Except for this part,

it is a complete binary tree.

Representing a Binary Tree

■ In general, to record the structure of a binary tree 𝑇 = (𝑉, 𝐸),

for each node 𝑣 ∈ 𝑉, we need to store the following information.

– The parent node of 𝑣, denoted 𝑝 𝑣 .

– The left- and right- children nodes of 𝑣,

denoted ℓ 𝑣 and 𝑟 𝑣 , respectively.

𝒑 𝒗

𝒗

ℓ 𝒗 𝒓 𝒗

struct node {

int val;

node *p, *l, *r;

};

Representing a Nearly-Complete Binary Tree

■ For a nearly-complete binary tree 𝑇 = (𝑉, 𝐸),

we can use an array 𝑨 of size 𝑶 𝑽 to represent it.

– The root is 𝐴 1 .

– Given an index 𝑖 ≥ 1,

■ Parent 𝑖 ≔ Τ𝑖 2 .

■ Left 𝑖 ≔ 2𝑖 .

■ Right 𝑖 ≔ 2𝑖 + 1 .

Τ𝒊 𝟐

𝒊

𝟐𝒊 𝟐𝒊 + 𝟏

■ For a nearly-complete binary tree 𝑇 = (𝑉, 𝐸),

we can use an array 𝑨 of size 𝑶 𝑽 to represent it.

– The root is 𝐴 1 .

– Given an index 𝑖 ≥ 1,

■ Parent 𝑖 ≔ Τ𝑖 2 .

■ Left 𝑖 ≔ 2𝑖 .

■ Right 𝑖 ≔ 2𝑖 + 1 .

𝐴 1

Τ𝒊 𝟐

𝒊

𝟐𝒊 𝟐𝒊 + 𝟏

root

1

A

2 𝑉⋯

Properties of Array-Representation

■ Let 𝐴 be an array representation of a nearly complete binary tree

𝑇 = (𝑉, 𝐸) and let 𝒏 = 𝑽 . We have the following properties.

– Each of the nodes at

Τ𝑛 2 + 1, Τ𝑛 2 + 2, ⋯⋯ , 𝑛

is a leaf node.

– For any 1 ≤ ℎ ≤ log 𝑛 + 1, there are at most

Τ𝑛 2ℎ

nodes at height ℎ. In the following,

we assume array representation.

Maintain the Heap Property

■ We introduce a procedure for maintaining a max-heap.

■ The Max-Heapify 𝐴, 𝑖 procedure takes as input

– A nearly complete binary tree 𝑇 with root 𝑖, where

– Both of Left 𝑖 and Right 𝑖 , if not empty, are both max-heaps.

■ The Max-Heapify procedure guarantees that 𝑇 is a max-heap

after execution in 𝑂 log 𝑇 time.

■ Max-Heapify 𝐴, 𝑖

-- To assure the heap property for the tree rooted at 𝑖.

-- Assumption: Left 𝑖 and Right 𝑖 , if not empty, are max-heaps.

A. Let 𝑘 ≔ 𝑖.

B. If 2𝑖 ≤ ℎ𝑒𝑎𝑝_𝑠𝑖𝑧𝑒 𝐴 and 𝐴 2𝑖 > 𝐴 𝑘 , then 𝑘 ≔ 2𝑖.

If 2𝑖 + 1 ≤ ℎ𝑒𝑎𝑝_𝑠𝑖𝑧𝑒 𝐴 and 𝐴 2𝑖 + 1 > 𝐴 𝑘 , then 𝑘 ≔ 2𝑖 + 1.

C. If 𝑘 ≠ 𝑖, then

■ Exchange 𝐴 𝑖 with 𝐴 𝑘 .

■ Max-Heapify 𝐴, 𝑘 .

16

4 10

14 7 9 3

2 8 1

The largest element

from 𝐴 𝑖 , 𝐴 2𝑖 , 𝐴 2𝑖 + 1 .

𝒊

𝒌

16

14 10

4 7 9 3

2 8 1

The largest element

from 𝐴 𝑖 , 𝐴 2𝑖 , 𝐴 2𝑖 + 1 .

𝒊

𝒌

16

14 10

8 7 9 3

2 4 1

The largest element

from 𝐴 𝑖 , 𝐴 2𝑖 , 𝐴 2𝑖 + 1 .

𝒊

16

14 10

8 7 9 3

2 4 1

The subtree rooted at 𝑖 is

now a max-heap.

𝒊

Building a Heap in 𝑂 𝑛 Time

Building the Heap in 𝑂 𝑛 Time

■ The Build-Max-Heap 𝐴 procedure takes an array 𝐴 as input and

builds a max-heap for the elements in 𝐴 in place.

– This procedure proceeds in a bottom-up manner and

uses the Max-Heapify procedure to guarantee the heap property.

■ Build-Max-Heap 𝐴

A. ℎ𝑒𝑎𝑝_𝑠𝑖𝑧𝑒[𝐴] ≔ length 𝐴 .

B. for 𝑖 = length 𝐴 down to 1, do

Max-Heapify 𝐴, 𝑖 .

Analysis of Build-Max-Heap

■ Recall that,

the call to Max-Heapify on an element at height ℎ takes 𝑂 ℎ time.

■ For any 1 ≤ ℎ ≤ log 𝑛 + 1, there are at most Τ𝑛 2ℎ nodes

at height ℎ.

■ Hence, the total running time of Build-Max-Heap is

1≤ℎ≤ log 𝑛 +1

𝑛

2ℎ
⋅ 𝑂 ℎ = 𝑂 𝑛 ⋅

ℎ≥0

ℎ

2ℎ
.

Analysis of Build-Max-Heap

■ To bound σℎ≥0 Τℎ 2ℎ, observe that

𝑖≥0

𝑥𝑖 =
1

1 − 𝑥

holds for all 𝑥 with 𝑥 < 1.

■ Differentiating both sides of the equation on 𝑥, we obtain that

𝑖≥1

𝑖 ⋅ 𝑥𝑖−1 =
1

1 − 𝑥 2
holds for any 𝑥 < 1.

Analysis of Build-Max-Heap

■ Differentiating both sides of the equation w.r.t. 𝑥, we obtain that

𝑖≥1

𝑖 ⋅ 𝑥𝑖−1 =
1

1 − 𝑥 2
holds for any 𝑥 < 1.

■ Taking 𝑥 = 1/2, we obtain that

ℎ≥0

ℎ

2ℎ
=

Τ1 2

1 − Τ1 2 2
= 2.

■ Hence,

1≤ℎ≤ log 𝑛 +1

𝑛

2ℎ
⋅ 𝑂 ℎ = 𝑂 𝑛 ⋅

ℎ≥0

ℎ

2ℎ
= 𝑂 𝑛 .

Extracting the Maximum Element

Extracting the Maximum Element

■ To extract the maximum element from a max-heap 𝐴,

we swap the root with the last element, and perform Max-Heapify.

– The time it takes is 𝑂 log 𝑛 .

■ Extract-Max 𝐴

A. Exchange 𝐴 1 with 𝐴 ℎ𝑒𝑎𝑝_𝑠𝑖𝑧𝑒 𝐴 .

B. Decrease ℎ𝑒𝑎𝑝_𝑠𝑖𝑧𝑒[𝐴] by 1 and call Max-Heapify 𝐴, 1 .

C. Return 𝐴 ℎ𝑒𝑎𝑝_𝑠𝑖𝑧𝑒 𝐴 + 1 .

The Heapsort Algorithm

Heapsort

■ With the procedure we have so far,

we can do sorting in 𝑂 𝑛 log 𝑛 time with max-heap.

■ Heapsort 𝐴

A. Build-Max-Heap 𝐴 .

B. For 𝑖 = length 𝐴 down to 2, do

Extract-Max 𝐴 .

Other Operations

Increase the Value of an Element

■ We can change the value of an element. After that, we need to

ensure the heap property. Overall it takes 𝑂 log 𝑛 time.

– Perform Max-Heapify if the value is decreased.

– Otherwise, we proceed upward if the value is increased.

■ Max-Heap-Increase-Key 𝐴, 𝑖, 𝑘𝑒𝑦 -- Assumption: 𝑘𝑒𝑦 > 𝐴 𝑖 .

A. 𝐴 𝑖 ← 𝑘𝑒𝑦.

B. While 𝑖 > 1 and 𝐴 𝑖/2 < 𝐴 𝑖 , do

■ Exchange 𝐴[𝑖] with 𝐴 𝑖/2 and set 𝑖 ← 𝑖/2.

Insert a new Element

■ To insert an element, we insert it at the end of the heap and perform

the increase-key operation.

– The time it takes is 𝑂 log 𝑛 .

■ Max-Heap-Insert 𝐴, 𝑘𝑒𝑦

A. Increase ℎ𝑒𝑎𝑝_𝑠𝑖𝑧𝑒[𝐴] by 1.

B. Call Max-Heap-Increase-Key(𝐴, ℎ𝑒𝑎𝑝_𝑠𝑖𝑧𝑒 𝐴 , 𝑘𝑒𝑦).

Priority Queues

Priority Queue

■ Suppose that we want to maintain a set 𝐴 of elements, each

associated with a key, so as to support the following operations.

– Insert(A, x) – to insert a given element 𝑥 into 𝐴.

– Maximum(A) – to return the largest element in 𝐴.

– Extract-Max(A) – to remove and return the largest element from 𝐴.

– Increase-Key(A, x, k)

– to increase the value of the elements 𝑥’s key to the new value 𝑘.

With max-heap,

these operations can be done in…

𝑂 log 𝑛 time.

𝑂 1 time.

𝑂 log 𝑛 time.

𝑂 log 𝑛 time.

Mergeable Heaps – A Note

Mergeable Heaps

■ Mergeable Heaps refer to the data structures

that supports the following operations.

– Make_Heap() – to create and return an empty heap.

– Insert(H, x) – to insert a given element 𝑥 into 𝐻.

– Minimum(H) – to return the smallest element in 𝐻.

– Extract-Min(H) – to remove and return the smallest element from 𝐻.

– Union(𝑯𝟏, 𝑯𝟐) – to create and return the union of 𝐻1 and 𝐻2.

The heaps 𝐻1 and 𝐻2 are destroyed by this operation.

Mergeable Heaps

■ This type of structures often supports the following two operations

as well.

– Decrease-Key(𝐻, 𝑥, 𝑘) – to assign the element 𝑥 a smaller key 𝑘.

– Delete (H, x) – to delete a given node 𝑥 from 𝐻.

Mergeable Heaps

Procedure
Binary Heap

(worst-case)

Binomial Heap

(worst-case)

Fibonacci Heap

(amortized/average)

Make-Heap Θ 1 Θ 1 Θ 1

Insert Θ log 𝑛 Θ log 𝑛 Θ 1

Minimum Θ 1 Θ log 𝑛 Θ 1

Extract-Min Θ log 𝑛 Θ log 𝑛 Θ log 𝑛

Union Θ 𝑛 Θ log 𝑛 Θ 1

Decrease-Key Θ log 𝑛 Θ log 𝑛 Θ 1

Delete Θ log 𝑛 Θ log 𝑛 Θ log 𝑛

As the semesters are shortened,

we may not be able to examine them in this semester.

