Introduction to **Algorithms**

Mong-Jen Kao (高孟駿) Tuesday 10:10 – 12:00 Thursday 15:30 – 16:20

Data Structures

Particular ways of storing data to support special operations.

Min- (Max-) Heap / Priority Queue

Storing semi-dynamic data to extract the minimum element fast.

Priority Queue

- Suppose that we want to maintain a set A of *elements, each associated with a <u>key</u>*, so as to support the following operations.
 - **Insert(A, x)** to insert a given element x into A.
 - **Maximum(A)** to return the largest element in *A*.
 - Extract-Max(A) to remove and return the largest element from A.
 - Increase-Key(A, x, k)
 - to increase the value of the elements x's key to the new value k.

Priority Queue

With <u>max-heap</u>,

these operations can be done in...

 $O(\log n)$ time.

- Suppose that we want to maintain a set A of *elements, each associated with a <u>key</u>*, so as to support the following operations.
 - **Insert(A, x)** to insert a given element x into A.
- O(1) time. Maximum(A) to return the largest element in A.
 - **Extract-Max(A)** to remove and return the largest element from A.
 - Increase-Key(A, x, k)

 $O(\log n)$ time.

- to increase the value of the elements x's key to the new value k.

Maximum Heap

- The maximum heap is a <u>nearly complete binary tree</u> such that
 - The nodes in the tree <u>are comparable</u> to each other.
 - (*Max-Heap property*)

For any non-root node v and its parent p(v), we always have

 $p(v) \geq v$.

Representing a Binary Tree

- In general, to record the structure of a binary tree T = (V, E), for each node $v \in V$, we need to store the following information.
 - The parent node of v, denoted p(v).
 - The left- and right- children nodes of v, denoted $\ell(v)$ and r(v), respectively.

```
struct node {
    int val;
    node *p, *1, *r;
};
```


Representing a Nearly-Complete Binary Tree

- For a nearly-complete binary tree T = (V, E), we can use **an array** *A* **of size** O(|V|) to represent it.
 - The root is A[1].
 - Given an index $i \ge 1$,
 - Parent(i) := $\lfloor i/2 \rfloor$.
 - Left $(i) \coloneqq 2i$.
 - Right(i) \coloneqq 2i + 1.

- For a nearly-complete binary tree T = (V, E), we can use **an array A of size O**(|**V**|) to represent it.
 - The root is A[1].
 - Given an index $i \ge 1$,
 - Parent(i) := $\lfloor i/2 \rfloor$.
 - Left $(i) \coloneqq 2i$.
 - Right(i) \coloneqq 2i + 1.

Properties of Array-Representation

- Let *A* be an array representation of a nearly complete binary tree T = (V, E) and let n = |V|. We have the following properties.
 - Each of the nodes at

$$\lfloor n/2 \rfloor + 1$$
, $\lfloor n/2 \rfloor + 2$,, n

is a leaf node.

- For any $1 \le h \le \lfloor \log n \rfloor + 1$, there are at most

 $[n/2^{h}]$

nodes at height h.

In the following, we assume array representation.

Maintain the Heap Property

- We introduce a procedure for maintaining a max-heap.
- The Max-Heapify(A, i) procedure takes as input
 - A nearly complete binary tree T with root i, where
 - Both of Left(i) and Right(i), if not empty, are both max-heaps.
- The Max-Heapify procedure guarantees that *T* is a max-heap after execution in $O(\log|T|)$ time.

• Max-Heapify(A, i)

- -- To assure the heap property for the tree rooted at *i*.
- -- Assumption: Left(i) and Right(i), if not empty, are max-heaps.

A. Let $k \coloneqq i$.

- B. If $2i \le heap_size[A]$ and A[2i] > A[k], then $k \coloneqq 2i$. If $2i + 1 \le heap_size[A]$ and A[2i + 1] > A[k], then $k \coloneqq 2i + 1$.
- C. If $k \neq i$, then
 - Exchange A[i] with A[k].
 - Max-Heapify(A, k).

Building a Heap in O(n) Time

Building the Heap in O(n) Time

- The Build-Max-Heap(A) procedure takes an array A as input and builds a max-heap for the elements in A in place.
 - This procedure proceeds in a bottom-up manner and uses the Max-Heapify procedure to guarantee the heap property.

Build-Max-Heap(A)

A. $heap_size[A] \coloneqq length[A]$.

B. for i = length[A] down to 1, do Max-Heapify(A, i).

Analysis of Build-Max-Heap

Recall that,

the call to Max-Heapify on an element at height h takes O(h) time.

- For any $1 \le h \le \lfloor \log n \rfloor + 1$, there are at most $\lfloor n/2^h \rfloor$ nodes at height *h*.
- Hence, the total running time of Build-Max-Heap is

$$\sum_{1 \le h \le \lfloor \log n \rfloor + 1} \left\lceil \frac{n}{2^h} \right\rceil \cdot O(h) = O\left(n \cdot \sum_{h \ge 0} \frac{h}{2^h}\right)$$

Analysis of Build-Max-Heap

• To bound $\sum_{h\geq 0} h/2^h$, observe that

$$\sum_{i\geq 0} x^i = \frac{1}{1-x}$$

holds for all x with |x| < 1.

• Differentiating both sides of the equation on x, we obtain that

$$\sum_{i \ge 1} i \cdot x^{i-1} = \frac{1}{(1-x)^2} \text{ holds for any } |x| < 1.$$

Analysis of Build-Max-Heap

• Differentiating both sides of the equation w.r.t. x, we obtain that

$$\sum_{i \ge 1} i \cdot x^{i-1} = \frac{1}{(1-x)^2} \text{ holds for any } |x| < 1.$$

• Taking x = 1/2, we obtain that

$$\sum_{h\geq 0} \frac{h}{2^h} = \frac{1/2}{(1-1/2)^2} = 2.$$

■ Hence,

$$\sum_{1 \le h \le \lfloor \log n \rfloor + 1} \left\lceil \frac{n}{2^h} \right\rceil \cdot O(h) = O(n) \cdot \sum_{h \ge 0} \frac{h}{2^h} = O(n).$$

Extracting the Maximum Element

Extracting the Maximum Element

- To extract the maximum element from a max-heap A, we swap the root with the last element, and perform Max-Heapify.
 - The time it takes is $O(\log n)$.

- Extract-Max(*A*)
 - A. Exchange A[1] with $A[heap_size[A]]$.
 - B. Decrease $heap_size[A]$ by 1 and call Max-Heapify(A, 1).
 - C. Return $A[heap_size[A] + 1]$.

The Heapsort Algorithm

Heapsort

• With the procedure we have so far, we can do sorting in $O(n \log n)$ time with max-heap.

```
Heapsort(A)
```

```
A. Build-Max-Heap(A).
```

B. For i = length[A] down to 2, do

Extract-Max(A).

Other Operations

Increase the Value of an Element

- We can change the value of an element. After that, we need to ensure the heap property. Overall it takes $O(\log n)$ time.
 - Perform Max-Heapify if the value is decreased.
 - Otherwise, we proceed upward if the value is increased.

• Max-Heap-Increase-Key(A, i, key) -- Assumption: key > A[i].

A. $A[i] \leftarrow key$.

B. While i > 1 and A[i/2] < A[i], do

• Exchange A[i] with A[i/2] and set $i \leftarrow i/2$.

Insert a new Element

- To insert an element, we insert it at the end of the heap and perform the increase-key operation.
 - The time it takes is $O(\log n)$.

Max-Heap-Insert(A, key)

A. Increase *heap_size*[A] by 1.

B. Call Max-Heap-Increase-Key(*A*, *heap_size*[*A*], *key*).

Priority Queues

Priority Queue

With <u>max-heap</u>,

these operations can be done in...

 $O(\log n)$ time.

- Suppose that we want to maintain a set A of *elements, each associated with a <u>key</u>*, so as to support the following operations.
 - **Insert(A, x)** to insert a given element x into A.
- O(1) time. Maximum(A) to return the largest element in A.
 - **Extract-Max(A)** to remove and return the largest element from A.
 - Increase-Key(A, x, k)

 $O(\log n)$ time.

- to increase the value of the elements x's key to the new value k.

Mergeable Heaps – A Note

Mergeable Heaps

- Mergeable Heaps refer to the data structures that supports the following operations.
 - Make_Heap() to create and return an empty heap.
 - Insert(H, x) to insert a given element x into H.
 - Minimum(H) to return the smallest element in H.
 - Extract-Min(H) to remove and return the smallest element from H.
 - Union(H_1 , H_2) to create and return the union of H_1 and H_2 . The heaps H_1 and H_2 are destroyed by this operation.

Mergeable Heaps

- This type of structures often supports the following two operations as well.
 - Decrease-Key(H, x, k) to assign the element x a smaller key k.
 - Delete (H, x) to delete a given node x from H.

Mergeable Heaps

Procedure	Binary Heap (worst-case)	Binomial Heap (worst-case)	Fibonacci Heap (amortized/average)
Make-Heap	Θ(1)	$\Theta(1)$	Θ(1)
Insert	$\Theta(\log n)$	$\Theta(\log n)$	$\Theta(1)$
Minimum	$\Theta(1)$	$\Theta(\log n)$	$\Theta(1)$
Extract-Min	$\Theta(\log n)$	$\Theta(\log n)$	$\Theta(\log n)$
Union	$\Theta(n)$	$\Theta(\log n)$	$\Theta(1)$
Decrease-Key	$\Theta(\log n)$	$\Theta(\log n)$	$\Theta(1)$
Delete	$\Theta(\log n)$	$\Theta(\log n)$	$\Theta(\log n)$

As the semesters are shortened,

we may not be able to examine them in this semester.