
Introduction to Algorithms

Mong-Jen Kao (高孟駿)

Tuesday 10:10 – 12:00

Thursday 15:30 – 16:20

Divide-and-Conquer

– More Examples

More on recursion for problem solving.

Median & Order Statistics

Select the k-th smallest element in 𝑂 𝑛 time.

The k-th Order Selection Problem

■ Given a sequence of numbers 𝐴 = 𝑎1, 𝑎2, … , 𝑎𝑛

and an integer 𝑘 ∈ 1, 𝑛 , find the 𝑘𝑡ℎ-smallest element in 𝐴.

– The naïve approach runs in 𝑂 𝑘𝑛 = 𝑂 𝑛2 time

in the worst-case.

– With sorting, we can do it in 𝑂 𝑛 log 𝑛 time.

The k-th Order Selection Problem

■ Given a sequence of numbers 𝐴 = 𝑎1, 𝑎2, … , 𝑎𝑛

and an integer 𝑘 ∈ 1, 𝑛 , find the 𝑘𝑡ℎ-smallest element in 𝐴.

– The naïve approach runs in 𝑂 𝑘𝑛 = 𝑂 𝑛2 time

in the worst-case.

– With sorting, we can do it in 𝑂 𝑛 log 𝑛 time.

■ We will introduce two algorithms that solves this problem in

– Worst-case 𝑶 𝒏 time, and

– Expected 𝑶 𝒏 time.

Selection in worst-case 𝑂 𝑛 time

To prune an 𝜴 𝟏 -fraction of input in each round.

Selection in Deterministic 𝑂 𝑛 Time

■ Let 𝐴 = 𝑎1, … , 𝑎𝑛 be the input numbers and

𝑘 ∈ 1, 𝑛 be an integer.

W.L.O.G., we may assume that

– 𝒌 ≥ 𝟓. If 𝑘 ≤ 4, the answer can be computed in 𝑂 𝑛 time.

– 𝒏 is a multiple of 𝟓, i.e., 𝑛 = 5𝑔 for some 𝑔 ∈ ℕ.

If not, remove the 𝑟 smallest elements from 𝐴 in 𝑂 𝑛 time,

where 𝑟 ≔ 𝑛 mod 5, and

consider the selection problem for 𝑛′ ≔ 𝑛 − 𝑟 and 𝑘′ ≔ 𝑘 − 𝑟.

Selection in Deterministic 𝑂 𝑛 Time

■ Let 𝐴 = 𝑎1, … , 𝑎𝑛 be the input with 𝒏 = 𝟓𝒈 for some 𝒈 ∈ ℕ and

𝑘 ∈ 1, 𝑛 be an integer.

– Partition 𝐴 into 𝑔 groups of size 5.

– Sort the elements in each group in 𝑂 𝑛 time, and

let 𝐴′ be the set of median elements in these groups.

– Suppose that we have the median element 𝒙 in 𝐴′,

then…

Roughly 𝟑/𝟏𝟎-fraction of the input can be discarded from consideration!

■ Recursive-Section 𝐴, ℓ, 𝑟, 𝑘 -- Select the 𝑘𝑡ℎ element from 𝐴 ℓ…𝑟 .

A. // Preprocess 𝐴 ℓ…𝑟 .

■ Let 𝑛 ≔ 𝑟 − ℓ + 1 and 𝑟 ≔ 𝑛 mod 5.

■ For each 1 ≤ 𝑖 ≤ 𝑟,

swap the 𝑖𝑡ℎ-smallest element in 𝐴 ℓ…𝑟 with 𝐴[ℓ + 𝑖 − 1].

■ If 𝑘 ≤ 𝑟, then return 𝐴 ℓ + 𝑘 − 1 .

■ Otherwise,

set ℓ ← ℓ + 𝑟, 𝑛 ← 𝑛 − 𝑟, 𝑔 = 𝑛/5, and 𝑘 ← 𝑘 − 𝑟.

■ Recursive-Section 𝐴, ℓ, 𝑟, 𝑘 -- Select the 𝑘𝑡ℎ element from 𝐴 ℓ…𝑟 .

A. Preprocess 𝐴 ℓ…𝑟 such that 𝑛 ≔ 𝑟 − ℓ + 1 = 5𝑔.

B. For each 𝑗 = ℓ,… , ℓ + 𝑔 − 1,

sort the 5 elements 𝐴 𝑗 + 𝑖𝑔 0≤𝑖<5 in place.

C. Let 𝑥 ← Recursive-Selection 𝐴, ℓ + 2𝑔, ℓ + 3𝑔 − 1, 𝑔/2 .

D. // Partition 𝐴 ℓ…𝑟 according to 𝑥.

Set 𝑞 ← In-Place-Partition 𝐴, ℓ, 𝑟, 𝑥 and 𝑡 ← 𝑞 − ℓ + 1.

E. If 𝑘 == 𝑡, then return 𝐴 𝑞 .

F. If 𝑘 < 𝑡, then return Recursive-Selection 𝐴, ℓ, 𝑞, 𝑘 .

Otherwise, return Recursive-Selection 𝐴, 𝑞 + 1, 𝑟, 𝑘 − 𝑡 .

𝒂𝟏 𝒂𝟐 𝒂𝒈

𝒂𝒈+𝟏 𝒂𝟐𝒈

𝒂𝟒𝒈+𝟏
𝒂𝟓𝒈

Analysis of Recursive-Selection

■ For the recursion call in step F,

the number of remaining elements is at most

𝑛 − 3 ⋅
𝑔

2
≤ 𝑛 −

3

10
𝑛 =

7

10
𝑛.

■ Hence, the time complexity of this algorithm is

𝑇 𝑛 ≤ 𝑇
𝑛

5
+ 𝑇

7𝑛

10
+ Θ 𝑛 ,

which has a solution 𝑇 𝑛 = 𝑂 𝑛 .

Selection in expected 𝑂 𝑛 time

The quick-select algorithm in ProgHW-III.

Analysis of Quick-Select

■ Let 𝑘 be the input order to find and

𝑎1 < 𝑎2 < ⋯ < 𝑎𝑛

be the input numbers re-indexed in non-descending order.

■ For any 1 ≤ 𝑖 < 𝑗 ≤ 𝑛, let 𝑿𝒊,𝒋 be the indicator variable

for the event that 𝒂𝒊 and 𝒂𝒋 are compared during the execution.

– According to the relative order between 𝑖, 𝑗 and 𝑘,

we consider three cases.

Case I - 𝑖 < 𝑗 ≤ 𝑘

■ The value of 𝑋𝑖,𝑗 is determined only when some number between 𝑎𝑖

to 𝑎𝑘 is selected to be the pivot.

– In this case, 𝑎𝑖 and 𝑎𝑗 is compared only when 𝑎𝑖 or 𝑎𝑗 is picked.

– Hence,
𝐸 𝑋𝑖,𝑗 =

2

𝑘 − 𝑖 + 1
.

𝑎1 𝑎𝑛𝑎𝑖 𝑎𝑗 𝑎𝑘

Case II - 𝑘 ≤ 𝑖 < 𝑗

■ This case is symmetric to the previous one.

– We have
𝐸 𝑋𝑖,𝑗 =

2

𝑗 − 𝑘 + 1
.

𝑎1 𝑎𝑛𝑎𝑖𝑎𝑘 𝑎𝑗

Case III - 𝑖 < 𝑘 < 𝑗

■ In this case, the value of 𝑋𝑖,𝑗 is determined only when some number

between 𝑎𝑖 to 𝑎𝑗 is selected to be the pivot.

– We have
𝐸 𝑋𝑖,𝑗 =

2

𝑗 − 𝑖 + 1
.

𝑎1 𝑎𝑛𝑎𝑖 𝑎𝑘 𝑎𝑗

Analysis of Quick-Select

■ The total number of comparisons for case I is hence

෍

𝑖<𝑗≤𝑘

2

𝑘 − 𝑖 + 1
= ෍

𝑖≤𝑘

𝑘 − 𝑖 ⋅
2

𝑘 − 𝑖 + 1
≤ 2 𝑘 − 1 = 𝑂 𝑛 .

■ Similarly, for case II, we have

෍

𝑘≤𝑖<𝑗

2

𝑗 − 𝑘 + 1
≤ 2 𝑛 − 𝑘 = 𝑂 𝑛 .

Analysis of Quick-Select

■ For case III, the total number of comparisons is

෍

𝑖<𝑘<𝑗

2

𝑗 − 𝑖 + 1
= ෍

1≤𝑖<𝑘

෍

𝑑=𝑘−𝑖+1

𝑛−𝑖
2

𝑑 + 1

≤ 2 ⋅ ෍

1≤𝑖<𝑘

𝐻𝑛−𝑖+1 ≤ 2 ⋅ ෍

1≤𝑖<𝑘

ln 𝑛 − 𝑖 + 1

= 2 ⋅ ln
𝑛

𝑘 − 1
≤ 2 ⋅ ln 2𝑛 = 𝑂 𝑛 .

Analysis of Quick-Select

■ Let 𝑘 be the input order to find and

𝑎1 < 𝑎2 < ⋯ < 𝑎𝑛

be the input numbers re-indexed in non-descending order.

■ For any 1 ≤ 𝑖 < 𝑗 ≤ 𝑛, let 𝑿𝒊,𝒋 be the indicator variable

for the event that 𝒂𝒊 and 𝒂𝒋 are compared during the execution.

– We have
𝐸 ෍

𝑖,𝑗

𝑋𝑖,𝑗 = 𝑂 𝑛 .

Second Proof

■ Let 𝑘 be the input order to find and

𝑎1 < 𝑎2 < ⋯ < 𝑎𝑛

be the input numbers re-indexed in non-descending order.

■ Consider the number of remaining elements after each recursion.

– When a number between 𝑎𝑛/4 and 𝑎3𝑛/4 is picked as pivot,

at least 𝟏/𝟒-fraction of the numbers will be pruned.

– This happens with probability 1/2.

Second Proof

■ Consider the number of remaining elements after each recursion.

– When a number between 𝑎𝑛/4 and 𝑎3𝑛/4 is picked as pivot,

at least 𝟏/𝟒-fraction of the numbers will be pruned.

– This happens with probability 𝑝 ≔ 1/2.

■ Let 𝑌 be the number of recursions before at least 1/4-fraction of

the elements are pruned.

– Then 𝑌 is a geometric distribution with parameter 𝑝 and

𝐸 𝑌 = 1/𝑝 = 2.

Second Proof

■ Let 𝑌 be the number of recursions before at least 1/4-fraction of

the elements are pruned.

– Then 𝑌 is a geometric distribution with parameter 𝑝 and

𝐸 𝑌 = 1/𝑝 = 2.

■ The running time of the algorithm is at most

෍

𝑖≥0

2 ⋅
3

4

𝑖

⋅ 𝑛 = 8𝑛 = 𝑂 𝑛 .

