Introduction to Algorithms

Mong-Jen Kao (5 £§8)

Tuesday 10:10 — 12:00
Thursday 15:30 — 16:20

Divide-and-Conquer

— More Examples

Example 5.

Fast Fourier Transform (FFT)

Fast Conversion

between coefficient representation and point-value representation of a polynomial.

Coefficient Representation of Polynomials

m Traditionally,
we represent a polynomial by the coefficient of its monomials.

- Ex. f = (ay, ay, ..., a,) for a degree n polynomial
f(x) = Z a; - xt .
Osisn
m In this way, for any two degree n polynomials f(x) and g(x),
- f(x) + g(x) can be done in 0(n) time.
- f(x)-g(x) can be done in 0(n?) time.

(Complex-) Root Representation

m It is well-known that, for a degree n polynomial f(x),
- ifry, 1y, ..., 1y, are all of its (potentially be complex) roots and

- q4,95, ..., qx are the corresponding multiplicities of the roots,

then f(x) can be uniquely represented as f(x) = [1;<;<x(x — ;).
m In thisway, f(x) - g(x) can be done in O(n) time.

m However, for n = 5, there is no general way for computing the roots
of a degree-n polynomial.

Point-Value Representation

m The following theorem states that, in general, evaluations for n
distinct input values also uniquely define a degree-n polynomial.

Theorem 1. (Uniqueness of an Interpolating Polynomial)

For any set of n point-value pairs { (x1,v1), --., (¢, Y1) }
suchthatx; # x; forany 1 < i # j < n,

there is a unique polynomial A(x) of degree at most n such that
v = A(xy) forall 1 < k < n.

Given n point-value pairs, the degree-n polynomial is uniguely determined.

Proof of Theorem 1

m The evaluation of the point-value pairs (x{, 1), ..., (x,, ¥,) IS
equivalent to the following matrix operation.

n
L gg e a5 A Yo
1 x, - x5) _ [N
1 x, = X5 An Yn
V(%1 -, %n) non-zero when x;, # x;.

Point-Value Representation

m The following theorem states that, in general, evaluations for n
distinct input values also uniquely defines a degree-n polynomial.

m In this way, for any two degree n polynomials f(x) and g(x)
- f(x) + g(x) can be done in O(n) time.
- f(x)-g(x) can be done in 0(n) time.

m For the conversion between coefficient representation and point-
value representation,

- The naive approach takes 0(n?).

Fast Fourier Transform (FFT)

m For the conversion between coefficient representation and point-
value representation,

- The naive approach takes 0(n?).

- If we choose x4, ..., x,, wisely,
the conversion can be done in O0(nlogn) time!

m For computing C(x) = A(x) - B(x),
where A = (ay, ...,a,), B = (by, ..., b,), and C = (cq, ¢y, ..., Cop)-

- We will choose x; := wgn forall 0 <j < 2n.

j-th complex root of unity.

m For computing C(x) = A(x) - B(x),
where A = (ay, ...,a,), B = (by, ..., b,), and C = (cy, €1, -, Co7)-

- Choose x; := wgn forall 0 <j < 2n.

A= (ayaq, .., a,)

B = (bo,bl,...,bn) C = (COJ Cl""JCZn)
Discrete Fourier Transform (DFT) Inverse DET
(Evaluation) in ®(nlogn) time. (Interpolation)
in @(nlogn).
Pointwise
0 1 2n—1 multiplication
A(w2n), A(@7n), -, A3 in @(n) time.

B(w%,), B(wd,), ..., B(w?r 1) C(w3n), C(whn), -, C(w3h)

Complex Roots of Unity

m [he Euler’s formula states that

0 _

e cosf +1i-sinf

for any 0 € R, where i is the imaginary unit with i? = —1.

- The formula can be proved by Taylor’'s expansion or
by solving the differential equation

A
dx

fG) = -

with f(x) = cosx + i - sin x and the boundary condition f(0) = 1.

This formula is what makes

Complex Roots of Unity allthe magic happen.

______________ Tt

m T[he Euler’'s formula states that, for any 6 € R,

0 _

e cos@ +i-sin@ .

m By taking a),{ = 2Tl t/mn

we know that w)), w3, ..., o1 are the n distinct roots for x™ = 1.

m By the above definitions, for any j, k € Z-,, we have

. . N\ K .
J .k — Tk JY —)k
W; Wy =W, and (wn) = w; .

This formula is what makes

Complex Roots of Unity allthe magic happen

__

m T[he Euler’'s formula states that, for any 6 € R,

0 _

e cos@ +i-sin@ .

m By taking w) = 2™/

we know that w?, w}, ..., w? ! are the n distinct roots for x™ = 1.

m In FFT, we will use (?, f(w’)) forall 0 < j < n to be the point-value
n n

representation for any degree-n polynomial f(x).

The Discrete Fourier Transform (DFT) Problem

Given f := (ay, a4, ..., a,,_1), Where n is a power of 2, compute

f(a),{,:) = Z ak-a),lfj forall0 <j < n.

0<k<n

N Letf O = (ao, az, . (,ln 2) and f 1 — (al, ag,.m Cln 1)
be two degree-n/2 polynomials formed by the even Indexed
coefficients and the odd-indexed coefficients of f reSpectlver

- We have f(x) = fl%(x?) + x - F1H(x?).
| Solve them recursively

and then merge the result.

W, = en = coS— + 1 -Sln—.

Two Properties n n

1. Foranyn =2%>2andany 0 <j <n/2, we have

i\ _ 2]] | Used In the recursive
= W, = Wy, .
n/ . DFT problem.

- Verifiable by the Euler’s formula.

2. Foranyn=2%>2andany 0 <j <n/2, we have

jn/2 _ J .
n = —Wn. - Used when merging
~ theresult.
- Verifiable by the fact that w;,’? = —1. S

m Recursive-FFT(ay, aq, ..., a,_1) Withn = 2% > 1.

D.

If n = 1, then return {a,}.

Let w « 1, A% = (ay, ay, ..., a,_,), and At = (aq,asz, ..., Qp_1).
yl% «Recursive-FFT(Al%).

yltl «Recursive-FFT(A]).

For k <« 0ton/2 — 1, do the following.

] yk=y,£0]+w-yk :

_ 0]
B Yiin/2z = Vg

B W< w-wi.

Return y.

[1]

1
—a)-y,‘[;].

The Fast Fourier Transform (FFT) algorithm

for the DFT Problem.

Interpolation at the Complex Roots of Unity

m Given f(w}) forall 0 < i < n, compute ay, a;, ..., a,_1 such that

flx) = z aj-xj.

0<sj<n
m Recall that

/ 1 1 1 1 1 \
1 wi w2 ws TR .
1 2 4 6 wz(n—l) 0
Wy Wy Wy n aq _
3 6 9 3(n—1) : —
1 w;, Wy, Wy SO :
1 : : : o : D=1
\\ 1 @i ? wi(n—l) wi(n_l) wﬁln—ﬂzjj

Theorem 2.

Forany 0 < j,k <n, the (j, k) entry of ;1 is w;kj/n.

m The (j,j) entryof ;1 -V is

_ —kj kj'
A — Vn]j,j’ — z (wn ! /Tl) ' wnJ

0<k<n

z wﬁ(i’—f) i

0<k<n

m The summationis 1if j =’ and 0 otherwise.

Hence V; 1 -V, =1,.

Interpolation at the Complex Roots of Unity

m Given f(w}) for all 0 < i < n, compute ag, ay, ..., a,_, Such that

flx) = Z aj-xj.

0<sj<n
m By Theorem 2, forany 0 < j < n, we have

g n k n .

0<k<n

m This is exactly the DFT problem if we switch the roles of (ay, ..., a,,—1)
and (yg, ..., Y1), replace w, by w, !, and divide the result by n.

Fast Fourier Transform (FFT)

A= (ayaq .., a,)

B = (bo,bl,...,bn) C = (COJ C1;---;C2n)
Discrete Fourier Transform (DFT) Inverse DET
(Evaluation) in ®(nlogn) time. (Interpolation)

in @(nlogn).
Pointwise
multiplication

A(a)gn),A(a)%n), ...,A(wg,’}‘l) in O(n) time.
B(0%,), B(wl,), ..., B(wZh™) C(w3hn), C(win), ., C(w3R™)

