
Introduction to Algorithms

Mong-Jen Kao (高孟駿)

Tuesday 10:10 – 12:00

Thursday 15:30 – 16:20

Divide-and-Conquer

– More Examples

More on recursion for problem solving.

Example 5.

Fast Fourier Transform (FFT)

Fast Conversion

between coefficient representation and point-value representation of a polynomial.

Coefficient Representation of Polynomials

■ Traditionally,

we represent a polynomial by the coefficient of its monomials.

– Ex. 𝑓 = 𝑎0, 𝑎1, … , 𝑎𝑛 for a degree 𝑛 polynomial

𝑓 𝑥 = ෍

0≤𝑖≤𝑛

𝑎𝑖 ⋅ 𝑥
𝑖 .

■ In this way, for any two degree 𝑛 polynomials 𝑓 𝑥 and 𝑔 𝑥 ,

– 𝑓 𝑥 + 𝑔 𝑥 can be done in 𝑂 𝑛 time.

– 𝑓(𝑥)⋅𝑔(𝑥) can be done in 𝑂 𝑛2 time.

(Complex-) Root Representation

■ It is well-known that, for a degree 𝑛 polynomial 𝑓 𝑥 ,

– if 𝑟1, 𝑟2, … , 𝑟𝑘 are all of its (potentially be complex) roots and

– 𝑞1, 𝑞2, … , 𝑞𝑘 are the corresponding multiplicities of the roots,

then 𝑓 𝑥 can be uniquely represented as 𝑓 𝑥 = ς1≤𝑖≤𝑘 𝑥 − 𝑟𝑖
𝑞𝑖.

■ In this way, 𝑓 𝑥 ⋅ 𝑔 𝑥 can be done in 𝑂 𝑛 time.

■ However, for 𝑛 ≥ 5, there is no general way for computing the roots

of a degree-𝑛 polynomial.

By the well-known Galois Theorem.

Point-Value Representation

■ The following theorem states that, in general, evaluations for 𝑛

distinct input values also uniquely define a degree-𝑛 polynomial.

Theorem 1. (Uniqueness of an Interpolating Polynomial)

For any set of 𝑛 point-value pairs 𝑥1, 𝑦1 , … , 𝑥𝑛, 𝑦𝑛

such that 𝑥𝑖 ≠ 𝑥𝑗 for any 1 ≤ 𝑖 ≠ 𝑗 ≤ 𝑛,

there is a unique polynomial 𝐴 𝑥 of degree at most 𝑛 such that

𝑦𝑘 = 𝐴 𝑥𝑘 for all 1 ≤ 𝑘 ≤ 𝑛.

Given 𝒏 point-value pairs, the degree-𝑛 polynomial is uniquely determined.

Proof of Theorem 1

■ The evaluation of the point-value pairs 𝑥1, 𝑦1 , … , 𝑥𝑛, 𝑦𝑛 is

equivalent to the following matrix operation.

1 𝑥1 ⋯ 𝑥1
𝑛

1 𝑥2 ⋯ 𝑥2
𝑛

⋮
1

⋮
𝑥𝑛

⋱ ⋮
⋯ 𝑥𝑛

𝑛

⋅

𝑎0
𝑎1
⋮
𝑎𝑛

=

𝑦0
𝑦1
⋮
𝑦𝑛

.

■ 𝑉 𝑥1, … , 𝑥𝑛 has determinant ς1≤𝑗<𝑘≤𝑛 𝑥𝑘 − 𝑥𝑗 .

𝑉 𝑥1, … , 𝑥𝑛 non-zero when 𝑥𝑘 ≠ 𝑥𝑗.

𝑉 𝑥1, … , 𝑥𝑛 is invertible. To be proved in HW3.

Point-Value Representation

■ The following theorem states that, in general, evaluations for 𝑛

distinct input values also uniquely defines a degree-𝑛 polynomial.

■ In this way, for any two degree 𝑛 polynomials 𝑓 𝑥 and 𝑔 𝑥

– 𝑓 𝑥 + 𝑔 𝑥 can be done in 𝑂 𝑛 time.

– 𝑓(𝑥)⋅𝑔(𝑥) can be done in 𝑂 𝑛 time.

■ For the conversion between coefficient representation and point-

value representation,

– The naïve approach takes Θ 𝑛2 .

Fast Fourier Transform (FFT)

■ For the conversion between coefficient representation and point-

value representation,

– The naïve approach takes Θ 𝑛2 .

– If we choose 𝑥1, … , 𝑥𝑛 wisely,

the conversion can be done in 𝑶 𝒏 𝐥𝐨𝐠𝒏 time!

■ For computing 𝐶 𝑥 = 𝐴 𝑥 ⋅ 𝐵 𝑥 ,

where 𝐴 = (𝑎0, … , 𝑎𝑛), 𝐵 = 𝑏0, … , 𝑏𝑛 , and 𝐶 = 𝑐0, 𝑐1, … , 𝑐2𝑛 .

– We will choose 𝑥𝑗 ≔ 𝜔2𝑛
𝑗

for all 0 ≤ 𝑗 < 2𝑛.

𝑗-th complex root of unity.

■ For computing 𝑪 𝒙 = 𝑨 𝒙 ⋅ 𝑩 𝒙 ,

where 𝐴 = (𝑎0, … , 𝑎𝑛), 𝐵 = 𝑏0, … , 𝑏𝑛 , and 𝐶 = 𝑐0, 𝑐1, … , 𝑐2𝑛 .

– Choose 𝑥𝑗 ≔ 𝜔2𝑛
𝑗

for all 0 ≤ 𝑗 < 2𝑛.

𝐴 𝜔2𝑛
0 , 𝐴 𝜔2𝑛

1 , … , 𝐴 𝜔2𝑛
2𝑛−1

𝐵 𝜔2𝑛
0 , 𝐵 𝜔2𝑛

1 , … , 𝐵 𝜔2𝑛
2𝑛−1

𝐴 = 𝑎0, 𝑎1, … , 𝑎𝑛

𝐵 = 𝑏0, 𝑏1, … , 𝑏𝑛 𝐶 = 𝑐0, 𝑐1, … , 𝑐2𝑛

𝐶 𝜔2𝑛
0 , 𝐶 𝜔2𝑛

1 , … , 𝐶 𝜔2𝑛
2𝑛−1

Discrete Fourier Transform (DFT)

(Evaluation) in 𝚯 𝒏 𝐥𝐨𝐠𝒏 time.
Inverse DFT

(Interpolation)

in 𝚯 𝒏 𝐥𝐨𝐠𝒏 .
Pointwise

multiplication

in 𝚯 𝒏 time.

Complex Roots of Unity

■ The Euler’s formula states that

𝑒𝑖⋅𝜃 = cos 𝜃 + 𝑖 ⋅ sin 𝜃

for any 𝜃 ∈ ℝ, where 𝑖 is the imaginary unit with 𝑖2 = −1.

– The formula can be proved by Taylor’s expansion or

by solving the differential equation

𝑓 𝑥 = −𝑖 ⋅
d𝑓 𝑥

d𝑥

with 𝑓 𝑥 = cos 𝑥 + 𝑖 ⋅ sin 𝑥 and the boundary condition 𝑓 0 = 1.

Complex Roots of Unity

■ The Euler’s formula states that, for any 𝜃 ∈ ℝ,

𝑒𝑖⋅𝜃 = cos 𝜃 + 𝑖 ⋅ sin 𝜃 .

■ By taking 𝜔𝑛
𝑗
≔ 𝑒2𝜋𝑗⋅𝑖/𝑛,

we know that 𝜔𝑛
0, 𝜔𝑛

1 , … , 𝜔𝑛
𝑛−1 are the 𝑛 distinct roots for 𝑥𝑛 = 1.

■ By the above definitions, for any 𝑗, 𝑘 ∈ ℤ≥0, we have

𝜔𝑛
𝑗
⋅ 𝜔𝑛

𝑘 = 𝜔𝑛
𝑗+𝑘

, and 𝜔𝑛
𝑗

𝑘
= 𝜔𝑛

𝑗⋅𝑘
.

This formula is what makes

all the magic happen.

Complex Roots of Unity

■ The Euler’s formula states that, for any 𝜃 ∈ ℝ,

𝑒𝑖⋅𝜃 = cos 𝜃 + 𝑖 ⋅ sin 𝜃 .

■ By taking 𝜔𝑛
𝑗
≔ 𝑒2𝜋𝑗⋅𝑖/𝑛,

we know that 𝜔𝑛
0, 𝜔𝑛

1 , … , 𝜔𝑛
𝑛−1 are the 𝑛 distinct roots for 𝑥𝑛 = 1.

■ In FFT, we will use 𝜔𝑛
𝑗
, 𝑓 𝜔𝑛

𝑗
for all 0 ≤ 𝑗 < 𝑛 to be the point-value

representation for any degree-𝑛 polynomial 𝑓 𝑥 .

This formula is what makes

all the magic happen.

The Discrete Fourier Transform (DFT) Problem

Solve them recursively

and then merge the result.

Solve them recursively

and then merge the result.

Given 𝑓 ≔ 𝑎0, 𝑎1, … , 𝑎𝑛−1 , where 𝑛 is a power of 2, compute

𝑓 𝜔𝑛
𝑗

= ෍

0≤𝑘<𝑛

𝑎𝑘 ⋅ 𝜔𝑛
𝑘⋅𝑗

for all 0 ≤ 𝑗 < 𝑛.

■ Let 𝑓 0 ≔ 𝑎0, 𝑎2, … , 𝑎𝑛−2 and 𝑓 1 ≔ 𝑎1, 𝑎3, … , 𝑎𝑛−1

be two degree-𝑛/2 polynomials formed by the even-indexed

coefficients and the odd-indexed coefficients of 𝑓, respectively.

– We have 𝑓 𝑥 = 𝑓 0 𝑥2 + 𝑥 ⋅ 𝑓 1 𝑥2 .

Two Properties

1. For any 𝑛 = 2𝑘 ≥ 2 and any 0 ≤ 𝑗 < 𝑛/2, we have

𝜔𝑛
𝑗

2
= 𝜔𝑛

2𝑗
= 𝜔𝑛/2

𝑗
.

– Verifiable by the Euler’s formula.

2. For any 𝑛 = 2𝑘 ≥ 2 and any 0 ≤ 𝑗 < 𝑛/2, we have

𝜔𝑛
𝑗+𝑛/2

= −𝜔𝑛
𝑗
.

– Verifiable by the fact that 𝜔𝑛
𝑛/2

= −1.

𝜔𝑛
𝑖 ≔ 𝑒

2𝜋
𝑛
𝑖 = cos

2𝜋

𝑛
+ 𝑖 ⋅ sin

2𝜋

𝑛
.

Used in the recursive

DFT problem.

Used when merging

the result.

■ Recursive-FFT 𝑎0, 𝑎1, … , 𝑎𝑛−1 with 𝑛 = 2𝑘 ≥ 1.

A. If 𝑛 = 1, then return 𝑎0 .

B. Let 𝜔 ← 1, 𝐴[0] = 𝑎0, 𝑎2, … , 𝑎𝑛−2 , and 𝐴[1] = (𝑎1, 𝑎3, … , 𝑎𝑛−1).

C. 𝑦[0] ←Recursive-FFT 𝐴 0 .

𝑦[1] ←Recursive-FFT 𝐴 1 .

D. For 𝑘 ← 0 to 𝑛/2 − 1, do the following.

■ 𝑦𝑘 = 𝑦𝑘
0
+𝜔 ⋅ 𝑦𝑘

1
.

■ 𝑦𝑘+𝑛/2 = 𝑦𝑘
0
−𝜔 ⋅ 𝑦𝑘

1
.

■ 𝜔 ← 𝜔 ⋅ 𝜔𝑛
1.

E. Return 𝑦. The Fast Fourier Transform (FFT) algorithm

for the DFT Problem.

Interpolation at the Complex Roots of Unity

■ Given 𝑓 𝜔𝑛
𝑖 for all 0 ≤ 𝑖 < 𝑛, compute 𝑎0, 𝑎1, … , 𝑎𝑛−1 such that

𝑓 𝑥 = ෍

0≤𝑗<𝑛

𝑎𝑗 ⋅ 𝑥
𝑗 .

■ Recall that

1 1
1 𝜔𝑛

1
1 1
𝜔𝑛
2 𝜔𝑛

3
⋯ 1
⋯ 𝜔𝑛

𝑛−1

1 𝜔𝑛
2

1 𝜔𝑛
3

𝜔𝑛
4 𝜔𝑛

6

𝜔𝑛
6 𝜔𝑛

9

⋯ 𝜔𝑛
2(𝑛−1)

⋯ 𝜔𝑛
3(𝑛−1)

1 ⋮
1 𝜔𝑛

𝑛−1

⋮ ⋮

𝜔𝑛
2(𝑛−1)

𝜔𝑛
3(𝑛−1)

⋱ ⋮

⋯ 𝜔𝑛
𝑛−1 2

⋅

𝑎0
𝑎1
⋮

𝑎𝑛−1

=

𝑦0
𝑦1
⋮

𝑦𝑛−1

.

𝑉𝑛

■ The 𝑗, 𝑗′ entry of 𝑉𝑛
−1 ⋅ 𝑉𝑛 is

𝑉𝑛
−1 ⋅ 𝑉𝑛 𝑗,𝑗′ = ෍

0≤𝑘<𝑛

𝜔𝑛
−𝑘𝑗

/ 𝑛 ⋅ 𝜔𝑛
𝑘𝑗′

= ෍

0≤𝑘<𝑛

𝜔𝑛
𝑘 𝑗′−𝑗

/ 𝑛 .

■ The summation is 1 if 𝑗 = 𝑗′ and 0 otherwise.

Hence 𝑉𝑛
−1 ⋅ 𝑉𝑛 = 𝐼𝑛.

Theorem 2.

For any 0 ≤ 𝑗, 𝑘 < 𝑛, the 𝑗, 𝑘 entry of 𝑉𝑛
−1 is 𝜔𝑛

−𝑘𝑗
/𝑛.

Interpolation at the Complex Roots of Unity

■ Given 𝑓 𝜔𝑛
𝑖 for all 0 ≤ 𝑖 < 𝑛, compute 𝑎0, 𝑎1, … , 𝑎𝑛−1 such that

𝑓 𝑥 = ෍

0≤𝑗<𝑛

𝑎𝑗 ⋅ 𝑥
𝑗 .

■ By Theorem 2, for any 0 ≤ 𝑗 < 𝑛, we have

𝑎𝑗 =
1

𝑛
⋅ ෍

0≤𝑘<𝑛

𝑦𝑘 ⋅ 𝜔𝑛
−𝑘𝑗

.

■ This is exactly the DFT problem if we switch the roles of 𝑎0, … , 𝑎𝑛−1

and 𝑦0, … , 𝑦𝑛−1 , replace 𝜔𝑛 by 𝜔𝑛
−1, and divide the result by 𝑛.

𝐴 𝜔2𝑛
0 , 𝐴 𝜔2𝑛

1 , … , 𝐴 𝜔2𝑛
2𝑛−1

𝐵 𝜔2𝑛
0 , 𝐵 𝜔2𝑛

1 , … , 𝐵 𝜔2𝑛
2𝑛−1 𝐶 𝜔2𝑛

0 , 𝐶 𝜔2𝑛
1 , … , 𝐶 𝜔2𝑛

2𝑛−1

Discrete Fourier Transform (DFT)

(Evaluation) in 𝚯 𝒏 𝐥𝐨𝐠𝒏 time.
Inverse DFT

(Interpolation)

in 𝚯 𝒏 𝐥𝐨𝐠𝒏 .
Pointwise

multiplication

in 𝚯 𝒏 time.

Fast Fourier Transform (FFT)

𝐴 = 𝑎0, 𝑎1, … , 𝑎𝑛

𝐵 = 𝑏0, 𝑏1, … , 𝑏𝑛 𝐶 = 𝑐0, 𝑐1, … , 𝑐2𝑛

