Introduction to **Algorithms**

Mong-Jen Kao (高孟駿) Tuesday 10:10 – 12:00 Thursday 15:30 – 16:20

Divide-and-Conquer

– More Examples

More on recursion for problem solving.

Example 5.

Fast Fourier Transform (FFT)

Fast Conversion

between *coefficient representation* and *point-value representation* of a polynomial.

Coefficient Representation of Polynomials

Traditionally,

we represent a polynomial by the *coefficient* of its monomials.

- Ex. $f = (a_0, a_1, ..., a_n)$ for a degree *n* polynomial

$$f(x) = \sum_{0 \le i \le n} a_i \cdot x^i$$

In this way, for any two degree *n* polynomials f(x) and g(x),

- f(x) + g(x) can be done in O(n) time.
- $f(x) \cdot g(x)$ can be done in $O(n^2)$ time.

(Complex-) Root Representation

It is well-known that, for a degree n polynomial f(x),

- if $r_1, r_2, ..., r_k$ are all of its *(potentially be complex)* roots and
- $q_1, q_2, ..., q_k$ are the corresponding multiplicities of the roots, then f(x) can be uniquely represented as $f(x) = \prod_{1 \le i \le k} (x - r_i)^{q_i}$.
- In this way, $f(x) \cdot g(x)$ can be done in O(n) time.
- However, for $n \ge 5$, there is no general way for computing the roots of a degree-*n* polynomial.

By the well-known Galois Theorem.

Point-Value Representation

The following theorem states that, in general, evaluations for n distinct input values also uniquely define a degree-n polynomial.

Theorem 1. (Uniqueness of an Interpolating Polynomial)

For any set of *n* point-value pairs { $(x_1, y_1), ..., (x_n, y_n)$ } such that $x_i \neq x_j$ for any $1 \le i \ne j \le n$, there is a unique polynomial A(x) of degree at most *n* such that $y_k = A(x_k)$ for all $1 \le k \le n$.

Given *n* point-value pairs, the degree-*n* polynomial is <u>uniquely determined</u>.

Proof of Theorem 1

• The evaluation of the point-value pairs $(x_1, y_1), \dots, (x_n, y_n)$ is equivalent to the following matrix operation.

Point-Value Representation

- The following theorem states that, in general, evaluations for n distinct input values also uniquely defines a degree-n polynomial.
- In this way, for any two degree *n* polynomials f(x) and g(x)
 - f(x) + g(x) can be done in O(n) time.
 - $f(x) \cdot g(x)$ can be done in O(n) time.
- For the conversion between coefficient representation and pointvalue representation,
 - The naïve approach takes $\Theta(n^2)$.

Fast Fourier Transform (FFT)

- For the conversion between coefficient representation and pointvalue representation,
 - The naïve approach takes $\Theta(n^2)$.
 - If we choose x₁, ..., x_n wisely,
 the conversion can be done in O(n log n) time!
- For computing $C(x) = A(x) \cdot B(x)$, where $A = (a_0, ..., a_n)$, $B = (b_0, ..., b_n)$, and $C = (c_0, c_1, ..., c_{2n})$.
 - We will choose $x_j \coloneqq \omega_{2n}^j$ for all $0 \le j < 2n$.

j-th complex root of unity.

• For computing $C(x) = A(x) \cdot B(x)$, where $A = (a_0, ..., a_n)$, $B = (b_0, ..., b_n)$, and $C = (c_0, c_1, ..., c_{2n})$.

- Choose
$$x_j \coloneqq \omega_{2n}^j$$
 for all $0 \le j < 2n$.

$$A = (a_0, a_1, \dots, a_n)$$
$$B = (b_0, b_1, \dots, b_n)$$

Discrete Fourier Transform (DFT) (Evaluation) in $\Theta(n \log n)$ time.

Inverse DFT (Interpolation) in $\Theta(n \log n)$.

 $C = (c_0, c_1, \dots, c_{2n})$

 $A(\omega_{2n}^{0}), A(\omega_{2n}^{1}), \dots, A(\omega_{2n}^{2n-1})$ $B(\omega_{2n}^{0}), B(\omega_{2n}^{1}), \dots, B(\omega_{2n}^{2n-1})$

Pointwise multiplication in $\Theta(n)$ time.

 $C(\omega_{2n}^{0}), C(\omega_{2n}^{1}), \dots, C(\omega_{2n}^{2n-1})$

Complex Roots of Unity

The Euler's formula states that

$$e^{i\cdot\theta} = \cos\theta + i\cdot\sin\theta$$

for any $\theta \in \mathbb{R}$, where *i* is the *imaginary unit* with $i^2 = -1$.

 The formula can be proved by Taylor's expansion or by solving the differential equation

$$f(x) = -i \cdot \frac{\mathrm{d}f(x)}{\mathrm{d}x}$$

with $f(x) = \cos x + i \cdot \sin x$ and the boundary condition f(0) = 1.

Complex Roots of Unity

This formula is *what makes all the magic happen*.

• The Euler's formula states that, for any $\theta \in \mathbb{R}$,

$$e^{i\cdot\theta} = \cos\theta + i\cdot\sin\theta$$
.

By taking $\omega_n^j \coloneqq e^{2\pi j \cdot i/n}$, we know that $\omega_n^0, \omega_n^1, \dots, \omega_n^{n-1}$ are the *n* **distinct roots** for $x^n = 1$.

By the above definitions, for any $j, k \in \mathbb{Z}_{\geq 0}$, we have

$$\omega_n^j \cdot \omega_n^k = \omega_n^{j+k}$$
, and $\left(\omega_n^j\right)^k = \omega_n^{j\cdot k}$.

Complex Roots of Unity

This formula is *what makes all the magic happen*.

• The Euler's formula states that, for any $\theta \in \mathbb{R}$,

$$e^{i\cdot\theta} = \cos\theta + i\cdot\sin\theta$$
 .

By taking $\omega_n^j \coloneqq e^{2\pi j \cdot i/n}$, we know that $\omega_n^0, \omega_n^1, \dots, \omega_n^{n-1}$ are the *n* **distinct roots** for $x^n = 1$.

■ In FFT, we will use $\left(\omega_n^j, f\left(\omega_n^j\right)\right)$ for all $0 \le j < n$ to be the *point-value* representation for any degree-*n* polynomial f(x).

The Discrete Fourier Transform (DFT) Problem

Given $f \coloneqq (a_0, a_1, \dots, a_{n-1})$, where *n* is a power of 2, compute

$$f\left(\omega_{n}^{j}\right) = \sum_{0 \le k < n} a_{k} \cdot \omega_{n}^{k \cdot j} \text{ for all } 0 \le j < n.$$

• Let
$$f^{[0]} \coloneqq (a_0, a_2, \dots, a_{n-2})$$
 and $f^{[1]} \coloneqq (a_1, a_3, \dots, a_{n-1})$

be two degree-n/2 polynomials formed by the even-indexed coefficients and the odd-indexed coefficients of f, respectively.

- We have
$$f(x) = f^{[0]}(x^2) + x \cdot f^{[1]}(x^2)$$
.

Solve them recursively and then merge the result.

Two Properties

$$\omega_n^i \coloneqq e^{\frac{2\pi}{n}i} = \cos\frac{2\pi}{n} + i \cdot \sin\frac{2\pi}{n}$$
.

1. For any $n = 2^k \ge 2$ and any $0 \le j < n/2$, we have

$$\left(\omega_n^j\right)^2 = \omega_n^{2j} = \omega_{n/2}^j \,.$$

Used in the *recursive DFT* problem.

- Verifiable by the Euler's formula.

2. For any $n = 2^k \ge 2$ and any $0 \le j < n/2$, we have

$$\omega_n^{j+n/2} = -\omega_n^j.$$

Used when *merging* the result.

- Verifiable by the fact that $\omega_n^{n/2} = -1$.

- Recursive-FFT $(a_0, a_1, \dots, a_{n-1})$ with $n = 2^k \ge 1$.
 - A. If n = 1, then return $\{a_0\}$.
 - B. Let $\omega \leftarrow 1$, $A^{[0]} = (a_0, a_2, ..., a_{n-2})$, and $A^{[1]} = (a_1, a_3, ..., a_{n-1})$.
 - C. $y^{[0]} \leftarrow \text{Recursive-FFT}(A^{[0]})$. $y^{[1]} \leftarrow \text{Recursive-FFT}(A^{[1]})$.
 - D. For $k \leftarrow 0$ to n/2 1, do the following.

$$y_k = y_k^{[0]} + \omega \cdot y_k^{[1]}.$$

•
$$y_{k+n/2} = y_k^{[0]} - \omega \cdot y_k^{[1]}$$
.

$$\bullet \quad \omega \leftarrow \omega \cdot \omega_n^1.$$

E. Return y.

The Fast Fourier Transform (FFT) algorithm

for the DFT Problem.

Interpolation at the Complex Roots of Unity

Given $f(\omega_n^i)$ for all $0 \le i < n$, compute a_0, a_1, \dots, a_{n-1} such that

$$f(x) = \sum_{0 \le j < n} a_j \cdot x^j \; .$$

Recall that

Theorem 2.

For any $0 \le j, k < n$, the (j, k) entry of V_n^{-1} is ω_n^{-kj}/n .

• The (j, j') entry of $V_n^{-1} \cdot V_n$ is

$$[V_n^{-1} \cdot V_n]_{j,j'} = \sum_{0 \le k < n} \left(\omega_n^{-kj} / n \right) \cdot \omega_n^{kj'}$$
$$= \sum_{0 \le k < n} \omega_n^{k(j'-j)} / n$$

$$= \sum_{0 \le k < n} \omega_n / n .$$

• The summation is 1 if j = j' and 0 otherwise. Hence $V_n^{-1} \cdot V_n = I_n$.

Interpolation at the Complex Roots of Unity

Given $f(\omega_n^i)$ for all $0 \le i < n$, compute a_0, a_1, \dots, a_{n-1} such that

$$f(x) = \sum_{0 \le j < n} a_j \cdot x^j$$

By Theorem 2, for any $0 \le j < n$, we have

$$a_j = \frac{1}{n} \cdot \sum_{0 \le k < n} y_k \cdot \omega_n^{-kj}$$

This is <u>exactly the DFT problem</u> if we switch the roles of $(a_0, ..., a_{n-1})$ and $(y_0, ..., y_{n-1})$, replace ω_n by ω_n^{-1} , and divide the result by n.

Fast Fourier Transform (FFT)

$$A = (a_0, a_1, \dots, a_n)$$
$$B = (b_0, b_1, \dots, b_n)$$

В

Discrete Fourier Transform (DFT) (Evaluation) in $\Theta(n \log n)$ time.

$$A(\omega_{2n}^{0}), A(\omega_{2n}^{1}), \dots, A(\omega_{2n}^{2n-1})$$
$$B(\omega_{2n}^{0}), B(\omega_{2n}^{1}), \dots, B(\omega_{2n}^{2n-1})$$

Pointwise multiplication in $\Theta(n)$ time.

Inverse DFT
Interpolation)
n
$$\Theta(n \log n)$$
.

 $C = (c_0, c_1, \dots, c_{2n})$

$$C(\omega_{2n}^0), C(\omega_{2n}^1), \dots, C(\omega_{2n}^{2n-1})$$