Introduction to Algorithms

Mong-Jen Kao (高孟駿) Tuesday 10:10 – 12:00 Thursday 15:30 – 16:20

Divide-and-Conquer

– More Examples

More on recursion for problem solving.

Example 5.

Fast Fourier Transform (FFT)

Fast Conversion

between *coefficient representation* and *point-value representation* of a polynomial.

Coefficient Representation of Polynomials

■ Traditionally,

we represent a polynomial by the *coefficient of its monomials*.

- Ex. $f = (a_0, a_1, ..., a_n)$ for a degree *n* polynomial

$$
f(x) = \sum_{0 \le i \le n} a_i \cdot x^i.
$$

■ In this way, for any two degree *n* polynomials $f(x)$ and $g(x)$,

- $f(x) + g(x)$ can be done in $O(n)$ time.
- $f(x) \cdot g(x)$ can be done in $O(n^2)$ time.

(Complex-) Root Representation

If is well-known that, for a degree *n* polynomial $f(x)$,

- if $r_1, r_2, ..., r_k$ are all of its *(potentially be complex)* roots and
- q_1, q_2, \ldots, q_k are the corresponding multiplicities of the roots, then $f(x)$ can be uniquely represented as $f(x) = \prod_{1 \le i \le k} (x - r_i)^{q_i}$.
- In this way, $f(x) \cdot g(x)$ can be done in $O(n)$ time.
- However, for $n \geq 5$, there is no general way for computing the roots of a degree- n polynomial.

By the well-known Galois Theorem.

Point-Value Representation

• The following theorem states that, in general, evaluations for n distinct input values also uniquely define a degree- n polynomial.

Theorem 1. (Uniqueness of an Interpolating Polynomial)

```
For any set of n point-value pairs \{(x_1, y_1), ..., (x_n, y_n)\}\such that x_i \neq x_j for any 1 \leq i \neq j \leq n,
there is a unique polynomial A(x) of degree at most n such that
y_k = A(x_k) for all 1 \leq k \leq n.
```
Given *n* point-value pairs, the degree-*n* polynomial is *uniquely determined*.

Proof of Theorem 1

■ The evaluation of the point-value pairs (x_1, y_1) , ..., (x_n, y_n) is equivalent to the following matrix operation.

Point-Value Representation

- \blacksquare The following theorem states that, in general, evaluations for n distinct input values also uniquely defines a degree- n polynomial.
- **If** In this way, for any two degree *n* polynomials $f(x)$ and $g(x)$
	- $f(x) + g(x)$ can be done in $O(n)$ time.
	- $f(x) \cdot g(x)$ can be done in $O(n)$ time.
- For the conversion between coefficient representation and pointvalue representation,
	- The naïve approach takes $\Theta(n^2)$.

Fast Fourier Transform (FFT)

- For the conversion between coefficient representation and pointvalue representation,
	- The naïve approach takes $\Theta(n^2)$.
	- If we *choose* $x_1, ..., x_n$ wisely, the conversion can be done in $O(n \log n)$ time!
- **•** For computing $C(x) = A(x) \cdot B(x)$, where $A = (a_0, ..., a_n)$, $B = (b_0, ..., b_n)$, and $C = (c_0, c_1, ..., c_{2n})$.
	- We will choose $x_j := \omega_{2n}^j$ for all $0 \le j < 2n$.

-th *complex root of unity*.

For computing $C(x) = A(x) \cdot B(x)$, where $A = (a_0, ..., a_n)$, $B = (b_0, ..., b_n)$, and $C = (c_0, c_1, ..., c_{2n})$.

- Choose
$$
x_j
$$
 := $ω_{2n}^j$ for all $0 ≤ j < 2n$.

 $A = (a_0, a_1, ..., a_n)$ $B = (b_0, b_1, ..., b_n)$

> *Discrete Fourier Transform (DFT)* (Evaluation) in $\Theta(n \log n)$ time.

 $A(\omega_{2n}^0), A(\omega_{2n}^1), \dots, A(\omega_{2n}^{2n-1})$ $B(\omega_{2n}^0), B(\omega_{2n}^1), \dots, B(\omega_{2n}^{2n-1})$

Pointwise multiplication in $\Theta(n)$ time.

 $C = (c_0, c_1, ..., c_{2n})$

Inverse DFT (Interpolation) in $\Theta(n \log n)$.

 $\mathcal{C}\big(\omega_{2n}^0\big)$, $\mathcal{C}\big(\omega_{2n}^1\big)$, ..., $\mathcal{C}\big(\omega_{2n}^{2n-1}\big)$

Complex Roots of Unity

■ The Euler's formula states that

 $e^{i \cdot \theta} = \cos \theta + i \cdot \sin \theta$

for any $\theta \in \mathbb{R}$, where *i* is the *imaginary unit* with $i^2 = -1$.

– The formula can be proved by Taylor's expansion or by solving the differential equation

$$
f(x) = -i \cdot \frac{\mathrm{d}f(x)}{\mathrm{d}x}
$$

with $f(x) = \cos x + i \cdot \sin x$ and the boundary condition $f(0) = 1$.

Complex Roots of Unity

This formula is *what makes all the magic happen*.

■ The Euler's formula states that, for any $\theta \in \mathbb{R}$,

$$
e^{i \cdot \theta} = \cos \theta + i \cdot \sin \theta.
$$

By taking $\omega_n^j \coloneqq e^{2\pi j \cdot i/n}$, we know that ω_n^0 , ω_n^1 , ..., ω_n^{n-1} are the n **distinct roots** for $x^n = 1$.

■ By the above definitions, for any $j, k \in \mathbb{Z}_{\geq 0}$, we have

$$
\omega_n^j \cdot \omega_n^k = \omega_n^{j+k}, \quad \text{and} \left(\omega_n^j\right)^k = \omega_n^{j\cdot k}.
$$

Complex Roots of Unity

This formula is *what makes all the magic happen*.

■ The Euler's formula states that, for any $\theta \in \mathbb{R}$,

$$
e^{i \cdot \theta} = \cos \theta + i \cdot \sin \theta.
$$

By taking $\omega_n^j := e^{2\pi j \cdot i/n}$, we know that ω_n^0 , ω_n^1 , ..., ω_n^{n-1} are the n **distinct roots** for $x^n = 1$.

■ In FFT, we will use $\left(\omega_n^j, f\left(\omega_n^j\right)\right)$ for all $0 \leq j < n$ to be the *point-value representation* for any degree-*n* polynomial $f(x)$.

The Discrete Fourier Transform (DFT) Problem

Given $f = (a_0, a_1, ..., a_{n-1})$, where *n* is a power of 2, compute

$$
f\left(\omega_n^j\right) = \sum_{0 \le k < n} a_k \cdot \omega_n^{k \cdot j} \quad \text{for all } 0 \le j < n.
$$

Let
$$
f^{[0]} := (a_0, a_2, ..., a_{n-2})
$$
 and $f^{[1]} := (a_1, a_3, ..., a_{n-1})$

be two degree- $n/2$ polynomials formed by the even-indexed coefficients and the odd-indexed coefficients of f , respectively.

- We have
$$
f(x) = f^{[0]}(x^2) + x \cdot f^{[1]}(x^2)
$$
.

Solve them recursively and then merge the result.

Two Properties

1. For any $n = 2^k \ge 2$ and any $0 \le j \le n/2$, we have

$$
\left(\omega_n^j\right)^2 = \omega_n^{2j} = \omega_{n/2}^j.
$$

Used in the *recursive DFT* problem.

– Verifiable by the Euler's formula.

2. For any $n = 2^k \ge 2$ and any $0 \le j < n/2$, we have

$$
\omega_n^{j+n/2} = -\omega_n^j \, .
$$

Used when *merging* the result.

- Verifiable by the fact that $\omega_n^{n/2} = -1$.

- Recursive-FFT $(a_0, a_1, ..., a_{n-1})$ with $n = 2^k \ge 1$.
	- A. If $n = 1$, then return $\{a_0\}$.
	- B. Let $\omega \leftarrow 1$, $A^{[0]} = (a_0, a_2, ..., a_{n-2})$, and $A^{[1]} = (a_1, a_3, ..., a_{n-1})$.
	- C. $y^{[0]} \leftarrow$ Recursive-FFT $(A^{[0]})$. $y^{[1]}$ ←Recursive-FFT $(A^{[1]}).$
	- D. For $k \leftarrow 0$ to $n/2 1$, do the following.

$$
\bullet \quad y_k = y_k^{[0]} + \omega \cdot y_k^{[1]}.
$$

$$
\bullet \quad y_{k+n/2} = y_k^{[0]} - \omega \cdot y_k^{[1]}.
$$

$$
\blacksquare \quad \omega \leftarrow \omega \cdot \omega_n^1.
$$

E. Return y. The *Fast Fourier Transform (FFT) algorithm*

for the DFT Problem.

Interpolation at the Complex Roots of Unity

■ Given $f(\omega_n^i)$ for all $0 \leq i < n$, compute $a_0, a_1, ..., a_{n-1}$ such that

$$
f(x) = \sum_{0 \le j < n} a_j \cdot x^j \; .
$$

■ Recall that

1 1 1 ω_n^1 1 1 ω_n^2 ω_n^3 … 1 $\cdots \quad \omega_n^{n-1}$ 1 ω_n^2 1 ω_n^3 ω_n^4 ω_n^6 ω_n^6 ω_n^9 $\cdots \quad \omega_n^{2(n-1)}$ $\cdots \quad \omega_n^{3(n-1)}$ 1 : 1 ω_n^{n-1} ⋮ ⋮ $\omega_n^{2(n-1)}$ $\omega_n^{3(n-1)}$ $\ddot{\cdot}$ $\cdots \quad \omega_n^{(n-1)^2}$ ⋅ a_0 a_1 $\ddot{\bullet}$ a_{n-1} = y_0 y_1 $\ddot{\bullet}$ y_{n-1} V_n

.

Theorem 2.

For any $0 \le j, k < n$, the (j, k) entry of V_n^{-1} is ω_n^{-kj}/n .

The (j, j') **entry of** $V_n^{-1} \cdot V_n$ **is**

$$
\begin{aligned}\n[V_n^{-1} \cdot V_n]_{j,j'} &= \sum_{0 \le k < n} \left(\omega_n^{-kj} / n \right) \cdot \omega_n^{kj'} \\
&= \sum_{0 \le k < n} \omega_n^{k(j'-j)} / n \ .\n\end{aligned}
$$

The summation is 1 if $j = j'$ **and 0 otherwise.** Hence $V_n^{-1} \cdot V_n = I_n$.

Interpolation at the Complex Roots of Unity

■ Given $f(\omega_n^i)$ for all $0 \leq i < n$, compute $a_0, a_1, ..., a_{n-1}$ such that

$$
f(x) = \sum_{0 \leq j < n} a_j \cdot x^j \; .
$$

■ By Theorem 2, for any $0 \leq j \leq n$, we have

$$
a_j = \frac{1}{n} \cdot \sum_{0 \le k < n} y_k \cdot \omega_n^{-kj}
$$

.

■ This is *exactly the DFT problem* if we switch the roles of $(a_0, ..., a_{n-1})$ and $(y_0, ..., y_{n-1})$, replace ω_n by ω_n^{-1} , and divide the result by n .

Fast Fourier Transform (FFT)

$$
A = (a_0, a_1, \dots, a_n)
$$

$$
B = (b_0, b_1, \dots, b_n)
$$

Discrete Fourier Transform (DFT) (Evaluation) in $\Theta(n \log n)$ time.

$$
A(\omega_{2n}^0), A(\omega_{2n}^1), \dots, A(\omega_{2n}^{2n-1})
$$

$$
B(\omega_{2n}^0), B(\omega_{2n}^1), \dots, B(\omega_{2n}^{2n-1})
$$

Pointwise multiplication in $\Theta(n)$ time.

$$
C = (c_0, c_1, \ldots, c_{2n})
$$

Inverse DFT (Interpolation) in $\Theta(n \log n)$.

 $\mathcal{L}(\omega_{2n}^0), \mathcal{L}(\omega_{2n}^1), \dots, \mathcal{L}(\omega_{2n}^{2n-1})$