Introduction to **Algorithms**

Mong-Jen Kao (高孟駿) Tuesday 10:10 – 12:00 Thursday 15:30 – 16:20

The Divide-and-Conquer Paradigm

The divide-and-conquer is a *powerful technique* commonly used for designing efficient algorithms.

It consists of three steps.

- <u>Divide</u> –

to divide the problem instance into sub-instances of smaller sizes.

<u>Conquer</u> – to conquer the sub-instances separately.

- <u>Merge</u> –

to merge the answer of the sub-instances for the original instance.

Divide-and-Conquer

– More Examples

More on recursion for problem solving.

Example 1.

Fast Exponentiation

Computing the power of a number (matrix) fast.

Fast Exponentiation

Given a number a and an integer N > 0, compute a^N .

- Naive approach $\Theta(N)$ time.
- Divide and Conquer $\Theta(\log N)$ time.

 $a^{N} = \begin{cases} 1, & \text{if } N = 0, \\ a^{N/2} \cdot a^{N/2}, & \text{if } N \text{ is even}, N > 0, \\ a^{N/2} \cdot a^{N/2} \cdot a, & \text{if } N \text{ is odd}, N > 0. \end{cases}$

At most one recursion should be made here.

 $T(n) = T(n/2) + \Theta(1)$ and $T(n) = \Theta(\log n)$.

Application – Fibonacci Numbers

For any $n \ge 0$, the *n*-th Fibonacci number F_n is defined as follows.

$$F_n = \begin{cases} 0, & \text{if } n = 0, \\ 1, & \text{if } n = 1, \\ F_{n-1} + F_{n-2}, & \text{if } n \ge 2. \end{cases}$$

- Naive approach $\Theta(n)$ time.
- We can observe that, for any $n \ge 2$,

$$\begin{pmatrix} F_n \\ F_{n-1} \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} F_{n-1} \\ F_{n-2} \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}^{n-1} \cdot \begin{pmatrix} F_1 \\ F_0 \end{pmatrix}.$$

Hence, via fast exponentiation, this can be computed in $\Theta(\log n)$ time.

Example 2.

Maximum Sum Segment

The Maximum Sum Segment Problem

Given a sequence of numbers $a_1, a_2, ..., a_n$, find a segment $[\ell, r] \subseteq [1, n]$ such that

Naïve approach takes $\Theta(n^2)$ time.

The Maximum Sum Segment Problem

• This problem can be solved via divide-and-conquer in $\Theta(n \log n)$ time.

- <u>Divide</u> –

Divide the current instance into two halves.

- <u>Conquer</u> –

Recursively solve the two sub-instances to obtain the best segment for them.

• This problem can be solved via divide-and-conquer in $\Theta(n \log n)$ time.

- <u>Merge</u> –

The optimal segment is the best of the following segments.

- The best segment for the two sub-instances.
- The best segment that spans over the two sub-instances.

The Maximum Sum Segment Problem

- Given a sequence of numbers $a_1, a_2, ..., a_n$, find a segment $[\ell, r] \subseteq [1, n]$ such that $\sum_{\ell \le i \le r} a_i$ is maximized.
- This problem can be solved via divide-and-conquer in $\Theta(n \log n)$ time.
 - Can we do better than $\Theta(n \log n)$?

- <u>Yes</u>.

With a cleaver observation, we can do it in $\Theta(n)$ time.

Maximum Sum Segment in O(n) Time

• Let $S(I) \coloneqq \sum_{i \in I} a_i$ denote the sum of segment *I*.

<u>An Observation</u>.

If $I = [\ell, r]$ is a segment with S(I) < 0, then for any r' > r, we always have that

$$S([\ell, r']) < S([r+1, r']).$$

• Consider the following algorithm.

- MaximumSumSegment(*A*[1,2,...,*n*])
 - A. best_sum $\leftarrow 0$. current_sum $\leftarrow 0$.
 - B. For i = 1 to n, do the following.
 - a) current_sum \leftarrow max(0, current_sum + a_i).
 - b) best_sum ← max(current_sum, best_sum).
 - C. Output best_sum.

This algorithm can be modified to output the index of the segment.

• For any $\ell \leq j \leq r$, we have $S([\ell, j]) > 0$.

- This implies that $S([j+1,r]) < S([\ell,r])$.
- If a segment starts at *j* + 1 and contains *r*,
 then *extending the left-end* to *ℓ* will strictly increase its sum.

- Suppose that current_sum was reset at $a_{\ell-1}$ and a_r , and not in-between.
 - Then, for any $\ell \leq j < r$, we have $S([j+1,r]) < S([\ell,r]) \leq 0$.
 - If a segment starts at j + 1 and contains r, then *changing its left-end* to r + 1 never decreases its sum.

- Let $t_1 = 0, t_2, ..., t_k = n + 1$ be the set of indexes for which current_sum was reset and $[\ell, r]$ be a maximum sum segment.
 - Then, we have

$$t_i + 1 = \ell \leq r \leq t_{i+1}$$

for some $1 \le i < k$.

Hence, the algorithm produces the maximum sum segment.

Example 3.

Convex Hull (revisited)

Computing the Convex Hull via divide and conquer.

Convex Hull

By the following property, the convex hull problem can be solved by divide-and-conquer technique.

By the following property, the convex hull problem can be solved by divide-and-conquer technique.

By the following property, the convex hull problem can be solved by divide-and-conquer technique.

Convex Hull

- By the above property, the convex hull problem can be solved by divide-and-conquer technique in $\Theta(n \log n)$ time.
 - 1. Divide the points into two halves according to their x-coordinates.
 - 2. Recursively compute the convex hulls for the two sub-instances.
 - 3. Compute the common tangent points and merge the two convex hulls.
- <u>*Q*</u>: <u>*Can we do it faster*</u>, say, in $o(n \log n)$?
 - The answer, however, is no.

Sorting \propto (reducible to) Convex Hull

- **Q**: Can we do it faster, say, in $o(n \log n)$?
 - The answer, however, is no.
- We will show that, <u>sorting</u> is reducible to <u>convex hull</u>.
 - That is, an algorithm for computing convex hull can be used for sorting as well.
 - Hence, if convex hull can be done in o(n log n) time,
 then so is sorting.

Sorting \propto (reducible to) Convex Hull

■ We will show that, <u>sorting</u> is reducible to <u>convex hull</u>.

- Given *n* numbers $a_1, a_2, ..., a_n$ to be sorted, we construct in O(n) time *n* points

$$p_1 = (a_1, a_1^2), p_2 = (a_2, a_2^2), \dots, p_n = (a_n, a_n^2).$$

- Since the curve $y = x^2$ is convex, all of $p_1, ..., p_n$ will be vertices of their convex hull.
- Hence, traversing the convex hull of $p_1, ..., p_n$ will give us the sorted order of $a_1, ..., a_n$ in O(n) time.

Example 4.

Finding Closest Pair

Computing the closest pair for a set of 2-D points.

Closet Pair for 2-D Points

Given a set of points $p_1, p_2, ..., p_n \in \mathbb{R}^2$, find the pair (i, j)with $1 \le i < j \le n$ such that

$$d(p_i, p_j) = \min_{1 \le k < \ell \le n} d(p_k, p_\ell) .$$

- With a naïve approach,

the closest pair can be computed in $O(n^2)$ time.

– In the following,

we show that this can be computed in $O(n \log n)$ time.

Closet Pair for 2-D Points

- Partition the given points into two equal-sized subsets L and R according to their x-coordinates.
 - There are three cases for a closest pair to reside.

Closet Pair for 2-D Points

- Partition the given points into two equal-sized subsets L and R according to their x-coordinates.
 - There are three cases for a closest pair to reside.

- There are three cases for a closest pair to reside.
 - The closest pairs for *L* and *R* can be computed recursively. • Let $\delta \coloneqq \min(\delta_L, \delta_R)$.
 - How can we compute the closest pair between L and R fast?

Observation 1

 Only points that are within a distance δ to the bisector need to be considered.

• Let $\delta \coloneqq \min(\delta_L, \delta_R)$.

• Let $\delta \coloneqq \min(\delta_L, \delta_R)$.

Observation 2

■ For each point in the strip,

at most 7 points above it are relevant.

The Algorithm

Let $P = \{p_1, p_2, ..., p_n\}$ be the input points, and P_x , P_y be the <u>sorted</u> orders of P according to the <u>x-coordinates</u> and <u>y-coordinates</u> separately.

- 1. *Partition* the input into two <u>equal-sized</u> subsets L and R.
- 2. *Recursively solve* L and R. Let δ be the min-distance within L and R.
- 3. Consider the points within the strip with width 2δ centered at any bisector separating *L* and *R* <u>according to their *y*-coordinates</u>.
 - For each points considered, compare δ to *its distance to the previous 7 points* considered.

O(n) time.

O(n) time.