Introduction to Algorithms

Mong-Jen Kao (5 £§8)

Tuesday 10:10 — 12:00
Thursday 15:30 — 16:20

The Divide-and-Conquer Paradigm

m The divide-and-conguer is a powerful technigue commonly used
for designing efficient algorithms.

It consists of three steps.

- Divide —
to divide the problem instance into sub-instances of smaller sizes.

- Conquer — to conquer the sub-instances separately.

- Merge —
to merge the answer of the sub-instances for the original instance.

Divide-and-Conquer

— More Examples

Example 1.

Fast Exponentiation

Fast Exponentiation

m Given a number a and an integer N > 0, compute a® .
- Naive approach - ©(N) time.

- Divide and Conquer - 8(log N) time. A
At most one recursion

should be made here.

(1, itN=0,
a¥ = { qlN/2.qghN/2 if N is even, N > 0,
|\ aV/?2.aN/?2.q, ifNisodd, N > 0.

T(n) =T(n/2)+06(1) and T(n) = O(logn).

Application — Fibonacci Numbers

m For any n = 0, the n-th Fibonacci number E, is defined as follows.

(0, ifn =0,
E = < 1, ifn=1,
F,_1+F,_, ifn=2.

\
- Naive approach - ©(n) time.

- We can observe that, for any n > 2,

(F) =) -3

Hence, via fast exponentiation, this can be computed in ©(logn) time.

Example 2.

Maximum Sum Segment

The Maximum Sum Segment Problem

m Given a sequence of numbers a4, a,, ..., a,,
find a segment |[#,r] € [1,n] such that

IS maximized. T T

-2 |1 | -3 “ 4 | -1 | 2 1 ‘I -5 4 6 | 2 3 | -2 1

The Maximum Sum Segment Problem

m This problem can be solved via divide-and-conquer in 8(nlogn) time.

- Divide —
Divide the current instance into two halves.

- Conquer —
Recursively solve the two sub-instances to obtain the best

segment for them.

m This problem can be solved via divide-and-conquer in ©(nlogn) time.

- Merge —
The optimal segment is the best of the following segments.

m The best segment for the two sub-instances.

m The best segment that spans over the two sub-instances.

I Can be computed
~in O(n) time.

The Maximum Sum Segment Problem

m Given a sequence of numbers a4, a,, ..., a,,
find a segment [¢,r] € [1,n] such that }.,_;.,.a; iS maximized.

m This problem can be solved via divide-and-conquer in ©(nlogn) time.

- Can we do better than ©(nlogn)?

- Yes.

With a cleaver observation, we can do it in ®(n) time.

Maximum Sum Segment in O(n) Time

m Let S(I) :==)¢ a; denote the sum of segment I.

m An Observation.

If I = [£,r] is a segment with S(I) < 0, then forany r’ > r,
we always have that

SCEr]) <S(lr+1,r]).

<0

m Consider the following algorithm.

m MaximumSumSegment(4[1,2,...,n])

A. Dbest sum « 0.
current_sum <« 0.

B. Fori=1ton, do the following.
a) current_sum < max(0, current_sum + a;).

b) best_sum « max(current_sum, best_sum).

C. Output best_sum.

4 Ji r

| current_sum >0 |

m Forany? <j <r,we have S(|¢,j]) > 0.
- Thisimplies that S([j +1,7r]) <S([¢,1r]) .

- If a segment starts at j + 1 and contains r,
then extending the left-end to £ will strictly increase its sum.

4 Ji r
I T
I
| current_sum <=0 |
L l

m Suppose that current_sum was reset at a,_; and a,., and
not in-between.

- Then,forany ? <j <r,we have S([j+1,r])) <S([£,r]) <0.

- If a segment starts at j + 1 and contains r,
then changing its left-end to r + 1 never decreases Its sum.

[- -

current_sum <=0

m Lett; =0,¢t,,...,t; = n+ 1 be the set of indexes for which
current_sum was reset and [£,r] be a maximum sum segment.

- Then, we have

forsomel1<i<k.

m Hence, the algorithm produces the maximum sum segment.

Example 3.

Convex Hull (revisited)

Convex Hull

m By the following property, the convex hull problem can be solved
by divide-and-conquer technique.

m By the following property, the convex hull problem can be solved
by divide-and-conquer technique.

The common tangent lines can be computed
by two-pointer method in 0(n) time.

m By the following property, the convex hull problem can be solved
by divide-and-conquer technique.

Convex Hull

m By the above property, the convex hull problem can be solved
by divide-and-conquer technique in ©(nlogn) time.

1. Divide the points into two halves according to their x-coordinates.
2. Recursively compute the convex hulls for the two sub-instances.

3. Compute the common tangent points and
merge the two convex hulls.

m O: Can we do it faster, say, in o(nlogn) ?

- The answer, however, IS no.

Sorting o (reducible to) Convex Hull

m Q: Can we do it faster, say, in o(nlogn) ?

- The answer, however, IS no.

m We will show that, sorting is reducible to convex hull.

- That Is, an algorithm for computing convex hull can be used
for sorting as well.

- Hence, if convex hull can be done in o(nlogn) time,
then so Is sorting.

Sorting o (reducible to) Convex Hull

m We will show that, sorting I1s reducible to convex hull.

- Given n numbers a4, a,, ..., a, to be sorted,
we construct in 0(n) time n points

P1 = (a1;a%):P2 = (az,aﬁ),) Pn = (an» a,%) :

- Since the curve y = x? is convex,
all of p4, ..., »,, Will be vertices of their convex hull.

- Hence, traversing the convex hull of p4, ..., p,, Will give us
the sorted order of a4, ...,a,, in O(n) time.

Example 4.

Finding Closest Pair

Closet Pair for 2-D Points

m Given a set of points py, py, ..., p,, € R?, find the pair (i, j)
with 1 < i <j < n such that

d(pi,p;) = min d(pk pe) -

1<k<fsn

- With a naive approach,
the closest pair can be computed in 0(n?) time.

- In the following,
we show that this can be computed in O(nlogn) time.

Closet Pair for 2-D Points

m Partition the given points into two equal-sized subsets L and R
according to their x-coordinates.

- There are three cases for a closest pair to reside.

, X-axIs

Closet Pair for 2-D Points

m Partition the given points into two equal-sized subsets L and R
according to their x-coordinates.

- There are three cases for a closest pair to reside.

, X-axIs

m There are three cases for a closest pair to reside.
- The closest pairs for L and R can be computed recursively.
m Leté :=min(6;, 5z).

- How can we compute the closest pair between L and R fast?

, X-axIs

m Letd :=min(6;, 5R).

Observation 1

m Only points that are within a distance é to the bisector
need to be considered.

In the worst-case, however, |
§ there can be up to ©(n) points.
o S
* How many points can be there?
ol . X-axXis
) o

,,

m Leté :=min(6;, 5R).

Observation 2

m For each point in the strip,
at most 7 points above it are relevant.

At most one point can exist
in each of these cells. |

..

5/2

--

5/2

< »id 2 . X-axIs

The Algorithm

Let P = { p1, p2, ..., bn } D€ the input points, and P,, P, be the sorted
orders of P according to the x-coordinates and y-coordinates separately.

1. Partition the input into two equal-sized subsets Land R. .~

2. Recursively solve L and R. Sl
Let § be the min-distance within L and R.

3. Consider the points within the strip with width 26 centered
at any bisector separating L and R according to their y-coordinates.

- For each points considered, compare & R
to its distance to the previous 7 points considered. |

