
Introduction to Algorithms

Mong-Jen Kao (高孟駿)

Tuesday 10:10 – 12:00

Thursday 15:30 – 16:20

The Divide-and-Conquer Paradigm

■ The divide-and-conquer is a powerful technique commonly used

for designing efficient algorithms.

It consists of three steps.

– Divide –

to divide the problem instance into sub-instances of smaller sizes.

– Conquer – to conquer the sub-instances separately.

– Merge –

to merge the answer of the sub-instances for the original instance.

Divide-and-Conquer

– More Examples

More on recursion for problem solving.

Example 1.

Fast Exponentiation

Computing the power of a number (matrix) fast.

Fast Exponentiation

■ Given a number 𝑎 and an integer 𝑁 > 0, compute 𝑎𝑁.

– Naive approach - Θ 𝑁 time.

– Divide and Conquer - Θ log𝑁 time.

𝑎𝑁 =

1, if 𝑁 = 0,

𝑎𝑁/2 ⋅ 𝑎𝑁/2, if 𝑁 is even,𝑁 > 0,

𝑎𝑁/2 ⋅ 𝑎𝑁/2 ⋅ 𝑎, if 𝑁 is odd,𝑁 > 0.

𝑇 𝑛 = 𝑇 𝑛/2 + Θ 1 and 𝑇 𝑛 = Θ log 𝑛 .

At most one recursion

should be made here.

Application – Fibonacci Numbers

■ For any 𝑛 ≥ 0, the 𝑛-th Fibonacci number 𝐹𝑛 is defined as follows.

𝐹𝑛 = ቐ
0, if 𝑛 = 0,
1, if 𝑛 = 1,
𝐹𝑛−1 + 𝐹𝑛−2, if 𝑛 ≥ 2.

– Naive approach - Θ 𝑛 time.

– We can observe that, for any 𝑛 ≥ 2,

𝐹𝑛
𝐹𝑛−1

=
1 1
1 0

⋅
𝐹𝑛−1
𝐹𝑛−2

=
1 1
1 0

𝑛−1

⋅
𝐹1
𝐹0

.

Hence, via fast exponentiation, this can be computed in Θ log 𝑛 time.

Example 2.

Maximum Sum Segment

The Maximum Sum Segment Problem

■ Given a sequence of numbers 𝑎1, 𝑎2, … , 𝑎𝑛,

find a segment ℓ, 𝑟 ⊆ [1, 𝑛] such that

ℓ≤𝑖≤𝑟

𝑎𝑖

is maximized.

−2 1 −3 4 −1 2 1 −5 4 -6 2 3 -2 1

Has a maximum sum of 6.

Naïve approach takes Θ 𝑛2 time.

The Maximum Sum Segment Problem

■ This problem can be solved via divide-and-conquer in Θ 𝑛 log 𝑛 time.

– Divide –

Divide the current instance into two halves.

– Conquer –

Recursively solve the two sub-instances to obtain the best

segment for them.

■ This problem can be solved via divide-and-conquer in Θ 𝑛 log 𝑛 time.

– Merge –

The optimal segment is the best of the following segments.

■ The best segment for the two sub-instances.

■ The best segment that spans over the two sub-instances.

Best segment that ends at mid. Best segment that starts from mid+1.

Can be computed

in Θ 𝑛 time.

The Maximum Sum Segment Problem

■ Given a sequence of numbers 𝑎1, 𝑎2, … , 𝑎𝑛,

find a segment ℓ, 𝑟 ⊆ [1, 𝑛] such that σℓ≤𝑖≤𝑟 𝑎𝑖 is maximized.

■ This problem can be solved via divide-and-conquer in Θ 𝑛 log 𝑛 time.

– Can we do better than Θ 𝑛 log 𝑛 ?

– Yes.

With a cleaver observation, we can do it in Θ 𝑛 time.

Maximum Sum Segment in 𝑂 𝑛 Time

■ Let 𝑆 𝐼 ≔ σ𝑖∈𝐼 𝑎𝑖 denote the sum of segment 𝐼.

■ An Observation.

If 𝐼 = ℓ, 𝑟 is a segment with 𝑆 𝐼 < 0, then for any 𝑟′ > 𝑟,

we always have that

𝑆 ℓ, 𝑟′ < 𝑆 𝑟 + 1, 𝑟′ .

< 𝟎

𝐼 𝐼′ 𝐼′ is always better than 𝐼 ∪ 𝐼′.

ℓ 𝑟 𝑟′

■ Consider the following algorithm.

■ MaximumSumSegment(𝐴 1, 2, … , 𝑛)

A. best_sum ← 0.

current_sum ← 0.

B. For i = 1 to n, do the following.

a) current_sum ← max(0, current_sum + 𝑎𝑖).

b) best_sum ← max current_sum, best_sum .

C. Output best_sum.

This algorithm can be modified to output the index of the segment.

■ For any ℓ ≤ 𝑗 ≤ 𝑟, we have 𝑆 ℓ, 𝑗 > 0.

– This implies that 𝑆 𝑗 + 1, 𝑟 < 𝑆 ℓ, 𝑟 .

– If a segment starts at 𝑗 + 1 and contains 𝑟,

then extending the left-end to ℓ will strictly increase its sum.

current_sum > 0

ℓ

Last time of current_sum was reset.

𝑟𝑗

■ Suppose that current_sum was reset at 𝑎ℓ−1 and 𝑎𝑟, and

not in-between.

– Then, for any ℓ ≤ 𝑗 < 𝑟, we have 𝑆 𝑗 + 1, 𝑟 < 𝑆 ℓ, 𝑟 ≤ 0 .

– If a segment starts at 𝑗 + 1 and contains 𝑟,

then changing its left-end to 𝑟 + 1 never decreases its sum.

current_sum <= 0

ℓ

Last time of current_sum was reset.

𝑟𝑗

■ Let 𝑡1 = 0, 𝑡2, … , 𝑡𝑘 = 𝑛 + 1 be the set of indexes for which

current_sum was reset and ℓ, 𝑟 be a maximum sum segment.

– Then, we have

𝑡𝑖 + 1 = ℓ ≤ 𝑟 ≤ 𝑡𝑖+1

for some 1 ≤ 𝑖 < 𝑘.

■ Hence, the algorithm produces the maximum sum segment.

current_sum <= 0

ℓ

Last time of current_sum was reset.

𝑟

Example 3.

Convex Hull (revisited)

Computing the Convex Hull via divide and conquer.

Convex Hull

■ By the following property, the convex hull problem can be solved

by divide-and-conquer technique.

Given two disjoint convex polygons,Given two disjoint convex polygons,

■ By the following property, the convex hull problem can be solved

by divide-and-conquer technique.

The common tangent lines can be computed

by two-pointer method in 𝑂 𝑛 time.

■ By the following property, the convex hull problem can be solved

by divide-and-conquer technique.

Then the two convex hulls can be merged.

Convex Hull

■ By the above property, the convex hull problem can be solved

by divide-and-conquer technique in Θ 𝑛 log 𝑛 time.

1. Divide the points into two halves according to their x-coordinates.

2. Recursively compute the convex hulls for the two sub-instances.

3. Compute the common tangent points and

merge the two convex hulls.

■ Q: Can we do it faster, say, in 𝑜 𝑛 log 𝑛 ?

– The answer, however, is no.

Sorting ∝ (reducible to) Convex Hull

■ Q: Can we do it faster, say, in 𝑜 𝑛 log 𝑛 ?

– The answer, however, is no.

■ We will show that, sorting is reducible to convex hull.

– That is, an algorithm for computing convex hull can be used

for sorting as well.

– Hence, if convex hull can be done in 𝑜 𝑛 log 𝑛 time,

then so is sorting.

Sorting ∝ (reducible to) Convex Hull

■ We will show that, sorting is reducible to convex hull.

– Given 𝑛 numbers 𝑎1, 𝑎2, … , 𝑎𝑛 to be sorted,

we construct in 𝑂 𝑛 time 𝑛 points

𝑝1 = 𝑎1, 𝑎1
2 , 𝑝2 = 𝑎2, 𝑎2

2 , … , 𝑝𝑛 = 𝑎𝑛, 𝑎𝑛
2 .

– Since the curve 𝑦 = 𝑥2 is convex,

all of 𝑝1, … , 𝑝𝑛 will be vertices of their convex hull.

– Hence, traversing the convex hull of 𝑝1, … , 𝑝𝑛 will give us

the sorted order of 𝑎1, … , 𝑎𝑛 in 𝑂 𝑛 time.

Example 4.

Finding Closest Pair

Computing the closest pair for a set of 2-D points.

Closet Pair for 2-D Points

■ Given a set of points 𝑝1, 𝑝2, … , 𝑝𝑛 ∈ ℝ2, find the pair 𝑖, 𝑗

with 1 ≤ 𝑖 < 𝑗 ≤ 𝑛 such that

𝑑 𝑝𝑖 , 𝑝𝑗 = min
1≤𝑘<ℓ≤𝑛

𝑑 𝑝𝑘, 𝑝ℓ .

– With a naïve approach,

the closest pair can be computed in 𝑂 𝑛2 time.

– In the following,

we show that this can be computed in 𝑂 𝑛 log 𝑛 time.

Closet Pair for 2-D Points

■ Partition the given points into two equal-sized subsets 𝐿 and 𝑅

according to their 𝑥-coordinates.

– There are three cases for a closest pair to reside.

𝐿

𝑥-axis

𝑅

Closet Pair for 2-D Points

■ Partition the given points into two equal-sized subsets 𝐿 and 𝑅

according to their 𝑥-coordinates.

– There are three cases for a closest pair to reside.

𝐿

𝑥-axis

𝑅

■ There are three cases for a closest pair to reside.

– The closest pairs for 𝐿 and 𝑅 can be computed recursively.

■ Let 𝛿 ≔ min 𝛿𝐿, 𝛿𝑅 .

– How can we compute the closest pair between 𝐿 and 𝑅 fast?

𝐿

𝑥-axis

𝑅
𝜹𝑹

𝜹𝑳

Observation 1

■ Only points that are within a distance 𝜹 to the bisector

need to be considered.

𝑥-axis

■ Let 𝛿 ≔ min 𝛿𝐿, 𝛿𝑅 .

𝛿𝛿

Only points within this strip need to be considered.

How many points can be there?

In the worst-case, however,

there can be up to Θ 𝑛 points.

Observation 2

■ For each point in the strip,

at most 7 points above it are relevant.

𝑥-axis

■ Let 𝛿 ≔ min 𝛿𝐿, 𝛿𝑅 .

𝛿𝛿

𝛿/2

𝛿/2

𝛿/2 𝛿/2 𝛿/2 𝛿/2

At most one point can exist

in each of these cells.

The Algorithm

Let 𝑃 = 𝑝1, 𝑝2, … , 𝑝𝑛 be the input points, and 𝑷𝒙, 𝑷𝒚 be the sorted

orders of 𝑃 according to the 𝑥-coordinates and 𝑦-coordinates separately.

1. Partition the input into two equal-sized subsets 𝐿 and 𝑅.

2. Recursively solve 𝐿 and 𝑅.

Let 𝛿 be the min-distance within 𝐿 and 𝑅.

3. Consider the points within the strip with width 𝟐𝜹 centered

at any bisector separating 𝐿 and 𝑅 according to their 𝑦-coordinates.

– For each points considered, compare 𝛿

to its distance to the previous 7 points considered.

𝑂 𝑛 time.

𝑂 𝑛 time.𝑂 𝑛 time.

