Introduction to Algorithms

Mong-Jen Kao (高孟駿) Tuesday 10:10 – 12:00 Thursday 15:30 – 16:20

The Divide-and-Conquer Paradigm

■ The divide-and-conquer is a *powerful technique* commonly used *for designing efficient algorithms*.

It consists of three steps.

– *Divide* –

to divide the problem instance into sub-instances of smaller sizes.

– *Conquer* – to conquer the sub-instances separately.

– *Merge* –

to merge the answer of the sub-instances for the original instance.

Divide-and-Conquer

– More Examples

More on recursion for problem solving.

Example 1.

Fast Exponentiation

Computing the power of a number (matrix) fast.

Fast Exponentiation

Given a number a and an integer $N > 0$ **, compute** a^N **.**

- Naive approach $\Theta(N)$ time.
- Divide and Conquer $\Theta(\log N)$ time.

 $a^N =$ 1, if $N = 0$, $a^{N/2} \cdot a^{N/2}$, if N is even, $N > 0$, $a^{N/2} \cdot a^{N/2} \cdot a$, if N is odd, $N > 0$.

At most one recursion should be made here.

 $T(n) = T(n/2) + \Theta(1)$ and $T(n) = \Theta(\log n)$.

Application – Fibonacci Numbers

■ For any $n \geq 0$, the *n*-th Fibonacci number F_n is defined as follows.

$$
F_n = \begin{cases} 0, & \text{if } n = 0, \\ 1, & \text{if } n = 1, \\ F_{n-1} + F_{n-2}, & \text{if } n \ge 2. \end{cases}
$$

- Naive approach $\Theta(n)$ time.
- We can observe that, for any $n \geq 2$,

$$
\begin{pmatrix} F_n \\ F_{n-1} \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} F_{n-1} \\ F_{n-2} \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}^{n-1} \cdot \begin{pmatrix} F_1 \\ F_0 \end{pmatrix}.
$$

Hence, via fast exponentiation, this can be computed in $\Theta(\log n)$ time.

Example 2.

Maximum Sum Segment

The Maximum Sum Segment Problem

Given a sequence of numbers $a_1, a_2, ..., a_n$, find a segment $[\ell, r] \subseteq [1, n]$ such that

Naïve approach takes $\Theta(n^2)$ time.

The Maximum Sum Segment Problem

This problem can be solved via divide-and-conquer in $\Theta(n \log n)$ **time.**

– *Divide* –

Divide the current instance into two halves.

– *Conquer* –

Recursively solve the two sub-instances to obtain the best segment for them.

This problem can be solved via divide-and-conquer in $\Theta(n \log n)$ **time.**

– *Merge* –

The optimal segment is the best of the following segments.

- The best segment for the two sub-instances.
- The best segment that spans over the two sub-instances.

The Maximum Sum Segment Problem

- **Given a sequence of numbers** $a_1, a_2, ..., a_n$, find a segment $[\ell, r] \subseteq [1, n]$ such that $\sum_{\ell \leq i \leq r} a_i$ is maximized.
- **This problem can be solved via divide-and-conquer in** $\Theta(n \log n)$ **time.**
	- Can we do better than $\Theta(n \log n)$?

– **Yes**.

With a cleaver observation, we can do it in $\Theta(n)$ time.

Maximum Sum Segment in $O(n)$ Time

■ Let $S(I) \coloneqq \sum_{i \in I} a_i$ denote the sum of segment *I*.

■ *An Observation*.

If $I = [\ell, r]$ is a segment with $S(I) < 0$, then for any $r' > r$, we always have that

$$
S([l,r']) < S([r+1,r']) .
$$

■ Consider the following algorithm.

- MaximumSumSegment($A[1, 2, ..., n]$)
	- A. best_sum \leftarrow 0. current_sum \leftarrow 0.
	- B. For $i = 1$ to n, do the following.
		- a) current_sum \leftarrow max(0, current_sum + a_i).
		- b) best_sum \leftarrow max(current_sum, best_sum).
	- C. Output best_sum.

This algorithm can be modified to output the index of the segment.

■ For any $l \leq j \leq r$, we have $S([\ell, j]) > 0$.

- This implies that $S([j + 1, r]) < S([l, r])$.
- If a segment starts at $j + 1$ and contains r , then *extending the left-end* to *ℓ* will strictly increase its sum.

- Suppose that current_sum was reset at $a_{\ell-1}$ and a_r , and not in-between*.*
	- Then, for any $l \leq j < r$, we have $S([j + 1, r]) < S([l, r]) \leq 0$.
	- If a segment starts at $j + 1$ and contains r , then *changing its left-end* to $r + 1$ never decreases its sum.

- Let $t_1 = 0, t_2, ..., t_k = n + 1$ be the set of indexes for which current_sum was reset and $\lbrack \ell,r \rbrack$ be a maximum sum segment.
	- Then, we have

$$
t_i + 1 = \ell \leq r \leq t_{i+1}
$$

for some $1 \leq i \leq k$.

■ Hence, the algorithm produces the maximum sum segment.

Example 3.

Convex Hull (revisited)

Computing the Convex Hull via divide and conquer.

Convex Hull

■ By the following property, the convex hull problem can be solved by divide-and-conquer technique.

■ By the following property, the convex hull problem can be solved by divide-and-conquer technique.

■ By the following property, the convex hull problem can be solved by divide-and-conquer technique.

Convex Hull

- By the above property, the convex hull problem can be solved by divide-and-conquer technique in $\Theta(n \log n)$ time.
	- 1. Divide the points into two halves according to their x-coordinates.
	- 2. Recursively compute the convex hulls for the two sub-instances.
	- 3. Compute the common tangent points and merge the two convex hulls.
- **Q: Can we do it faster**, say, in $o(n \log n)$?
	- The answer, however, is no.

Sorting ∝ (reducible to) Convex Hull

- **Q:** Can we do it faster, say, in $o(n \log n)$?
	- The answer, however, is no.
- We will show that, *sorting is reducible to convex hull*.
	- That is, an algorithm for computing convex hull can be used for sorting as well.
	- Hence, if convex hull can be done in $o(n \log n)$ time, then so is sorting.

Sorting ∝ (reducible to) Convex Hull

■ We will show that, *sorting is reducible to convex hull*.

- Given *n* numbers $a_1, a_2, ..., a_n$ to be sorted, we construct in $O(n)$ time *n* points

$$
p_1 = (a_1, a_1^2), p_2 = (a_2, a_2^2), \dots, p_n = (a_n, a_n^2).
$$

- Since the curve $y = x^2$ is convex, all of $p_1, ..., p_n$ will be vertices of their convex hull.
- Hence, traversing the convex hull of $p_1, ..., p_n$ will give us the sorted order of $a_1, ..., a_n$ in $O(n)$ time.

Example 4.

Finding Closest Pair

Computing the closest pair for a set of 2-D points.

Closet Pair for 2-D Points

■ Given a set of points $p_1, p_2, ..., p_n \in \mathbb{R}^2$, find the pair (i, j) with $1 \leq i \leq j \leq n$ such that

$$
d(p_i, p_j) = \min_{1 \leq k < \ell \leq n} d(p_k, p_\ell) \, .
$$

- With a naïve approach,
	- the closest pair can be computed in $O(n^2)$ time.
- In the following,

we show that this can be computed in $O(n \log n)$ time.

Closet Pair for 2-D Points

- **Partition the given points into two equal-sized subsets** L **and** R according to their x -coordinates.
	- There are three cases for a closest pair to reside.

Closet Pair for 2-D Points

- **Partition the given points into two equal-sized subsets** L **and** R according to their x -coordinates.
	- There are three cases for a closest pair to reside.

- There are three cases for a closest pair to reside.
	- The closest pairs for L and R can be computed recursively. \blacksquare Let $\delta \coloneqq \min(\delta_L, \delta_R)$.
	- How can we compute the closest pair between L and R fast?

Observation 1

■ Only *points that are within a distance to the bisector* need to be considered.

■ Let $\delta := \min(\delta_L, \delta_R)$.

Observation 2

■ For each point in the strip,

at most 7 points above it are relevant.

■ Let $\delta := \min(\delta_L, \delta_R)$.

The Algorithm

Let $P = \{p_1, p_2, ..., p_n\}$ be the input points, and P_x , P_y be the *sorted orders* of P according to the *x*-coordinates and *y*-coordinates separately.

- 1. **Partition** the input into two equal-sized subsets L and R.
- 2. **Recursively solve** *L* and *R*. Let δ be the min-distance within L and R.
- 3. Consider the points within the strip with width 28 centered at any bisector separating *L* and *R* according to their *y*-coordinates.
	- For each points considered, compare δ to *its distance to the previous 7 points* considered.

 $O(n)$ time.

 $O(n)$ time.