Introduction to **Algorithms**

Mong-Jen Kao (高孟駿) Tuesday 10:10 – 12:00 Thursday 15:30 – 16:20

Binary Search

Find the *boundary of 0-1* in a *0-1 monotone sequence fast*.

Two Typical Scenarios

Given a sequence of numbers $a_1, a_2, ..., a_n$ that are <u>sorted</u> in *non-descending order*.

For a given value k, the first element $\geq k$.

- Find the smallest index *i* such that $a_i \not\leq k$.

- Find the smallest index j such that $a_j > k$.

the first element > k.

Two Typical Scenarios

Given a sequence of numbers $a_1, a_2, ..., a_n$ that a find non-descending order.

For a given value k,

- Find the smallest index *i* such that $a_i \not< k$.

- Find the smallest index *j* such that $a_j > k$.

j - i is the number of times k appears.

the first element $\geq k$.

the first element > k.

The General Scenario

- Given a 0-1 sequence $a_1, a_2, ..., a_n$ sorted in order, furth<u>er assume</u> that $a_0 = 0$ and $a_{n+1} = 1$.
 - Find the index *i* such that $a_i \neq a_{i+1}$, i.e., identify the boundary of 0 and 1.

Alternative (Equivalent) Scenario

- Given a 0-1 sequence $a_1, a_2, ..., a_n$ sorted in order, <u>further assume</u> that $a_0 = 0$ and $a_{n+1} = 1$.
 - Find the index *i* such that $a_i \neq a_{i+1}$, i.e., identify the boundary of 1 and 0.

Conversion to the General Scenario

- The first search problem can be converted to the general form.
 - Find the smallest index *i* such that $a_i \not< k$.

For
$$k = 6$$
,

Conversion to the General Scenario

- The second search problem can be converted to the general form, too.
 - Find the smallest index j such that $a_j > k$.

For
$$k = 6$$
,

Binary Search on 0-1 Sequence

Find the *boundary of 0-1* in a *0-1 monotone sequence fast*.

Problem Scenario

- Let a_1, a_2, \dots, a_n be a 0-1 sequence of interests.
 - We further assume that $a_0 = 0$ and $a_{n+1} = 1$.
 - Find the index $i \in \{0, 1, ..., n\}$ such that $a_i = 0$ and $a_{i+1} = 1$.

Let a_1, a_2, \dots, a_n be a 0-1 sequence. Assume that $a_0 = 0$ and $a_{n+1} = 1$.

- Given two indexes $\ell < r$ with $a_{\ell} = 0$ and $a_r = 1$, find the index $i \in [\ell, r - 1]$ such that $a_i = 0$ and $a_{i+1} = 1$.
 - If $r \ell$ is 1, then we're done.

$$\begin{array}{c|c} 0 & 1 \\ a_{\ell} & a_{r} \end{array}$$

- Otherwise,
$$r - \ell > 1$$
.

Take mid := $\lfloor (\ell + r)/2 \rfloor$ and inspect a_{mid} .

Let a_1, a_2, \dots, a_n be a 0-1 sequence. Assume that $a_0 = 0$ and $a_{n+1} = 1$.

Given two indexes $\ell < r$ with $a_{\ell} = 0$ and $a_r = 1$, find the index $i \in [\ell, r - 1]$ such that $a_i = 0$ and $a_{i+1} = 1$.

- Take mid := $\lfloor (\ell + r)/2 \rfloor$ and inspect a_{mid} .
 - If $a_{\text{mid}} = 0$, then the answer is in the right-hand-side.

We have a <u>recursive problem</u> on (mid, r).

Let a_1, a_2, \dots, a_n be a 0-1 sequence. Assume that $a_0 = 0$ and $a_{n+1} = 1$.

Given two indexes $\ell < r$ with $a_{\ell} = 0$ and $a_r = 1$, find the index $i \in [\ell, r - 1]$ such that $a_i = 0$ and $a_{i+1} = 1$.

- Take mid := $\lfloor (\ell + r)/2 \rfloor$ and inspect a_{mid} .
 - If $a_{\text{mid}} = 1$, then the answer is in the left-hand-side.

We have a <u>recursive problem</u> on (ℓ, mid) .

■ BinarySearch(L, R) - To search the 0-1 sequence $a_L, ..., a_R$

A.
$$\ell \leftarrow L - 1$$
.
 $r \leftarrow R + 1$.

- B. While $r \ell > 1$, do the following.
 - a) mid $\leftarrow \lfloor (\ell + r)/2 \rfloor$.
 - b) If a_{mid} is 0, set $\ell \leftarrow$ mid. Otherwise, set $r \leftarrow$ mid.

C. Report (ℓ, r) .

Correctness of Binary Search

In step (Ba),

we always have $L \leq \text{mid} \leq R$.

- When $\ell < r - 1$, we have

 $\ell < \lfloor (\ell + r)/2 \rfloor < r.$

■ The answer to be searched is always contained within [ℓ, r] in the beginning of the while loop in step (B).

Time Complexity

The running time of this algorithm can be described by the following recurrence.

$$T(n) = \begin{cases} \Theta(1), & n \le 2, \\ T(\lfloor n/2 \rfloor) + \Theta(1), & n > 3. \end{cases}$$

- Solving the recurrence, we obtain $T(n) = \Theta(\log n)$.

■ LowerBound(A[1...n], k) - A[1...n] sorted in non-descending order. Find the smallest *i* such that $A[i] \ge k$

- A. $\ell \leftarrow 0$. $r \leftarrow n+1$.
- B. While $r \ell > 1$, do the following.
 - a) mid $\leftarrow \lfloor (\ell + r)/2 \rfloor$.
 - b) If $a_{mid} < k$, set $\ell \leftarrow$ mid. Otherwise, set $r \leftarrow$ mid.
- C. If *r* equals n + 1, then report "No such element". Otherwise, report *r*.

■ UpperBound(A[1...n], k) - A[1...n] sorted in non-descending order. Find the smallest *i* such that A[i] > k

- A. $\ell \leftarrow 0$. $r \leftarrow n+1$.
- B. While $r \ell > 1$, do the following.
 - a) mid $\leftarrow \lfloor (\ell + r)/2 \rfloor$.
 - b) If $k < a_{mid}$, set $r \leftarrow mid$. Otherwise, set $\ell \leftarrow mid$.
- C. If *r* equals n + 1, then report "No such element". Otherwise, report *r*.