
Introduction to Algorithms

Mong-Jen Kao (高孟駿)

Tuesday 10:10 – 12:00

Thursday 15:30 – 16:20

Solving Recurrence Formulas

Recurrence Formula

■ A recurrence is an equation or inequality that describes a function

in terms of its value on smaller inputs.

■ We have already seen some of such examples.

– For example, the time complexity of the Merge Sort algorithm

can be described by the following recurrence.

𝑇 𝑛 = ൞

Θ 1 , if 𝑛 = 1,

2𝑇
𝑛

2
+ Θ 𝑛 , if 𝑛 > 1.

Recurrence Formula

■ A recurrence is an equation or inequality that describes a function

in terms of its value on smaller inputs.

■ In this lecture, we will go through three different methods for

obtaining asymptotic bounds on the solution.

– The substitution method

– The recursion-tree method

– The master theorem

The Substitution Method

Make an educated guess and verify it.

The Substitution Method

■ The substitution method for solving recurrences entails two steps.

1. Guess the form of the solution.

2. Use mathematical induction to find the constant and

show that the solution works.

The Substitution Method

■ As an example,

consider the following recurrence

𝑇 𝑛 = 2𝑇
𝑛

2
+ 𝑛 .

■ We guess the solution is 𝑇 𝑛 = 𝑂(𝑛 log 𝑛).

– Then, we need to prove that for all 𝑛 ≥ 𝑛0

𝑇 𝑛 ≤ 𝑐 ⋅ 𝑛 log 𝑛

for an appropriate choice of the constant 𝑐 > 0 and 𝑛0.

𝑇 𝑛 = 2𝑇
𝑛

2
+ 𝑛 .

■ We guess the solution is 𝑇 𝑛 = 𝑂(𝑛 log 𝑛).

– Then, we need to prove that for all 𝑛 ≥ 𝑛0,

𝑇 𝑛 ≤ 𝑐 ⋅ 𝑛 log 𝑛

for an appropriate choice of the constant 𝑐 > 0 and 𝑛0.

■ Assume as in the inductive step that the bound holds for 𝑛/2 .

– That is,

𝑇 𝑛/2 ≤ 𝑐 ⋅ 𝑛/2 ⋅ log 𝑛/2 .

𝑇 𝑛 = 2𝑇
𝑛

2
+ 𝑛 .

■ Plug in the assumption into the recurrence and we obtain

𝑇 𝑛 ≤ 2 ⋅ 𝑐 ⋅
𝑛

2
⋅ log

𝑛

2
+ 𝑛

≤ 𝑐 ⋅ 𝑛 ⋅ log 𝑛/2 + 𝑛

= 𝑐𝑛 log 𝑛 − 𝑐𝑛 log 2 + 𝑛

= 𝑐𝑛 log 𝑛 − 𝑐𝑛 + 𝑛 ≤ 𝑐𝑛 log 𝑛 .

𝑇 𝑛 ≤ 𝑐 ⋅ 𝑛 log 𝑛

for appropriate 𝑐 > 0, 𝑛0 > 0,

and all 𝑛 ≥ 𝑛0.

holds as long as 𝑐 ≥ 1.

𝑇 𝑛 = 2𝑇
𝑛

2
+ 𝑛 .

■ Plug in the assumption into the recurrence and we obtain

𝑇 𝑛 ≤ 2 ⋅ 𝑐 ⋅
𝑛

2
⋅ log

𝑛

2
+ 𝑛 ≤ 𝑐𝑛 log 𝑛 .

– Hence, the inductive step holds.

■ Next, we need to use boundary (initial) conditions

to determine an appropriate constant 𝑐.

holds as long as 𝑐 ≥ 1.

𝑇 𝑛 ≤ 𝑐 ⋅ 𝑛 log 𝑛

for appropriate 𝑐 > 0, 𝑛0 > 0,

and all 𝑛 ≥ 𝑛0.

𝑇 𝑛 = 2𝑇
𝑛

2
+ 𝑛 .

– Hence, the inductive step holds.

■ Next, we need to use boundary (initial) conditions

to determine an appropriate constant 𝑐.

– We have 𝑇 1 ≤ 𝑐 ⋅ 1 log 1 = 0 but 𝑇 1 = 1.

– Hence, 𝑛 = 1 is not consistent with our guess.

– We need to see if a larger 𝑛0 can be used.

holds as long as 𝑐 ≥ 1.

𝑇 𝑛 ≤ 𝑐 ⋅ 𝑛 log 𝑛

for appropriate 𝑐 > 0, 𝑛0 > 0,

and all 𝑛 ≥ 𝑛0.

𝑇 𝑛 = 2𝑇
𝑛

2
+ 𝑛 .

– Hence, the inductive step holds.

■ Next, we need to use boundary (initial) conditions

to determine an appropriate constant 𝑐.

– For 𝑛0 = 2 and 𝑐 = 2,

we have
4 = 𝑇 2 ≤ 𝑐 ⋅ 2 log 2 and

5 = 𝑇 3 ≤ 𝑐 ⋅ 3 log 3 .

– Hence, 𝑛0 = 2 and 𝑐 = 2 completes our guess for 𝑇 𝑛 = 𝑂 𝑛 log 𝑛 .

holds as long as 𝑐 ≥ 1.

𝑇 𝑛 ≤ 𝑐 ⋅ 𝑛 log 𝑛

for appropriate 𝑐 > 0, 𝑛0 > 0,

and all 𝑛 ≥ 𝑛0.

Making a Good Guess

■ Unfortunately, there is no general way to guess the correct solutions

for recurrences.

■ Fortunately, there are some heuristic ways to do so.

– Use the recursion-tree method (described next) to come up

with a good asymptotic guess.

– Make a good guess from similar recurrences.

– Try & Refine the guess.

Observe from Similar Recurrences

■ It is reasonable to make a similar guess from a similar recurrence

you have seen before.

– For example,

𝑇 𝑛 = 2𝑇 𝑛/2 + 17 + 𝑛

looks more difficult because of the additive term of 17.

– However, the constant term 17 is negligible compared to 𝑛/2

when 𝑛 is large enough.

– Hence, 𝑇 𝑛 = 𝑂 𝑛 log 𝑛 is still a good guess and will work.

Try & Refine the Guess

■ One typical way is first to prove a loose bound and then refine

the range of uncertainty.

– For example, we can start with 𝑇 𝑛 = Ω 𝑛 ,

𝑇 𝑛 = 𝑂 𝑛2 , and eventually obtain 𝑇 𝑛 = Θ 𝑛 log 𝑛 .

– When the asymptotic behavior you guess is wrong,

it will lead to a contradiction in the inductive step.

Some Subtleties

■ Sometimes you make a correct guess,

but the inductive step fails due to smaller-order terms.

– For example, consider the recurrence

𝑇 𝑛 = 𝑇 𝑛/2 + 𝑇 𝑛/2 + 1 .

– We guess 𝑇 𝑛 = 𝑂 𝑛 and try to prove that 𝑇 𝑛 ≤ 𝑐𝑛.

Then

𝑇 𝑛 ≤ 𝑐 𝑛/2 + 𝑐 𝑛/2 + 1 = 𝑐𝑛 + 1 > 𝑐𝑛.

The asymptotic growth rate is correct.The asymptotic growth rate is correct.
But it fails because of an 𝑂 1 = 𝑜 𝑛 term.

Some Subtleties

■ Sometimes you make a correct guess,

but the inductive step fails due to smaller-order terms.

– One solution for this is to make a slightly stronger guess,

so that less smaller-order error is accumulated during the

inductive step.

– To be precise, we guess 𝑇 𝑛 ≤ 𝑐𝑛 − 𝑏.

Then

𝑇 𝑛 ≤ 𝑐 𝑛/2 + 𝑐 𝑛/2 − 2𝑏 + 1 ≤ 𝑐𝑛 − 𝑏.

holds for any 𝑏 ≥ 1.

Avoiding Pitfalls

■ When proving the inductive step, it is easy to err in the usage of

asymptotic notations.

– For example, we guess 𝑻 𝒏 ≤ 𝒄𝒏

and write

𝑇 𝑛 ≤ 2𝑐 𝑛/2 + 𝑛 ≤ 𝑐𝑛 + 𝑛 = 𝑶 𝒏 .

– Note that,

this does not finish the proof for the inductive step!

≰ 𝑐𝑛.≰ 𝑐𝑛.

Changing Variables

■ Sometimes, a little algebraic manipulation can make an unknown

recurrence similar to one you have seen before.

– For example, consider the recurrence

𝑇 𝑛 = 2𝑇 𝑛 + log 𝑛 .

– By setting 𝑚 = log 𝑛, we obtain

𝑇 2𝑚 = 2𝑇 2𝑚/2 +𝑚 .

– With 𝑆 𝑚 ≔ 𝑇 2𝑚 ,

we get 𝑆 𝑚 = 2𝑆 𝑚/2 +𝑚, which we know how to solve.

𝑆 𝑚 = 𝑂 𝑚 log𝑚 .

𝑇 𝑛 = 𝑇 2𝑚

= 𝑂 log 𝑛 log log 𝑛 .

The Recursion-Tree Method

Expand the recursion explicitly to see the result.

Recursion-Tree Method

■ Sometimes it is difficult to come up with a good guess for the

recurrence we are facing.

■ Drawing out the recursion explicitly is a straightforward way to

devise a good guess for the recurrence.

■ In the recursion-tree method, we

– expand the recurrence explicitly from the root, and

– sum up the cost incurred at each level.

Recursion-Tree Method

■ Let us consider the recurrence

𝑇 𝑛 = 3𝑇 𝑛/4 + Θ 𝑛2 ,

which can be rewritten as

𝑇 𝑛 = 3𝑇 𝑛/4 + 𝑐 ⋅ 𝑛2 .

𝑐𝑛2

𝑇
𝑛

4
𝑇

𝑛

4
𝑇

𝑛

4

𝑐𝑛2

𝑐
𝑛

4

2

𝑐
𝑛

4

2
𝑐
𝑛

4

2

𝑇
𝑛

16
𝑇

𝑛

16
𝑇

𝑛

16
𝑇

𝑛

16
𝑇

𝑛

16
𝑇

𝑛

16
𝑇

𝑛

16
𝑇

𝑛

16
𝑇

𝑛

16

𝑇 𝑛 = 3𝑇 𝑛/4 + 𝑐 ⋅ 𝑛2 .

𝑐𝑛2

𝑐
𝑛

4

2

𝑐
𝑛

4

2

𝑐
𝑛

4

2

𝑐
𝑛

16

2

𝑇 1

𝑐
𝑛

16

2

𝑐
𝑛

16

2

𝑐
𝑛

16

2

𝑐
𝑛

16

2

𝑐
𝑛

16

2

𝑐
𝑛

16

2

𝑐
𝑛

16

2

𝑐
𝑛

16

2

𝑇 1 𝑇 1 𝑇 1 𝑇 1 𝑇 1 𝑇 1 𝑇 1 𝑇 1 𝑇 1 𝑇 1 𝑇 1⋯⋯ ⋯⋯

𝑐𝑛2

3

16
𝑐𝑛2

3

16

2

𝑐𝑛2

Θ 𝑛log4 3

log4 𝑛

Total 𝑶 𝒏𝟐

Guess 𝑇 𝑛 = 𝑂 𝑛2 .

The Master Theorem

A general theorem for 𝑇 𝑛 = 𝑎𝑇 𝑛/𝑏 + 𝑓 𝑛 .

■ Theorem. (Master Theorem).

Let 𝑎 ≥ 1 and 𝑏 > 1 be constants and 𝑓 𝑛 be a function.

Let 𝑇 𝑛 be defined on non-negative integers by the recurrence

𝑇 𝑛 = 𝑎𝑇 𝑛/𝑏 + 𝑓 𝑛 ,

where 𝑛/𝑏 can either be 𝑛/𝑏 or 𝑛/𝑏 .

Then 𝑇 𝑛 can be bounded asymptotically as follows.

– If 𝑓 𝑛 = 𝑂 𝑛 log𝑏 𝑎 −𝜖 for some 𝜖 > 0, then 𝑇 𝑛 = Θ 𝑛log𝑏 𝑎 .

– If 𝑓 𝑛 = Θ 𝑛log𝑏 𝑎 , then 𝑇 𝑛 = Θ 𝑛log𝑏 𝑎 log 𝑛 .

– If 𝑓 𝑛 = Ω 𝑛 log𝑏 𝑎 +𝜖 for some 𝜖 > 0 and

if 𝑎 ⋅ 𝑓 𝑛/𝑏 ≤ 𝑐 ⋅ 𝑓 𝑛 for some 𝑐 < 1 and sufficiently large 𝑛,

then 𝑇 𝑛 = Θ 𝑓 𝑛 .

