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Sorting Algorithms

■ In week #1, 

we have seen two different sorting algorithms.

– The Insertion Sort algorithm - 𝑂 𝑛2 running time

– The Merge Sort algorithm - 𝑂 𝑛 log 𝑛 running time 

■ A very natural question to ask is

– Can it be done even faster ?



An Ω 𝑛 log 𝑛 -Time Lower Bound for 

Comparison-based Sorting Algorithms

𝑂 𝑛 log 𝑛 is the best we can do,

unless further information (assumption) about the data is given.



Comparison-Based Sorting Algorithms

■ A comparison-based sorting algorithm sorts the given set of data 

using only “comparisons” between the elements of the data.

– Here, a comparison between any elements (cells) 𝑎 and 𝑏 refers 

to the following question 

“ Should 𝒂 be placed before 𝒃 in the final sorted order ? “

– No further assumption / operation on the input data set is 

required for the sorting procedure.



Comparison-Based Sorting Algorithms

■ A comparison-based sorting algorithm sorts the given set of data 

using only “comparisons” between the elements of the data.

– No further assumption / operation on the input data set is 

required for the sorting procedure.

■ For example, 

– Insertion Sort / Bubble Sort / Selection Sort

– Merge Sort / Quick Sort / Heap Sort

are all such sorting algorithms.



Ω 𝑛 log 𝑛 -Lower-bound on Time Complexity

■ We have the following theorem for comparison-based sorting 

algorithms.

■ How can we prove such a statement?

– Just because we do not know how to do it 

doesn’t mean that it doesn’t exist, right?

Theorem. 

Any comparison-based sorting algorithm requires Ω 𝑛 log 𝑛

comparisons in the worst case for sorting 𝑛 given numbers.



■ The execution of any comparison-based sorting algorithm

consists of a sequence of comparisons between the given numbers.

Theorem. 

Any comparison-based sorting algorithm requires Ω 𝑛 log 𝑛

comparisons in the worst case for sorting 𝑛 given numbers.

cmp cmp cmp Result⋯⋯

Ex. 𝑎, 𝑑, 𝑒, 𝑏, 𝑐

Each of the comparison has exactly 

two different outcomes.



■ The execution of any comparison-based sorting algorithm

consists of a sequence of comparisons between the given numbers.

cmp cmp cmp Result⋯⋯

Ex. 𝑎, 𝑑, 𝑒, 𝑏, 𝑐

Each of the comparison has exactly

two different outcomes.

They lead to different results. Another 

Result Ex. 𝑐, 𝑎, 𝑑, 𝑒, 𝑏



■ Hence, the execution process of a comparison-based sorting 

algorithm in fact  corresponds to a binary tree, 

where the leaf nodes are the set of all possible results.

– Abstract Decision Tree Model ( ADT model)

cmp

cmp

Result 1

cmp

Result 3

Result 2

⋯⋯

■ A sequence of 𝑘 comparisons 

can classify at most 2𝑘 different 

sorted results. 

■ There are 𝑛! potentially different 

input sequences.



■ A sequence of 𝑘 comparisons can classify at most 2𝑘

different types of input sequences. 

■ There are 𝑛! potentially different input sequences.

■ Hence, any comparison-based sorting algorithm needs at least

log 𝑛! = Θ 𝑛 log 𝑛

number of comparisons to classify the input correctly, 

where in the above we use the Stirling’s approximation for 𝑛!,

𝑛! = 2𝜋𝑛 ⋅
𝑛

𝑒

𝑛

⋅ 1 + Θ
1

𝑛
.



(Non-Comparison-based) 

Linear-Time Sorting Algorithms

We need to know additional properties of the input data.



Sorting in Linear Time

■ We will introduce three different types of such algorithms.

– Counting Sort Algorithm

■ Used when the input has only a small number of distinct values.

– Radix Sort Algorithm

■ Used when the input elements can be represented by a small 

number of digits from a small set of alphabets.

– Bucket Sort Algorithm

■ Used when the input distribution is close to uniformly random.



Counting Sort

Sort by counting the number of elements.



Counting Sort

■ The counting sort algorithm is used when the input numbers are 

selected from a small subset.

– For example, 

for all 1 ≤ 𝑖 ≤ 𝑛,   𝑎𝑖 ∈ 1,2,… , 𝑘 for some constant 𝑘.

– In this case,

we can simply “count” the number of appearances of value 𝑖

in the input sequence for each possible 𝑖 ∈ 1,2,… , 𝑘 .



Counting Sort

■ The counting sort algorithm is used when the input numbers are 

selected from a small subset  1,2,… , 𝑘 for some constant 𝑘.

– In this case,

we can simply “count” the number of appearances of value 𝑖

in the input sequence for each possible 𝑖 ∈ 1,2,… , 𝑘 .

– The time it takes will be 𝑂 𝑛 + 𝑘 .



Counting Sort

■ For example, 

suppose that the input numbers come from 1, 2, 3, 4 . 

■ Then, in the sequence 2, 1, 2, 3, 1, 2, 3,

– The appearances of the four elements are 2, 3, 2, 0, 

respectively.

– Hence, the resulted sorted sequence will be

1, 1, 2, 2, 2, 3, 3 .



■ CountingSort( 𝐴 1, 2, … , 𝑛 , 𝑛, 𝑘 )

A. Initialize 𝐶 0,… , 𝑘 to be zero.

B. For 𝑗 ← 1 to 𝑛, do the following.

■ Increase 𝐶 𝐴 𝑗 by 1.

C. For 𝑗 ← 1 to 𝑘, do the following.

■ Set 𝐶 𝑗 = 𝐶 𝑗 + 𝐶 𝑗 − 1 .

D. For 𝑗 = 𝑛 to 1, do the following.

■ Set 𝐵 𝐶 𝐴 𝑗 to be 𝐴 𝑗 .

■ Decrease 𝐶 𝐴 𝑗 by 1.

Now 𝐶 𝑖 counts the number of

elements that are at most 𝒊.

Now 𝐶 𝑖 counts the number of

appearances of 𝑖.

Now 𝐵 1,… , 𝑛 will be 

the resulted sorted array.



Some Notes

■ This algorithm works as long as the input elements can be 

represented by 1,2,… , 𝑘 for a small 𝑘.

– For example, 𝑎, 𝑏, … , 𝑧 can be mapped to 1,2,… , 26 .

– The mapping needs to be done efficiently.

■ The counting sort algorithm maintains the original order of the 

elements that have the same ranking.

– It is a stable sorting algorithm.

Q: How does counting sort

guarantee this property?



Stable Sorting Algorithm

■ Example. Suppose that a company has three departments “A”, “B”, 

and “C”, and the employees are identified by the department 

he/she is working at and also a serial number.

– Ex.  B-010,  C-123,  A-015,  A-016,  A-003,  B-003.

■ Suppose that we want to sort the IDs of the employees only 

according to the departments.

■ Then, a stable sorting algorithm will always produce the list

A-015,  A-016,  A-003,  B-010,  B-003,  C-123.



Stable Sorting Algorithm

■ The following sorting algorithms are stable by default.

– Insertion Sort,  Bubble Sort,  Selection Sort.

– Counting Sort.

■ Nevertheless, with an 𝑂 𝑛 extra storage space, 

all sorting algorithms can be made stable.



Radix Sort

Sort by elements digit by digit.



Radix Sort

■ The radix sort works when the input elements can be represented 

by a string with a small length and a small set of alphabets.

– Numbers between 0 and 999.

– Strings with length 10.

– IDs of citizens in Taiwan.

– etc.



Radix Sort

■ The radix sort algorithm considers the digits of the representation 

one by one, from the least significant to the most significant.

– For each digit considered, it uses a stable sorting algorithm, 

e.g., counting sort, to sort the elements according to that digit.

■ RadixSort( 𝐴 1, 2, … , 𝑛 , 𝑛, 𝑑, 𝑘 ) - 𝑑: number of digits,  

𝑘: number of values for each digit

A. For 𝑗 ← 1 to 𝑑, do the following.

■ Use counting sort to sort 𝐴 according to the 𝑖-th digit.



Radix Sort

■ The time complexity is straight-forward.

■ For the correctness, 

observe that at the end of the 𝑗-th iteration, all the numbers with 

the same (𝑑 − 𝑗)-digits prefix are sorted in order.

Lemma. 

Given 𝑛 𝒅-digit numbers in which each digit can take on up to 𝒌

possible values, the radix sort algorithm correctly sorts these

numbers in Θ 𝑑 𝑛 + 𝑘 time.



Radix Sort

■ For numbers represented by 𝒃-bits binary strings, 

we have the following tricks for any 0 < 𝑟 ≤ 𝑏.

– Divide the string into substrings of length 𝑟.

■ When 𝑏 = 𝑂 log 𝑛 and 𝑟 = log 𝑛, radix sort works in Θ 𝑛 time! 

Lemma. 

Given 𝑛 𝒃-bit numbers and any possible 𝑟 ≤ 𝑏, the radix sort

algorithm correctly sorts these numbers in Θ
𝑏

𝑟
𝑛 + 2𝑟 time.



Further Discussion

■ Very often, the input numbers are represented by binary strings 

of constant length. 

– Hence, radix sort gives a running time guarantee of Θ 𝑛 . 

■ Does it mean that radix sort is the best sorting algorithm 

in this circumstance?

– In theory, yes.

– In practice, it depends.



Further Discussion

■ Does it mean that radix sort is the best sorting algorithm 

in this circumstance?   Ans: In practice, it depends.

For example,

– Radix sort requires an extra 𝑂 𝑛 storage, while some 𝑂 𝑛 log 𝑛

algorithm, such as quick-sort, sorts the number in place.

– Very often, the hidden constant in Θ 𝑛 is comparable to the 

𝑂(log 𝑛) factor for the divide-and-conquer sorting algorithms.

– Quick-sort may perform better due to better CPU cache usage 

and compiler optimization, etc. 



Bucket Sort

Works in linear time when the input is uniformly random.



Bucket Sort

■ The bucket sort algorithm works extremely well when the input 

numbers are drawn from a uniform distribution.

■ The idea of this algorithm is to divide the possible range of input 

numbers into 𝑛 equal-sized subintervals.

– Since the numbers are drawn from uniform distribution, 

there are 𝑶 𝟏 elements in each sub-interval in expectation.

– Hence, any sorting algorithm can be used to sort these 

elements in expected 𝑂 1 time.

This requires formal proofs, though.



Bucket Sort

■ BucketSort( 𝐴 1, 2, … , 𝑛 , 𝑛, 𝑅 ) - 𝑅: range of input numbers

A. Initialize 𝐵 0,… , 𝑛 − 1 to be 𝑛 empty lists.

B. For 𝑗 ← 1 to 𝑛, do the following.

■ Insert 𝐴 𝑗 into the list 𝐵 𝑛 ⋅
𝐴 𝑗

𝑅
.

C. For 𝑗 ← 0 to 𝑛 − 1, do the following.

■ Sort the elements in 𝐵 𝑗 using Insertion Sort algorithm.

D. Concatenate the lists 𝐵 0 ,… , 𝐵 𝑛 − 1 in order 

to obtain the resulted sorted list.



The Analysis

■ For any 0 ≤ 𝑖 < 𝑛, 

let 𝑛𝑖 be the number of elements in list 𝐵 𝑖 .

– Then, 

𝑛𝑖 = ෍

1≤𝑗≤𝑛

𝑋𝑖,𝑗 ,

where 𝑋𝑖,𝑗 denotes the indicator variable 

for the event that the 𝑗-th element falls in the list 𝐵 𝑖 .



■ Let 𝑇 𝑛 be the running time of the Bucket sort algorithm.

– Then, 𝑇 𝑛 = Θ 𝑛 + ෍

0≤𝑖<𝑛

𝑂 𝑛𝑖
2 .

– Hence,   

E 𝑇 𝑛 = Θ 𝑛 + ෍

0≤𝑖<𝑛

𝑂 𝐸 𝑛𝑖
2 ,

where
𝐸 𝑛𝑖

2 = 𝐸 ෍

1≤𝑗≤𝑛

𝑋𝑖,𝑗
2 + ෍

1≤𝑗,𝑘≤𝑛
𝑗≠𝑘

𝑋𝑖,𝑗 ⋅ 𝑋𝑖,𝑘

= ෍

1≤𝑗≤𝑛

𝐸 𝑋𝑖,𝑗
2 + ෍

1≤𝑗,𝑘≤𝑛
𝑗≠𝑘

𝐸 𝑋𝑖,𝑗𝑋𝑖,𝑘 .



– where
𝐸 𝑛𝑖

2 = ෍

1≤𝑗≤𝑛

𝐸 𝑋𝑖,𝑗
2 + ෍

1≤𝑗,𝑘≤𝑛
𝑗≠𝑘

𝐸 𝑋𝑖,𝑗𝑋𝑖,𝑘 .

– Since the numbers are drawn from uniform distribution,

Pr 𝑋𝑖,𝑗 = 1 =
1

𝑛
for all 0 ≤ 𝑖 < 𝑛, 1 ≤ 𝑗 ≤ 𝑛.

Furthermore, 𝑋𝑖,𝑗 and 𝑋𝑖,𝑘 are independent for 𝑗 ≠ 𝑘.

– Hence, 

෍

1≤𝑗≤𝑛

𝐸 𝑋𝑖,𝑗
2 = 1 and ෍

1≤𝑗,𝑘≤𝑛
𝑗≠𝑘

𝐸 𝑋𝑖,𝑗𝑋𝑖,𝑘 = 𝑛 𝑛 − 1 ⋅
1

𝑛2
≤ 1.



The Analysis

■ Let 𝑇 𝑛 be the running time of the Bucket sort algorithm.

Then, 

E 𝑇 𝑛 = Θ 𝑛 + ෍

0≤𝑖<𝑛

𝑂 𝐸 𝑛𝑖
2

= Θ 𝑛 + ෍

0≤𝑖≤𝑛

𝑂 ෍

1≤𝑗≤𝑛

𝐸 𝑋𝑖,𝑗
2 + ෍

1≤𝑗,𝑘≤𝑛
𝑗≠𝑘

𝐸 𝑋𝑖,𝑗𝑋𝑖,𝑘

= Θ 𝑛 + ෍

0≤𝑖≤𝑛

𝑂 1 = Θ 𝑛 .


