Introduction to Algorithms

Mong-Jen Kao (5 £§8)

Tuesday 10:10 — 12:00
Thursday 15:30 — 16:20

Sorting Algorithms

m Inweek #1,
we have seen two different sorting algorithms.

- The Insertion Sort algorithm - 0(n?) running time

- The Merge Sort algorithm - O(nlogn) running time

m A very natural question to ask is

- Can it be done even faster ?

An Q(nlogn)-Time Lower Bound for

Comparison-based Sorting Algorithms

O(nlogn) is the best we can do,
unless further information (assumption) about the data is given.

Comparison-Based Sorting Algorithms

m A comparison-based sorting algorithm sorts the given set of data

using only “comparisons” between the elements of the data.

- Here, a comparison between any elements (cells) a and b refers
to the following question

“ Should a be placed before b in the final sorted order ? ©

- No further assumption / operation on the input data set is
required for the sorting procedure.

Comparison-Based Sorting Algorithms

m A comparison-based sorting algorithm sorts the given set of data
using only “comparisons” between the elements of the data.

- No further assumption / operation on the input data set is
required for the sorting procedure.

m For example,

- Insertion Sort / Bubble Sort / Selection Sort

- Merge Sort / Quick Sort / Heap Sort

are all such sorting algorithms.

Q(nlogn)-Lower-bound on Time Complexity

m We have the following theorem for comparison-based sorting
algorithms.

Theorem.

Any comparison-based sorting algorithm requires Q(nlogn)
comparisons in the worst case for sorting n given numbers.

m How can we prove such a statement?

- Just because we do not know how to do it
doesn’t mean that it doesn'’t exist, right?

Theorem.

Any comparison-based sorting algorithm requires Q(nlogn)
comparisons in the worst case for sorting n given numbers.

m [he execution of any comparison-based sorting algorithm
consists of a sequence of comparisons between the given numbers.

o T

> y Ex.a,d,e b,c

Each of the comparison has exactly
two different outcomes.

m T[he execution of any comparison-based sorting algorithm
consists of a sequence of comparisons between the given numbers.

Each of the comparison has exactly
two different outcomes.

,,,,,,,,,,,,,,,,,

...... _>-_,

Ex. a,d, e b,c

s Another
Result EX ¢, a, d, e,b

m Hence, the execution process of a comparison-based sorting
algorithm in fact corresponds to a binary tree,

where the leaf nodes are the set of all possible results.

- Abstract Decision Tree Model (ADT model)

m A sequence of k comparisons
can classify at most 2% different
sorted results.

m There are n! potentially different
Input sequences.

ik
OEGe

m A sequence of k comparisons can classify at most 2%
different types of input sequences.

m There are n! potentially different input sequences.

m Hence, any comparison-based sorting algorithm needs at least
log(n!) = 0(nlogn)

number of comparisons to classify the input correctly,
where in the above we use the Stirling’s approximation for n!,

al = m.(g)".(m(g)).

(Non-Comparison-based)

Linear-Time Sorting Algorithms

Sorting In Linear Time

m We will introduce three different types of such algorithms.

- Counting Sort Algorithm

m Used when the input has only a small number of distinct values.

- Radix Sort Algorithm

m Used when the input elements can be represented by a small
number of digits from a small set of alphabets.

- Bucket Sort Algorithm

m Used when the input distribution is close to uniformly random.

Counting Sort

Counting Sort

m The counting sort algorithm is used when the input numbers are
selected from a small subset.

- For example,

foralll1<i<mn, a; €{1,2..,k} for some constant k.

- In this case,

we can simply “count” the number of appearances of value i

In the input sequence for each possible i € {1,2, ..., k}.

Counting Sort

m The counting sort algorithm is used when the input numbers are
selected from a small subset {1,2,...,k} for some constant k.

- In this case,

we can simply “count” the number of appearances of value i

In the input sequence for each possible i € {1,2, ..., k}.

- The time it takes will be O(n + k).

Counting Sort

m For example,
suppose that the input numbers come from { 1,2, 3,4 }.

m Then, in the sequence 2,1,2,3,1, 2, 3,

- The appearances of the four elements are 2,3, 2,0,
respectively.

- Hence, the resulted sorted sequence will be

1,1,2,2,2,3,3.

m CountingSort(A[1,2,..,n],nk)

A. Initialize C[0, ..., k] to be zero.

B. Forj < 1ton, do the following. - Now C[i] counts the number of

appearances of i.
m Increase C|A[j]] by 1. < PP i

C. Forj <110k, do the following. Now C[i] counts the number of

m Setcll=Cll+Cli—-1. ~ elements that are at most i.

D. Forj =nto 1, do the following.

= Set B|c[A[j]]| to be 4[j].

m Decrease C[A[]] by 1. Now BI[1, ..., n] will be
" the resulted sorted array.

Some Notes

m This algorithm works as long as the input elements can be
represented by {1,2, ..., k} for a small k.

- For example, { a, b, ...,z } can be mapped to {1,2, ..., 26}.

- The mapping needs to be done efficiently.

m [he counting sort algorithm maintains the original order of the
elements that have the same ranking.

- Itis a stable sorting algorithm. N T

Q: How does counting sort
guarantee this property?

Stable Sorting Algorithm

m Example. Suppose that a company has three departments “A”, “B”,
and “C”, and the employees are identified by the department

he/she is working at and also a serial number.

- Ex. B-010, C-123, A-015, A-Ol16, A-003, B-003.

m Suppose that we want to sort the IDs of the employees only
according to the departments.

m Then, a stable sorting algorithm will always produce the list

A-015, A-016, A-003, B-010, B-003, C-123.

Stable Sorting Algorithm

m The following sorting algorithms are stable by default.
- Insertion Sort, Bubble Sort, Selection Sort.

- Counting Sort.

m Nevertheless, with an 0(n) extra storage space,
all sorting algorithms can be made stable.

Radix Sort

Radix Sort

m The radix sort works when the input elements can be represented
by a string with a small length and a small set of alphabets.

- Numbers between 0 and 999.
- Strings with length 10.
- IDs of citizens in Taiwan.

- elc.

Radix Sort

m The radix sort algorithm considers the digits of the representation
one by one, from the least significant to the most significant.

- For each digit considered, it uses a stable sorting algorithm,
e.g., counting sort, to sort the elements according to that digit.

m RadixSort(A[1,2,..,n],n,d, k) - d:number of digits,
k: number of values for each digit

A. Forj « 1tod, do the following.
m Use counting sort to sort A according to the i-th digit.

Radix Sort

Lemma.

Given n d-digit numbers in which each digit can take on up to k
possible values, the radix sort algorithm correctly sorts these

numbers in ©(d(n + k)) time.

m T[he time complexity is straight-forward.

m For the correctness,
observe that at the end of the j-th iteration, all the numbers with

the same (d — j)-digits prefix are sorted in order.

Radix Sort

m For numbers represented by b-bits binary strings,
we have the following tricks for any 0 < r < b.

- Divide the string into substrings of length r.

Lemma.

Given n b-bit numbers and any possible r < b, the radix sort

algorithm correctly sorts these numbers in 0 ((%) (n+ 2’”)) time.

m When b = O(logn) and r = logn, radix sort works in 6(n) time!

Further Discussion

m Very often, the input numbers are represented by binary strings
of constant length.

- Hence, radix sort gives a running time guarantee of 0(n).
m Does it mean that radix sort is the best sorting algorithm
In this circumstance?
- In theory, yes.

- In practice, it depends.

Further Discussion

m Does it mean that radix sort is the best sorting algorithm
in this circumstance? Ans: In practice, it depends.

For example,

- Radix sort requires an extra 0(n) storage, while some 0(nlogn)
algorithm, such as quick-sort, sorts the number in place.

- Very often, the hidden constant in ©(n) is comparable to the
O (log n) factor for the divide-and-conquer sorting algorithms.

- Quick-sort may perform better due to better CPU cache usage
and compiler optimization, etc.

Bucket Sort

Bucket Sort

m The bucket sort algorithm works extremely well when the input
numbers are drawn from a uniform distribution.

m The idea of this algorithm is to divide the possible range of input
numbers into n equal-sized subintervals.

- Since the numbers are drawn from uniform distribution,
there are 0(1) elements in each sub-interval in expectation.

- Hence, any sorting algorithm can be used to sort these
elements in expected 0(1) time.

Bucket Sort

m BucketSort(A[1,2,..,n],n,R) - R:range of input numbers

A. Initialize B[0, ...,n — 1] to be n empty lists.
B. Forj « 1to n, do the following.

m Insert A[j] into the IistB“n-%”.

C. Forj « 0ton—1, do the following.
m Sort the elements in B[j] using Insertion Sort algorithm.

D. Concatenate the lists B[0], ..., B[n — 1] in order
to obtain the resulted sorted list.

The Analysis

m Forany 0 <i <n,
let n; be the number of elements in list B|i].

n = 2 Xij

1<jsn

- Then,

where X; ; denotes the indicator variable
for the event that the j-th element falls in the list B[i].

m Let T(n) be the running time of the Bucket sort algorithm.

- Then,

- Hence,

where

T(n) = 0(n) + z O(niz).

0o<i<n

BT] = 80 +) 0(E[r?]) ,

0o<i<n

E[ni] = E 2 X7 z Xij Kk

1<js<n 1<j,k<n
j*k

2 E|x7;| + z E[X; i Xix|.

1<jsn 1<j,ksn
Jj*k

- wh
where E[n?] = Z E[XLZJ] + Z E[XijXik].

1<j<n 1<j,ksn
j*k

- Since the numbers are drawn from uniform distribution,

1
Pr[Xi’jzl] == forall0<i<n1<j<n

Furthermore, X; ; and X; ; are independent for j +# k.
- Hence,

1
z E[X?;] =1 and z E[X; i Xix| = n(n-1) — < 1.

1<jsn 1<j,ksn
J#k

The Analysis

m Let T(n) be the running time of the Bucket sort algorithm.

Then,
BT = o) + Y 0(E[n?])
0<si<n
= 0(n) + z 0(z E[x7;] + z E[Xi,in,k]>
0<isn 1<j<n 1<j,k=n
j#k

|
(©)
N\
S
N’
I
o
@)
N\
—_
\—r
||
©)
N\
S
~—

