Introduction to **Algorithms**

Mong-Jen Kao (高孟駿) Tuesday 10:10 – 12:00 Thursday 15:30 – 16:20

Asymptotic Notations

To describe the rate for which a function grows.

The **O**-Notation

• For a given function g(n),

define $\Theta(g(n))$ to be the set of functions

{ f(n) : there exists **positive constants** c_1, c_2 , and n_0 such that

 $0 \leq c_1 \cdot g(n) \leq f(n) \leq c_2 \cdot g(n) \text{ for all } n \geq n_0. \}$

- Intuitively, a function f(n) is contained in $\Theta(g(n))$ if there exists $c_1, c_2 > 0$ such that
 - the value of f(n) is <u>always between</u> $c_1 \cdot g(n)$ and $c_2 \cdot g(n)$ when *n* is **sufficiently large**.

The **O**-Notation

Intuitively, a function f(n) is contained in $\Theta(g(n))$ if there exists $c_1, c_2 > 0$ such that

- the value of f(n) is always between $c_1 \cdot g(n)$ and $c_2 \cdot g(n)$ when *n* is **sufficiently large**.

■ For example,

- $(n^2 + n) \in \Theta(n^2)$
- $(n^2 + n) \notin \Theta(n^3)$

This happens <u>only when</u> f(n) and g(n)grow <u>roughly at the same speed</u> when n is sufficiently large.

Formal Proof

 $\bullet (n^2 + n) \in \Theta(n^2)$

- Pick
$$c_1 = 1$$
, $c_2 = 2$, and $n_0 = 2$.

- Then,

$$n^2 \leq n^2 + n \leq 2n^2$$
 for all $n \geq n_0$.

- Hence,
$$(n^2 + n) \in \Theta(n^2)$$
.

Deriving the *Contrapositive Statement.*

- $\bullet (n^2 + n) \notin \Theta(n^3)$
 - To prove this statement, we need to show that
 - There exists no positive constants c_1, c_2, n_0 such that $c_1 \cdot n^3 \leq n^2 + n \leq c_2 \cdot n^3$ for all $n \geq n_0$.
 - This is equivalent of showing the following.
 - For every positive constants c_1, c_2, n_0 , there always exists some $n \ge n_0$ such that $n^2 + n < c_1 \cdot n^3$ or $c_2 \cdot n^3 < n^2 + n$.

Formal Proof

 $\bullet (n^2 + n) \notin \Theta(n^3)$

- Consider the following two cases.

• For every $c_1 \leq 1$, we have

$$n^2 + n < c_1 \cdot n^3$$
 for all $n \ge \frac{2}{c_1}$.

• For every $c_1 > 1$, we have

$$n^2 + n < c_1 \cdot n^3$$
 for all $n \ge 2$.

- Hence, for every c_1, c_2, n_0 , there exists some $n \ge n_0$ such that $n^2 + n < c_1 \cdot n^3$.

Deriving the Contrapositive Statement

Consider the following statement.

P: " All of us are potatoes. "

Then,

~(not) P: " ~(All of us) are potatoes. "

Which is equivalent to

The O-Notation

• For a given function g(n),

define $\Theta(g(n))$ to be the set of functions

{ f(n) : there exists **positive constants** c_1, c_2 , and n_0 such that

 $0 \leq c_1 \cdot g(n) \leq f(n) \leq c_2 \cdot g(n) \text{ for all } n \geq n_0. \}$

We will write

 $f(n) = \Theta(g(n))$

to denote $f(n) \in \Theta(g(n))$.

• This means that f(n) and g(n) are **roughly at the same order**.

The *O*-Notation (Big-O)

• For a given function g(n),

define O(g(n)) to be the set of functions

{ f(n) : there exists **positive constants** c and n_0 such that

 $0 \leq f(n) \leq c \cdot g(n) \text{ for all } n \geq n_0.$

- Intuitively, a function f(n) is contained in O(g(n))
 if there exists c > 0 such that
 - the value of f(n) is <u>always upper-bounded by</u> $c \cdot g(n)$ when *n* is **sufficiently large**.

The *O*-Notation (Big-O)

• Similarly, we write f(n) = O(g(n)) if $f(n) \in O(g(n))$.

■ For example,

$$- (n^2 + n) = O(n^2)$$

$$- (n^2 + n) = O(n^3)$$

 $- (n^2 + n) \neq O(n \log n)$

The Ω -Notation (Big-Omega)

• For a given function g(n),

define $\Omega(g(n))$ to be the set of functions

{ f(n) : there exists **positive constants** c and n_0 such that

 $0 \leq c \cdot g(n) \leq f(n)$ for all $n \geq n_0$.

- Intuitively, a function f(n) is contained in $\Omega(g(n))$ if there exists c > 0 such that
 - the value of f(n) is <u>always lower-bounded by</u> $c \cdot g(n)$ when *n* is **sufficiently large**.

The Ω -Notation (Big-Omega)

• Similarly, we write $f(n) = \Omega(g(n))$ if $f(n) \in \Omega(g(n))$.

■ For example,

$$- (n^2 + n) = \Omega(n^2)$$

 $- (n^2 + n) = \Omega(n \log n)$

$$- (n^2 + n) \neq \Omega(n^3)$$

Some Simple Facts

• $f(n) = \Theta(g(n))$

if and only if f(n) = O(g(n)) and $f(n) = \Omega(g(n))$.

• $f(n) = \Theta(g(n))$ if and only if

$$\lim_{n\to\infty}\frac{f(n)}{g(n)} = \Theta(1).$$

(Transitivity)

If f(n) = O(g(n)) and g(n) = O(h(n)), then f(n) = O(h(n)).

f(n) = O(g(n)) and $f(n) \neq \Omega(g(n))$

The *o*-Notation (Small-O)

- The notation f(n) = o(g(n)) is used to denote the situation that the **asymptotic growth rate** of f(n) is **strictly slower** than that of g(n).
- For a given function g(n), define o(g(n)) to be the set of functions

{ f(n) : for every positive constant c > 0,

there always exists a constant $n_c > 0$ such that

 $0 \leq f(n) < c \cdot g(n)$ for all $n \geq n_0$.

The ω -Notation (Small-Omega)

- The notation $f(n) = \omega(g(n))$ is used to denote the situation that the **asymptotic growth rate** of f(n) is **strictly faster** than that of g(n).
- For a given function g(n), define $\omega(g(n))$ to be the set of functions

{ f(n) : for every positive constant c > 0,

there always exists a constant $n_c > 0$ such that

 $0 \leq c \cdot g(n) < f(n)$ for all $n \geq n_0$.

 $f(n) = \Omega(g(n))$ and $f(n) \neq O(g(n))$

The *o*- and ω -Notations

■ For example,

$$- (n^2 + n) = o(n^3)$$

$$- (n^2 + n) = \omega(n \log n)$$

$$- (n^2 + n) \neq o(n^2)$$

Try to prove them yourself!

Some Simple Facts

• f(n) = o(g(n))if and only if $g(n) = \omega(f(n))$.

• f(n) = o(g(n)) if and only if

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=0.$$

(Transitivity)

If f(n) = o(g(n)) and g(n) = o(h(n)), then f(n) = o(h(n)).