Introduction to Algorithms

Mong-Jen Kao (高孟駿) Tuesday 10:10 – 12:00 Thursday 15:30 – 16:20

Asymptotic Notations

To describe the rate for which a function grows.

The Θ-Notation

• For a given function $g(n)$,

define $\Theta(g(n))$ to be the set of functions

 $\{f(n) : \text{there exists positive constants } c_1, c_2, \text{and } n_0 \text{ such that }$

 $0 \leq c_1 \cdot g(n) \leq f(n) \leq c_2 \cdot g(n)$ for all $n \geq n_0$.

- Intuitively, a function $f(n)$ is contained in $\Theta(g(n))$ if there exists $c_1, c_2 > 0$ such that
	- the value of $f(n)$ is **always between** $c_1 \cdot g(n)$ and $c_2 \cdot g(n)$ when *n* is **sufficiently large**.

The Θ-Notation

IF Intuitively, a function $f(n)$ is contained in $\Theta(g(n))$ if there exists $c_1, c_2 > 0$ such that

– the value of $f(n)$ is always between $c_1 \cdot g(n)$ and $c_2 \cdot g(n)$ when *n* is **sufficiently large**.

■ For example,

- $(n^2 + n) \in \Theta(n^2)$
- $(n^2 + n) \notin \Theta(n^3)$

This happens *only when* $f(n)$ and $g(n)$ grow *roughly at the same speed when is sufficiently large*.

Formal Proof

 $(n^2+n) \in \Theta(n^2)$

- Pick
$$
c_1 = 1
$$
, $c_2 = 2$, and $n_0 = 2$.

– Then,

$$
n^2 \le n^2 + n \le 2n^2 \quad \text{for all} \ n \ge n_0.
$$

- Hence,
$$
(n^2 + n) \in \Theta(n^2)
$$
.

Deriving the *Contrapositive Statement.*

- \blacksquare $(n^2 + n) \notin \Theta(n^3)$
	- To prove this statement, we need to show that
		- **There exists no positive constants** c_1 , c_2 , n_0 such that $c_1 \cdot n^3 \leq n^2 + n \leq c_2 \cdot n^3$ for all $n \geq n_0$.
	- This is equivalent of showing the following.
		- **For every positive constants** c_1 , c_2 , n_0 , there always exists some $n \geq n_0$ such that $n^2 + n < c_1 \cdot n^3$ or $c_2 \cdot n^3 < n^2 + n$.

Formal Proof

 \blacksquare $(n^2 + n) \notin \Theta(n^3)$

– Consider the following two cases.

■ For every $c_1 \leq 1$, we have $n^2 + n < c_1 \cdot n^3$ for all $n \ge$ 2 c_1 . **■** For every $c_1 > 1$, we have $n^2 + n < c_1 \cdot n^3$ for all $n \ge 2$.

- Hence, for every c_1 , c_2 , n_0 , there exists some $n \ge n_0$ such that $n^2 + n < c_1 \cdot n^3$.

Deriving the Contrapositive Statement

■ Consider the following statement.

P : " **All of us** are *potatoes*. "

■ Then,

~(not) P : " **~ (All of us)** are *potatoes*. "

Which is equivalent to

$$
\sim P : "One of us is -(potatoes)."
$$

The Θ-Notation

For a given function $g(n)$ **,**

define $\Theta(g(n))$ to be the set of functions

 $f(n)$: there exists **positive constants** c_1 , c_2 , and n_0 such that

 $0 \leq c_1 \cdot g(n) \leq f(n) \leq c_2 \cdot g(n)$ for all $n \geq n_0$.

■ We will write

$$
f(n) = \Theta\big(g(n)\big)
$$

to denote $f(n) \in \Theta(g(n))$.

■ This means that $f(n)$ and $g(n)$ are **roughly at the same order**.

The O -Notation (Big-O)

• For a given function $g(n)$,

define $O(g(n))$ to be the set of functions

 $f(n)$: there exists **positive constants** c and n_0 such that

 $0 \leq f(n) \leq c \cdot g(n)$ for all $n \geq n_0$.

- Intuitively, a function $f(n)$ is contained in $O(g(n))$ if there exists $c > 0$ such that
	- the value of $f(n)$ is **always upper-bounded by** $c \cdot g(n)$ when *n* is **sufficiently large**.

The O -Notation (Big-O)

■ Similarly, we write $f(n) = O(g(n))$ if $f(n) \in O(g(n))$.

■ For example,

$$
- (n^2 + n) = O(n^2)
$$

$$
- (n^2 + n) = O(n^3)
$$

 $- (n^2 + n) \neq O(n \log n)$

The Ω-Notation (Big-Omega)

• For a given function $g(n)$,

define $\Omega(g(n))$ to be the set of functions

 $f(n)$: there exists **positive constants** c and n_0 such that

 $0 \leq c \cdot g(n) \leq f(n)$ for all $n \geq n_0$.

- Intuitively, a function $f(n)$ is contained in $\Omega(g(n))$ if there exists $c > 0$ such that
	- the value of $f(n)$ is **always lower-bounded by** $c \cdot g(n)$ when *n* is **sufficiently large**.

The Ω-Notation (Big-Omega)

- Similarly, we write $f(n) = \Omega(g(n))$ if $f(n) \in \Omega(g(n))$.
- For example,

$$
- (n^2 + n) = \Omega(n^2)
$$

 $- (n^2 + n) = \Omega(n \log n)$

$$
- (n^2 + n) \neq \Omega(n^3)
$$

Some Simple Facts

 $f(n) = \Theta(g(n))$

if and only if $f(n) = O(g(n))$ and $f(n) = \Omega(g(n))$.

 $f(n) = \Theta(g(n))$ if and only if

$$
\lim_{n\to\infty}\frac{f(n)}{g(n)} = \Theta(1).
$$

■ (Transitivity)

If $f(n) = O(g(n))$ and $g(n) = O(h(n))$, then $f(n) = O(h(n))$.

 $f(n) = O(g(n))$ and $f(n) \neq \Omega(g(n))$

The o -Notation (Small-O)

- The notation $f(n) = o(g(n))$ is used to denote the situation that the **asymptotic growth rate** of $f(n)$ is **strictly slower** than that of $g(n)$.
- **For a given function** $g(n)$ **,** define $o(g(n))$ to be the set of functions { $f(n)$: for every positive constant $c > 0$, there always exists a constant $n_c > 0$ such that $0 \leq f(n) < c \cdot g(n)$ for all $n \geq n_0$.

The ω -Notation (Small-Omega)

- The notation $f(n) = \omega(g(n))$ is used to denote the situation that the **asymptotic growth rate** of $f(n)$ is **strictly faster** than that of $g(n)$.
- **For a given function** $g(n)$ **,** define $\omega(g(n))$ to be the set of functions { $f(n)$: for every positive constant $c > 0$,

there always exists a constant $n_c > 0$ such that

 $0 \leq c \cdot g(n) < f(n)$ for all $n \geq n_0$.

 $f(n) = \Omega(g(n))$ and $f(n) \neq O(g(n))$

The o - and ω -Notations

■ For example,

$$
- (n^2 + n) = o(n^3)
$$

$$
- (n^2 + n) = \omega(n \log n)
$$

$$
- (n^2 + n) \neq o(n^2)
$$

Try to prove them yourself!

Some Simple Facts

 $f(n) = o(g(n))$ if and only if $g(n) = \omega(f(n))$.

 $f(n) = o(g(n))$ if and only if

$$
\lim_{n\to\infty}\frac{f(n)}{g(n)}=0.
$$

■ (Transitivity)

If $f(n) = o(g(n))$ and $g(n) = o(h(n))$, then $f(n) = o(h(n))$.