
Introduction to Algorithms

Mong-Jen Kao (高孟駿)

Tuesday 10:10 – 12:00

Thursday 15:30 – 16:20

Graph Algorithms

– Graph problem pervades computer science, and

Algorithms for graphs are fundamental to the field.

The Single-Source Shortest Path

Problem

To compute the shortest distance / paths between a given source vertex

and every other vertices in the graph.

Single-Source Shortest Path Problem

■ Given a directed / undirected graph 𝐺 = 𝑉, 𝐸 with an edge weight /

length function 𝑤 ∶ 𝐸 ↦ ℚ and a source vertex 𝑠 ∈ 𝑉,

compute the distance (shortest path) from 𝑠 to every vertex 𝑣 ∈ 𝑉.

■ In this lecture, we will examine two algorithms for this problem.

– Bellman-Ford Algorithm

– less efficient but works when edges have negative weights.

– Dijkstra’s Algorithm – more efficient but only works when edges

have non-negative weights.

Optimal Substructure of Shortest Paths

■ Let 𝐺 = 𝑉, 𝐸 be a graph with edge weight function 𝑤 ∶ 𝐸 ↦ ℚ,

𝑢, 𝑣 ∈ 𝑉 be two vertices, and

𝑃 = 𝑢, 𝑞1, 𝑞2, … , 𝑞𝑘 , 𝑣

be a shortest path between 𝑢 and 𝑣.

– Then, for any 1 ≤ 𝑖 ≤ 𝑘, both

𝑄𝑖 = 𝑢, 𝑞1, … , 𝑞𝑘 and 𝑄𝑖
′ = 𝑞𝑘 , 𝑞𝑘+1, … , 𝑞𝑘 , 𝑣

are shortest-paths between 𝑢 and 𝑞𝑘, and 𝑞𝑘 and 𝑣, respectively.

Common Information / Operations

■ For the Bellman-Ford algorithm and the Dijkstra’s algorithm,

we will maintain the following common information.

– For each 𝑣 ∈ 𝑉,

■ 𝑑 𝑣 - the distance between 𝑠 and 𝑣.

■ 𝜋 𝑣 - the predecessor of 𝑣 in a shortest path to 𝑠.

– Initially, 𝑑 𝑠 = 0 and 𝑑 𝑣 ← ∞ for all 𝑣 ∈ 𝑉 ∖ 𝑠 .

Common Information / Operations

■ For the Bellman-Ford algorithm and the Dijkstra’s algorithm,

we will use the following common operation to update 𝑑 ⋅ .

Relax 𝑢, 𝑣, 𝑤 - to update 𝑑 𝑣 based on 𝑑 𝑢 and 𝑤 𝑢, 𝑣 .

■ If 𝑑 𝑣 > 𝑑 𝑢 + 𝑤 𝑢, 𝑣 // Found a better path for 𝑣

then set 𝑑 𝑣 ← 𝑑 𝑢 + 𝑤 𝑢, 𝑣 and 𝜋 𝑣 ← 𝑢.

The Bellman-Ford Algorithm

■ For any 𝑖 ≥ 0 and any 𝑣 ∈ 𝑉,

let 𝑑(𝑖)[𝑣] denote the weight of the shortest path between 𝑠 and 𝑣

that contains at most 𝑖 edges.

■ The Bellman-Ford algorithm uses the following recurrence formula

to compute 𝑑(𝑖) 𝑣 for any 0 ≤ 𝑖 ≤ 𝑉 .

For any 𝑣 ∈ 𝑉, 𝑑 𝑖 𝑣 = min
𝑝∈𝑉

𝑑 𝑖−1 𝑝 + 𝑤 𝑝, 𝑣 .

Any shortest path, if exists,

uses at most 𝑉 edges.

The Bellman-Ford Algorithm
Any shortest path, if exists,

uses at most 𝑉 edges.

Bellman-Ford 𝐺,𝑤, 𝑠 - to compute shortest 𝑠-𝑣 path for all 𝑣 ∈ 𝑉.

A. Initialize 𝑑 ⋅ and 𝜋 ⋅ .

B. For 𝑖 ← 1 to 𝑉 − 1, do the following

– For each 𝑒 = 𝑢, 𝑣 ∈ 𝐸, call Relax 𝑢, 𝑣, 𝑤 .

C. For any 𝑒 = 𝑢, 𝑣 ∈ 𝐸,

– If 𝑑 𝑣 > 𝑑 𝑢 + 𝑤 𝑢, 𝑣 , then report “negative cycle exists”.

If 𝑑 𝑣 can be improved after |𝑉| steps,

there must exist a negative cycle.

The Bellman-Ford Algorithm

■ The Bellman-Ford algorithm runs in 𝑂 𝐸 ⋅ 𝑉 time.

– It detects the existence of negative cycles in the graph.

– In this case, shortest paths / distances are undefined.

The Dijkstra’s Algorithm

■ Dijkstra’s algorithm computes 𝑑 ⋅ with a BFS-like approach.

– In each iteration,

it picks an unprocessed vertex 𝑣 ∈ 𝑉 with the smallest 𝑑 ⋅ value.

– It follows that 𝑑 𝑣 = 𝛿 𝑠, 𝑣 .

– The algorithm uses 𝑑 𝑣 to update 𝑑 𝑢 for all 𝑢 ∈ 𝑉.

■ To implement the BFS process, the algorithm uses a priority queue 𝑄

to store the unprocessed vertices with priority 𝑑 ⋅ .

The Dijkstra’s Algorithm

Dijkstra’s-Algorithm 𝐺,𝑤, 𝑠 - to compute shortest 𝑠-𝑣 path for all 𝑣 ∈ 𝑉.

A. Initialize 𝑑 ⋅ and 𝜋 ⋅ .

B. Add 𝑉 to 𝑄.

C. While 𝑄 ≠ ∅, do the following

– Let 𝑢 ← Extract-Min 𝑄 .

– For each 𝑣 ∈ 𝑁 𝑢 , call Relax 𝑢, 𝑣, 𝑤 .

Decrease-Key 𝑣, 𝑑 𝑣 is called

if 𝑑 𝑣 is improved upon this call.

The Dijkstra’s Algorithm

■ The time complexity of Dijkstra’s algorithm depends on the underlying

priority queue used to implement this algorithm.

– If both Extract-Min and Decrease-Key operations take 𝑂 log 𝑉

time, then the algorithm takes 𝑂 𝑉 + 𝐸 log 𝑉 time.

– If Fibonacci heap or Quake heap is used,

then Decrease-Key can be done in amortized 𝑂 1 time,

and the Dijkstra’s algorithm runs in 𝑂 𝑉 log 𝑉 + 𝐸 time.

The All-Pair Shortest Path Problem

To compute the shortest distance / paths

between every pair of vertices in the graph.

The All-Pair Shortest Path Problem

■ Given a directed / undirected graph 𝐺 = 𝑉, 𝐸 with an edge weight /

length function 𝑤 ∶ 𝐸 ↦ 𝑄≥0,

for every pair 𝑢, 𝑣 ∈ 𝑉 of vertices,

compute the distance (shortest path) between 𝑢 and 𝑣 in 𝐺.

■ In this lecture,

we will examine the Floyd-Warshall algorithm for this problem.

A Simple Alternative Algorithm

■ For any 𝑖 ≥ 0 and 𝑢, 𝑣 ∈ 𝑉, define 𝑑(𝑖) 𝑢, 𝑣 to be the length of any

shortest 𝑢-𝑣 path that contains at most 𝑖 edges.

– We have the following recurrence formula for 𝑑(𝑖) 𝑢, 𝑣

𝑑 𝑖 𝑢, 𝑣 = min
𝑝∈𝑉

𝑑 𝑖−1 𝑢, 𝑝 + 𝑤 𝑝, 𝑣 .

– Hence, we can compute 𝑑 𝑛 𝑢, 𝑣

for all 𝑢, 𝑣 ∈ 𝑉 in 𝑂 𝑛4 time, where 𝑛 = 𝑉 .

■ For any 𝑖 ≥ 0 and 𝑢, 𝑣 ∈ 𝑉, define 𝑑(𝑖) 𝑢, 𝑣 to be the length of any

shortest 𝑢-𝑣 path that contains at most 𝑖 edges.

– We have the following recurrence formula for 𝑑(𝑖) 𝑢, 𝑣

𝑑 𝑖 𝑢, 𝑣 = min
𝑝∈𝑉

𝑑 𝑖−1 𝑢, 𝑝 + 𝑤 𝑝, 𝑣 .

– The running time of this algorithm can be improved to 𝑂 𝑛3 log 𝑛

by applying the fast exponentiation technique.

■ When 𝑖 is even, we have

𝑑 𝑖 𝑢, 𝑣 = min
𝑝∈𝑉

𝑑 𝑖/2 𝑢, 𝑝 + 𝑑(𝑖/2) 𝑝, 𝑣 .

The Flyod-Warshall Algorithm

■ The Floyd-Warshall algorithm uses a cleaver observation on the

optimal substructure of any shortest path.

– Let 𝑣1, 𝑣2, ⋯ , 𝑣𝑛 be an arbitrary labeling of the vertices.

– Let 𝑃 be a shortest 𝑢-𝑣 path that uses 𝑣𝑘 but not 𝑣ℓ for all ℓ > 𝑘.

■ Then 𝑃 consists of shortest 𝑢-𝑣𝑘 path and shortest 𝑣𝑘-𝑣 path

that only use vertices from 𝑣1, 𝑣2, … , 𝑣𝑘−1.

– This gives a new DP recurrence formula.

The Flyod-Warshall Algorithm

■ Let 𝑣1, 𝑣2, ⋯ , 𝑣𝑛 be an arbitrary labeling of the vertices.

■ For any 1 ≤ 𝑘 ≤ 𝑛 and any 𝑢, 𝑣 ∈ 𝑉,

let 𝑑(𝑘) 𝑢, 𝑣 denote the length of any shortest 𝑢-𝑣 path that only uses

vertices from 𝑣1, 𝑣2, … , 𝑣𝑘 .

– Then we have

𝑑 𝑘 𝑢, 𝑣 = min
𝑝∈𝑉

𝑑 𝑘−1 𝑢, 𝑝 + 𝑑(𝑘−1) 𝑝, 𝑣 .

– This leads to an 𝑂 𝑛3 algorithm for this problem.

The Flyod-Warshall Algorithm

Floyd-Warshall 𝐺,𝑤 - to compute shortest 𝑠-𝑣 path for all 𝑢, 𝑣 ∈ 𝑉.

A. Initialize 𝑑 ⋅ .

B. For 𝑘 = 1,2,… , 𝑛, do the following.

– For 𝑢 = 1,2, … , 𝑛, do the following.

■ For 𝑣 = 1,2,… , 𝑛, do the following.

– 𝑑 𝑢, 𝑣 ← min 𝑑 𝑢, 𝑣 , 𝑑 𝑢, 𝑘 + 𝑑 𝑘, 𝑣 .

