Introduction to Algorithms

Mong-Jen Kao (高孟駿)

Tuesday 10:10 – 12:00

Thursday 15:30 – 16:20

Graph Algorithms

Graph problem pervades computer science, and
 Algorithms for graphs are fundamental to the field.

The Single-Source Shortest Path Problem

To compute the shortest distance / paths between a given source vertex and every other vertices in the graph.

Single-Source Shortest Path Problem

- Given a directed / undirected graph G = (V, E) with an edge weight / length function $w : E \mapsto \mathbb{Q}$ and a source vertex $s \in V$, compute the distance (shortest path) from s to every vertex $v \in V$.
- In this lecture, we will examine two algorithms for this problem.
 - Bellman-Ford Algorithm
 - less efficient but works when edges have negative weights.
 - Dijkstra's Algorithm more efficient but only works when edges have non-negative weights.

Optimal Substructure of Shortest Paths

Let G = (V, E) be a graph with edge weight function $w : E \mapsto \mathbb{Q}$, $u, v \in V$ be two vertices, and

$$P = u, q_1, q_2, ..., q_k, v$$

be a shortest path between u and v.

- Then, for any $1 \le i \le k$, both

$$Q_i = u, q_1, ..., q_k$$
 and $Q'_i = q_k, q_{k+1}, ..., q_k, v$

are shortest-paths between u and q_k , and q_k and v, respectively.

Common Information / Operations

- For the Bellman-Ford algorithm and the Dijkstra's algorithm, we will maintain the following common information.
 - For each $v \in V$,
 - \blacksquare d[v] the distance between s and v.
 - \blacksquare $\pi[v]$ the predecessor of v in a shortest path to s.
 - Initially, d[s] = 0 and $d[v] \leftarrow \infty$ for all $v \in V \setminus \{s\}$.

Common Information / Operations

■ For the Bellman-Ford algorithm and the Dijkstra's algorithm, we will use the following common operation to update $d[\cdot]$.

Relax(u, v, w) - to update d[v] based on d[u] and w(u, v).

If d[v] > d[u] + w(u, v) // Found a better path for v then set $d[v] \leftarrow d[u] + w(u, v)$ and $\pi[v] \leftarrow u$.

The Bellman-Ford Algorithm

Any shortest path, if exists, uses at most |V| edges.

- For any $i \ge 0$ and any $v \in V$, let $d^{(i)}[v]$ denote the weight of the shortest path between s and v that contains at most i edges.
- The Bellman-Ford algorithm uses the following recurrence formula to compute $d^{(i)}[v]$ for any $0 \le i \le |V|$.

For any
$$v \in V$$
, $d^{(i)}[v] = \min_{p \in V} \{ d^{(i-1)}[p] + w(p, v) \}$.

The Bellman-Ford Algorithm

Any shortest path, if exists, uses at most |V| edges.

Bellman-Ford(G, w, s) - to compute shortest s-v path for all $v \in V$.

- A. Initialize $d[\cdot]$ and $\pi[\cdot]$.
- B. For $i \leftarrow 1$ to |V| 1, do the following
 - For each $e = (u, v) \in E$, call Relax(u, v, w).
- C. For any $e = (u, v) \in E$,
 - If d[v] > d[u] + w(u, v), then report "negative cycle exists".

If d[v] can be improved after |V| steps, there must exist a negative cycle.

The Bellman-Ford Algorithm

- The Bellman-Ford algorithm runs in $O(|E| \cdot |V|)$ time.
 - It detects the existence of negative cycles in the graph.
 - In this case, shortest paths / distances are undefined.

The Dijkstra's Algorithm

- Dijkstra's algorithm computes $d[\cdot]$ with a BFS-like approach.
 - In each iteration, it picks an unprocessed vertex $v \in V$ with the smallest $d[\cdot]$ value.
 - It follows that $d[v] = \delta(s, v)$.
 - The algorithm uses d[v] to update d[u] for all $u \in V$.
- To implement the BFS process, the algorithm uses a priority queue Q to store the unprocessed vertices with priority $d[\cdot]$.

The Dijkstra's Algorithm

Dijkstra's-Algorithm(G, w, s) - to compute shortest s-v path for all $v \in V$.

- A. Initialize $d[\cdot]$ and $\pi[\cdot]$.
- B. Add V to Q.
- C. While $Q \neq \emptyset$, do the following
 - Let u ← Extract-Min(Q).
 - For each $v \in N(u)$, call Relax(u, v, w).

Decrease-Key(v, d[v]) is called if d[v] is improved upon this call.

The Dijkstra's Algorithm

- The time complexity of Dijkstra's algorithm depends on the underlying priority queue used to implement this algorithm.
 - If both Extract-Min and Decrease-Key operations take $O(\log|V|)$ time, then the algorithm takes $O((|V| + |E|) \log|V|)$ time.
 - If <u>Fibonacci heap</u> or <u>Quake heap</u> is used, then Decrease-Key can be done in amortized O(1) time, and the Dijkstra's algorithm runs in $O(|V| \log |V| + |E|)$ time.

The All-Pair Shortest Path Problem

To compute the shortest distance / paths between every pair of vertices in the graph.

The All-Pair Shortest Path Problem

- Given a directed / undirected graph G = (V, E) with an edge weight / length function $w : E \mapsto Q^{\geq 0}$, for every pair $u, v \in V$ of vertices, compute the distance (shortest path) between u and v in G.
- In this lecture,
 we will examine the Floyd-Warshall algorithm for this problem.

A Simple Alternative Algorithm

- For any $i \ge 0$ and $u, v \in V$, define $d^{(i)}[u, v]$ to be the length of any shortest u-v path that contains at most i edges.
 - We have the following recurrence formula for $d^{(i)}[u, v]$

$$d^{(i)}[u,v] = \min_{p \in V} \{ d^{(i-1)}[u,p] + w(p,v) \}.$$

- Hence, we can compute $d^{(n)}[u, v]$ for all $u, v \in V$ in $O(n^4)$ time, where n = |V|.

- For any $i \ge 0$ and $u, v \in V$, define $d^{(i)}[u, v]$ to be the length of any shortest u-v path that contains at most i edges.
 - We have the following recurrence formula for $d^{(i)}[u, v]$

$$d^{(i)}[u,v] = \min_{p \in V} \left\{ d^{(i-1)}[u,p] + w(p,v) \right\}.$$

- The running time of this algorithm can be improved to $O(n^3 \log n)$ by applying the fast exponentiation technique.
 - \blacksquare When i is even, we have

$$d^{(i)}[u,v] = \min_{p \in V} \left\{ d^{(i/2)}[u,p] + d^{(i/2)}(p,v) \right\}.$$

The Flyod-Warshall Algorithm

- The Floyd-Warshall algorithm uses a cleaver observation on the optimal substructure of any shortest path.
 - Let v_1, v_2, \dots, v_n be an arbitrary labeling of the vertices.
 - Let P be a shortest u-v path that uses v_k but not v_ℓ for all $\ell > k$.
 - Then P consists of shortest u- v_k path and shortest v_k -v path that only use vertices from v_1, v_2, \dots, v_{k-1} .
 - This gives a new DP recurrence formula.

The Flyod-Warshall Algorithm

- Let v_1, v_2, \dots, v_n be an arbitrary labeling of the vertices.
- For any $1 \le k \le n$ and any $u, v \in V$, let $d^{(k)}[u, v]$ denote the length of any shortest u-v path that only uses vertices from $\{v_1, v_2, \dots, v_k\}$.
 - Then we have

$$d^{(k)}[u,v] = \min_{p \in V} \left\{ d^{(k-1)}[u,p] + d^{(k-1)}[p,v] \right\}.$$

- This leads to an $O(n^3)$ algorithm for this problem.

The Flyod-Warshall Algorithm

Floyd-Warshall(G, w) - to compute shortest s-v path for all $u, v \in V$.

- A. Initialize $d[\cdot]$.
- B. For k = 1, 2, ..., n, do the following.
 - For u = 1, 2, ..., n, do the following.
 - For v = 1, 2, ..., n, do the following.
 - $d[u,v] \leftarrow \min\{ d[u,v], d[u,k] + d[k,v] \}.$