Introduction to Algorithms

Mong-Jen Kao (5 £§8)

Tuesday 10:10 — 12:00
Thursday 15:30 — 16:20

Graph Algorithms

— Graph problem pervades computer science, and

Algorithms for graphs are fundamental to the field.

The Single-Source Shortest Path

Problem

To compute the shortest distance / paths between a given source vertex
and every other vertices in the graph.

Single-Source Shortest Path Problem

m Given a directed / undirected graph ¢ = (V, E') with an edge weight /
length function w : E — Q and a source vertex s € V,

compute the distance (shortest path) from s to every vertex v € V.

m In this lecture, we will examine two algorithms for this problem.

- Bellman-Ford Algorithm
— less efficient but works when edges have negative weights.

- Dijkstra’s Algorithm — more efficient but only works when edges
have non-negative weights.

Optimal Substructure of Shortest Paths
m Let G = (V,E) be a graph with edge weight functionw : E — Q,
u,v € V be two vertices, and

P=uq,q5,..,q;,V

be a shortest path between u and v.

- Then, forany 1 <i < k, both

Qi = U, q1, -, qg and Ql, = 4k, dk+1) - 4y V

are shortest-paths between u and g, and g, and v, respectively.

Common Information / Operations

m For the Bellman-Ford algorithm and the Dijkstra’s algorithm,

we will maintain the following common information.
- Foreachv eV,
m d|v] - the distance between s and v.

m 7|v] - the predecessor of v in a shortest path to s.

- Initially, d[s] = 0 and d|v] « oo forall v € V \ {s}.

Common Information / Operations

m For the Bellman-Ford algorithm and the Dijkstra’s algorithm,

we will use the following common operation to update d|-].

Relax(u, v,w) - to update d[v] based on d[u] and w(u, v).

m Ifd|v] >du] +w(u,v) [/l Found a better path for v

then set d|v] « d[u] + w(u, v) and [v] « wu.

The Bellman-Ford Algorithm Ay shortest path, if exists,

~uses at most |V| edges. |
m Foranyi=0andanyv eV, By

let d(V[v] denote the weight of the shortest path between s and v

that contains at most i edges.

m The Bellman-Ford algorithm uses the following recurrence formula

to compute d®P[v] forany 0 <i < |V].

Foranyv eV, dW[y] = mEI‘I/l{ dV[p] + w(p,v) }.
p

Any shortest path, if exists,

The Bellman-Ford Algorithm ~ uses at most |V| edges.

A. Initialize d[-] and «[-].
B. Fori < 1to |V]|— 1, do the following

- Foreache = (u,v) € E, call Relax(u, v, w).
C. Foranye = (u,v) € E,

- Ifd[v] > d|u] + w(u, v), then report “negative cycle exists”.

If d|v] can be improved after |V| steps,

there must exist a negative cycle.

The Bellman-Ford Algorithm

m The Bellman-Ford algorithm runs in O(|E| - |[V]) time.
- It detects the existence of negative cycles in the graph.

- In this case, shortest paths / distances are undefined.

The Dijkstra’s Algorithm

m Dijkstra’s algorithm computes d|-] with a BFS-like approach.

- In each iteration,
it picks an unprocessed vertex v € V with the smallest d|-] value.

- It follows that d[v] = 6 (s, v).

- The algorithm uses d|v] to update d|u] for all u € V.

m To implement the BFS process, the algorithm uses a priority queue Q

to store the unprocessed vertices with priority d|-].

The Dijkstra’s Algorithm

Dijkstra’s-Algorithm(G,w,s) - to compute shortest s-v path for all v € V.

A. Initialize d[-] and «[-].
B. Add V to Q.

C. While Q # @, do the following
- Let u « Extract-Min(Q).

- For each v € N(u), call Relax(u, v, w).

Decrease-Key(v, d[v]) is called
If d[v] is improved upon this call.

The Dijkstra’s Algorithm

m The time complexity of Dijkstra’s algorithm depends on the underlying

priority queue used to implement this algorithm.

- If both Extract-Min and Decrease-Key operations take O(log|V|)
time, then the algorithm takes O((IVI + |E|) logIVI) time.

- If Fibonacci heap or Quake heap Is used,

then Decrease-Key can be done in amortized 0(1) time,

and the Dijkstra’s algorithm runs in O(|V|log|V| + |E]) time.

The All-Pair Shortest Path Problem

To compute the shortest distance / paths
between every pair of vertices in the graph.

The All-Pair Shortest Path Problem

m Given a directed / undirected graph ¢ = (V, E') with an edge weight /
length function w : E » 039,
for every pair u, v € V of vertices,
compute the distance (shortest path) between u and v in G.

m In this lecture,
we will examine the Floyd-Warshall algorithm for this problem.

A Simple Alternative Algorithm
m Foranyi>0andu,v eV, define d¥V[u, v] to be the length of any
shortest u-v path that contains at most i edges.

- We have the following recurrence formula for d®[u, v]

dPu,v] = min{ d“"V[u,p] + wp,v) }.
p

- Hence, we can compute d™[u, v]

for all w,v € V in 0(n*) time, where n = |V].

m Foranyi>0andu,v eV, define d¥Y[u, v] to be the length of any

shortest u-v path that contains at most i edges.
- We have the following recurrence formula for d® [u, v]

dPu,v] = min{ d"Plu,p] + wp,v) }.
p

- The running time of this algorithm can be improved to 0(n3logn)

by applying the fast exponentiation technique.
m Wheniis even, we have

d®u,v] = min{ d“?u,p] + a2 (p,v) } .
p

The Flyod-Warshall Algorithm

m The Floyd-Warshall algorithm uses a cleaver observation on the

optimal substructure of any shortest path.
- Let vy, v,, -+, v, be an arbitrary labeling of the vertices.
- Let P be a shortest u-v path that uses v, but not v, for all £ > k.

m Then P consists of shortest u-v;, path and shortest v, -v path

that only use vertices from vy, v,, ..., Vy_1.

- This gives a new DP recurrence formula.

The Flyod-Warshall Algorithm

m Letvy,v,, -, v, be an arbitrary labeling of the vertices.

m Foranyl<k<nandanyu,vevV,
let d®)[u, v] denote the length of any shortest u-v path that only uses

vertices from {vy, v, ..., vy }.
- Then we have

4 [u,v] = mellrll{ d(k—l)[u’p] _|_d(k—1)[p’ V] } _
p

- This leads to an 0(n?) algorithm for this problem.

The Flyod-Warshall Algorithm

Floyd-Warshall(G,w) - to compute shortest s-v path for all u,v € V.

A. Initialize d|[-].
B. Fork =1,2,..,n, do the following.
- Foru =1,2,...,n, do the following.
m Forv=1,2..,n, do the following.

- d[u,v] « min{ d[u,v], d[u k] +d[k,v] }.

