
Introduction to Algorithms

Mong-Jen Kao (高孟駿)

Tuesday 10:10 – 12:00

Thursday 15:30 – 16:20

Graph Algorithms

– Graph problem pervades computer science, and

Algorithms for graphs are fundamental to the field.

Applications of the DFS Algorithm

Let’s examine graph problems

that are solved by DFS-like algorithms.

Example 1.

Topological Sort

Produce a consistent linear ordering of the vertices

for a directed acyclic graph (DAG).

Topological Sort

■ Let 𝐺 = 𝑉, 𝐸 be a directed acyclic graph (DAG).

– i.e., 𝐺 contains no cycle.

■ The topological sort problem is to produce a linear ordering

𝜋 ∶ 𝑉 ↦ 1,2,… , 𝑛 of the vertices, where 𝑛 = 𝑉 , such that

– 𝜋𝑢 ≠ 𝜋𝑣 for any 𝑢, 𝑣 ∈ 𝑉 with 𝑢 ≠ 𝑣, and

– for any directed edge 𝑢, 𝑣 ∈ 𝐸, we have 𝜋𝑢 < 𝜋𝑣.

■ In other words, produce an ordering of the vertices

such that no edge points backwards in the ordering.

Topological Sort

■ The topological sort problem can be solved by the DFS algorithm.

■ Topological-Sort 𝐺 - 𝐺 = 𝑉, 𝐸 is directed acyclic.

A. Let 𝑄 be an empty list.

B. Call DFS 𝐺 .

As each vertex is finished in the DFS-Visit call,

insert the vertex in the front of 𝑄.

C. Return 𝑄.

// 𝑄 stores the vertices in the descending order of their finish times.

Analysis of the Algorithm

■ It is clear that this algorithm runs in 𝑂 𝑉 + 𝐸 time.

■ To prove the correctness,

let us verify the 4 types of edges in the DFS-forest.

– By the parenthesis theorem, tree edges point to vertices

with earlier finish times.

– By the definition, forward edges and cross edges point to

black vertices which are already finished.

These vertices come after in the linear ordering.

Analysis of the Algorithm

■ It is clear that this algorithm runs in 𝑂 𝑉 + 𝐸 time.

■ To prove the correctness,

let us verify the 4 types of edges in the DFS-forest.

– There is no back edge in the resulting DFS-forest.

■ Any back edge forms at least one cycle in the graph.

■ Hence, none of these edges point backward in the ordering

produced by the algorithm.

Example 2.

Strongly Connected Components

Partition the vertices into maximal components such that

every vertex pair within one component is reachable from both directions.

Strongly Connected Components

■ Let 𝐺 = 𝑉, 𝐸 be a directed graph (digraph).

– A strongly connected component (SCC) is a maximal vertex

subset 𝐶 ⊆ 𝑉 such that for any 𝑢, 𝑣 ∈ 𝐶,

vertices 𝑢 and 𝑣 are reachable from each other.

𝑎

𝑏

𝑐

𝑑

𝑒 𝑓

𝑔 ℎ

𝑖

Note that, 𝑎, 𝑏, 𝑑 is not an SCC

since it is not maximal in size.

Strongly Connected Components

■ Let 𝐺 = 𝑉, 𝐸 be a directed graph (digraph).

– Let 𝒞 = 𝐶1, 𝐶2, … , 𝐶𝑘 be a partition of 𝑉 into SCCs.

– Consider the set 𝐸𝐶 of edges in 𝐸 that connects components in 𝒞.

– Then, 𝐺𝐶 = 𝒞, 𝐸𝐶 is acyclic.

𝑎

𝑏

𝑐

𝑑

𝑒 𝑓

𝑔 ℎ

𝑖

𝑎, 𝑏, 𝑐, 𝑑

𝑒, 𝑓

𝑔, ℎ

𝑖

Strongly Connected Components

■ Define 𝐸𝑇 ≔ 𝑣, 𝑢 ∶ 𝑢, 𝑣 ∈ 𝐸 be the edges in 𝐸

with their directions reversed.

– Define 𝐺𝑇 = 𝑉, 𝐸𝑇 to be the transpose of 𝐺.

■ Then, 𝐶 ⊆ 𝑉 is an SCC for 𝐺 if and only if

𝐶 is an SCC for 𝐺𝑇.

■ Furthermore, if 𝐶, 𝐶′ ⊆ 𝑉 are SCCs

such that 𝐶′ is reachable from 𝐶 in 𝐺𝐶,

then 𝐶′ is not reachable from 𝐶 in 𝐺𝐶
𝑇.

𝑎, 𝑏, 𝑐, 𝑑

𝑒, 𝑓

𝑔, ℎ

𝑖

Strongly Connected Components

■ With the information computed by the DFS algorithm,

we can compute the set of SCCs in 𝑂 𝑉 + 𝐸 time.

■ Strongly-Connected-Components 𝐺 - 𝐺 = 𝑉, 𝐸 is directed.

A. Call DFS 𝐺 , and use a queue to maintain the vertices

in decreasing order of their finish times.

B. Call DFS 𝐺𝑇 , but in the main loop of the algorithm,

consider the vertices in decreasing order of their finish times.

C. Report each tree in the DFS forest created by DFS 𝐺𝑇 as an SCC.

Example 3.

Bi-connected Components

and Articulation Points

Computing the cut vertices and

2-vertex connected components for an undirected graph.

Articulation Points / Cut Vertices

■ Let 𝐺 = 𝑉, 𝐸 be a connected undirected graph.

– A vertex 𝑣 ∈ 𝑉 is a cut vertex / articulation point for 𝐺

if 𝐺 − 𝑣 is disconnected.

– A biconnected component is a maximal vertex subset 𝐵 ⊆ 𝑉

that induces a connected subgraph with no cut vertex.

Articulation Points / Cut Vertices

■ We can use the DFS algorithm to compute the set of bi-connected

components and also the set of articulation points in 𝑂 𝑉 + 𝐸 time.

■ Consider the DFS tree 𝐺𝜋 computed by the DFS algorithm.

– We have the following properties.

Lemma 1.

Let 𝑟 be the root of 𝐺𝜋. Then 𝑟 is an articulation point

if and only if it has at least two children nodes in 𝐺𝜋.

Articulation Points / Cut Vertices

■ Consider the DFS tree 𝐺𝜋 computed by the DFS algorithm.

– We have the following properties.

Lemma 2.

Let 𝑣 ∈ 𝐺𝜋 be a non-root vertex.

Then 𝑣 is an articulation point if and only if it has a child 𝑠 such that

there is no back edge from 𝑠 or any descendant of 𝑠 to a proper

ancestor of 𝑣.

■ We can use the DFS algorithm to compute the set of bi-connected

components and also the set of articulation points in 𝑂 𝑉 + 𝐸 time.

■ Get-Articulation-Points 𝑣, ℓ - 𝑣 ∈ 𝑉 the current vertex with depth ℓ.

A. // Initializations

Set visited 𝑣 ← true,

depth 𝑣 ← ℓ,

low 𝑣 ← ℓ, // Highest depth reachable from any descendant

of 𝑣 via back edges.

childCount ← 0, and

isCutVertex ← false.

■ Get-Articulation-Points 𝑣, ℓ - 𝑣 ∈ 𝑉 the current vertex with depth ℓ.

A. // Initializations

B. For each 𝑢 ∈ 𝑁 𝑣 , do the following.

– If visited 𝑢 = false then

1. Set 𝜋 𝑢 ← 𝑣 and childCount ← childCount + 1.

2. Get-Articulation-Points 𝑢, ℓ + 1 .

3. If low 𝑢 ≥ depth 𝑣 , // by Lemma 2

then set isCutVertex ← true.

4. Set low 𝑣 ← min low 𝑣 , low 𝑢 .

else if 𝑢 ≠ 𝜋 𝑣 , then // 𝑣, 𝑢 is a back edge

1. Set low 𝑣 ← min low 𝑣 , depth 𝑢 .

■ Get-Articulation-Points 𝑣, ℓ - 𝑣 ∈ 𝑉 the current vertex with depth ℓ.

A. // Initializations

B. For each 𝑢 ∈ 𝑁 𝑣 , do the following.

– …

C. // by Lemma 1 and Lemma 2

If (𝜋𝑣 ≠ NIL and isCutVertex = true) or

(𝜋𝑣 = NIL and childCount > 1) then

– Output 𝑣 as an articulation point.

With an extra stack, this algorithm can be modified

to output all biconnected components in 𝑂 𝑉 + 𝐸 time as well.

