# Introduction to Algorithms

Mong-Jen Kao (高孟駿)

Tuesday 10:10 – 12:00

Thursday 15:30 – 16:20

## **Graph Algorithms**

Graph problem pervades computer science, and
 Algorithms for graphs are fundamental to the field.

## Applications of the DFS Algorithm

Let's examine graph problems that are solved by DFS-like algorithms.

## Example 1.

# **Topological Sort**

Produce a consistent linear ordering of the vertices for a directed acyclic graph (DAG).

#### **Topological Sort**

- Let G = (V, E) be a directed acyclic graph (DAG).
  - i.e., G contains no cycle.
- The topological sort problem is to produce a linear ordering  $\pi: V \mapsto \{1, 2, ..., n\}$  of the vertices, where n = |V|, such that
  - $\pi_u \neq \pi_v$  for any  $u, v \in V$  with  $u \neq v$ , and
  - for any directed edge  $(u, v) \in E$ , we have  $\pi_u < \pi_v$ .
- In other words, produce an ordering of the vertices such that no edge points backwards in the ordering.

#### **Topological Sort**

- The topological sort problem can be solved by the DFS algorithm.
  - Topological-Sort(G) G = (V, E) is directed acyclic.
  - A. Let *Q* be an empty list.
  - B. Call DFS(G).

As each vertex is finished in the DFS-Visit call, insert the vertex in the front of Q.

C. Return Q.

 $//\ Q$  stores the vertices in the descending order of their finish times.

#### Analysis of the Algorithm

- It is clear that this algorithm runs in O(|V| + |E|) time.
- To prove the correctness, let us verify the 4 types of edges in the DFS-forest.
  - By the parenthesis theorem, tree edges <u>point to vertices</u>
     with earlier finish times.
  - By the definition, forward edges and cross edges point to black vertices which are already finished.

These vertices come after in the linear ordering.

#### Analysis of the Algorithm

- It is clear that this algorithm runs in O(|V| + |E|) time.
- To prove the correctness, let us verify the 4 types of edges in the DFS-forest.
  - There is no back edge in the resulting DFS-forest.
    - Any back edge forms at least one cycle in the graph.
- Hence, none of these edges point backward in the ordering produced by the algorithm.

## Example 2.

Strongly Connected Components

Partition the vertices into maximal components such that <u>every vertex pair</u> within one component is <u>reachable from both directions</u>.

- Let G = (V, E) be a directed graph (digraph).
  - A <u>strongly connected component</u> (SCC) is a <u>maximal vertex</u> **subset**  $C \subseteq V$  such that for any  $u, v \in C$ , vertices u and v are <u>reachable from each other</u>.



Note that,  $\{a, b, d\}$  is not an SCC since it is not maximal in size.

- Let G = (V, E) be a directed graph (digraph).
  - Let  $C = \{C_1, C_2, ..., C_k\}$  be a partition of V into SCCs.
  - Consider the set  $E_C$  of edges in E that connects components in C.
  - Then,  $G_C = (\mathcal{C}, E_C)$  is **acyclic**.



- Define  $E^T := \{ (v, u) : (u, v) \in E \}$  be the edges in E with their directions reversed.
  - Define  $G^T = (V, E^T)$  to be the transpose of G.
- Then,  $C \subseteq V$  is an SCC for G if and only if C is an SCC for  $G^T$ .
- Furthermore, if  $C, C' \subseteq V$  are SCCs such that C' is reachable from C in  $G_C$ , then C' is not reachable from C in  $G_C^T$ .



- With the information computed by the DFS algorithm, we can compute the set of SCCs in O(|V| + |E|) time.
  - Strongly-Connected-Components(G) G = (V, E) is directed.
  - A. Call DFS(G), and use a queue to maintain the vertices in decreasing order of their finish times.
  - B. Call DFS( $G^T$ ), but in the main loop of the algorithm, consider the vertices in decreasing order of their finish times.
  - C. Report each tree in the DFS forest created by DFS( $G^T$ ) as an SCC.

### Example 3.

# Bi-connected Components and Articulation Points

Computing the cut vertices and

2-vertex connected components for an undirected graph.

#### **Articulation Points / Cut Vertices**

- Let G = (V, E) be a connected undirected graph.
  - A vertex v ∈ V is a <u>cut vertex</u> / <u>articulation point</u> for G
     if G {v} is disconnected.
  - A <u>biconnected component</u> is a maximal vertex subset  $B \subseteq V$  that induces a connected subgraph with no cut vertex.



#### **Articulation Points / Cut Vertices**

- We can use the DFS algorithm to compute the set of bi-connected components and also the set of articulation points in O(|V| + |E|) time.
- Consider the DFS tree  $G_{\pi}$  computed by the DFS algorithm.
  - We have the following properties.

#### Lemma 1.

Let r be the root of  $G_{\pi}$ . Then r is an articulation point *if and only if* it has at least two children nodes in  $G_{\pi}$ .

#### **Articulation Points / Cut Vertices**

- Consider the DFS tree  $G_{\pi}$  computed by the DFS algorithm.
  - We have the following properties.

#### Lemma 2.

Let  $v \in G_{\pi}$  be a non-root vertex.

Then v is an articulation point *if and only if* it has a child s such that there is *no back edge* from s or any descendant of s to a proper ancestor of v.

- We can use the DFS algorithm to compute the set of bi-connected components and also the set of articulation points in O(|V| + |E|) time.
  - Get-Articulation-Points $(v, \ell)$   $v \in V$  the current vertex with depth  $\ell$ .

#### A. // Initializations

```
Set visited[v] \leftarrow \text{true}, depth[v] \leftarrow \ell,
```

 $low[v] \leftarrow \ell$ , // Highest depth reachable from any descendant of v <u>via back edges</u>.

childCount  $\leftarrow$  0, and

 $isCutVertex \leftarrow false.$ 

■ Get-Articulation-Points $(v, \ell)$  -  $v \in V$  the current vertex with depth  $\ell$ .

#### A. // Initializations

- B. For each  $u \in N(v)$ , do the following.
  - If visited [u] = false then
    - 1. Set  $\pi[u] \leftarrow v$  and childCount  $\leftarrow$  childCount + 1.
    - 2. Get-Articulation-Points $(u, \ell + 1)$ .
    - 3. If  $low[u] \ge depth[v]$ , // by Lemma 2 then set is CutVertex  $\leftarrow$  true.
    - 4. Set  $low[v] \leftarrow min(low[v], low[u])$ .

else if  $u \neq \pi[v]$ , then //(v,u) is a back edge

1. Set  $low[v] \leftarrow min(low[v], depth[u])$ .

■ Get-Articulation-Points $(v, \ell)$  -  $v \in V$  the current vertex with depth  $\ell$ .

```
A. // Initializations
```

B. For each  $u \in N(v)$ , do the following.

- ...

Output v as an articulation point.

With an extra stack, this algorithm can be modified to output all biconnected components in O(|V| + |E|) time as well.