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Graph Algorithms

– Graph problem pervades computer science, and

Algorithms for graphs are fundamental to the field.



Graph Traversal  / Searching

To explore / search the vertices / edges in a graph in a systematic way.



Graph Traversal

■ Traversal / Searching is a fundamental problem in graphs.

– To explore every vertex / edge in the graph

– To search for a particular vertex / edge in the graph

■ In this lecture, we examine two different ways to do this.

1. Breadth-first search (BFS) – which reveals the shortest-path 

map / distance information for the source vertex.

2. Depth-first search (DFS) – which reveals certain structural 

properties / information of the graph. 



Breadth-First Search (BFS)

To explore the vertices in an equidistant contour (concentric) order.

During the process, the shortest-path map

from the source vertex is revealed.



Breadth-First Search (BFS)

■ This process explores the vertices in the order of their (shortest) 

distances to the source vertex 𝑠.

𝑠

The process starts 

from the source vertex 𝑠.



Breadth-First Search (BFS)

■ This process explores the vertices in the order of their (shortest) 

distances to the source vertex 𝑠.

The process starts 

from the source vertex 𝑠.

s

Next, the vertices with distance 1

to 𝑠 are explored.



Breadth-First Search (BFS)

■ This process explores the vertices in the order of their (shortest) 

distances to the source vertex 𝑠.

The process starts 

from the source vertex 𝑠.

Next, the vertices with distance 1

to 𝑠 are explored.s

Next, the vertices with distance 2

to 𝑠 are explored.



Breadth-First Search (BFS)

■ This process explores the vertices in the order of their (shortest) 

distances to the source vertex 𝑠.

s

■ The vertices discovered at 

each level forms equidistant 

contours concentered at the 

source vertex 𝑠.

■ A shortest-path tree (SPT) 

from the source vertex 𝑠 is 

produced.



The BFS Algorithm

■ The algorithm uses a first-in first-out (FIFO) queue

to implement the aforementioned process.

– In each iteration, 

the algorithm extracts the first vertex

in the queue and process it.

– For each vertex discovered

(which belongs to the next contour),

the algorithm appends the vertex

to the tail of the queue.

s



Formal Description of the BFS Algorithm

■ The algorithm maintains the following information during the process.

– ∀𝑣 ∈ 𝑉, the color (status) of 𝑣, denoted color 𝑣 .

■ white: not discovered yet.

■ gray: discovered, not yet processed.

■ black: discovered and processed.

– ∀𝑣 ∈ 𝑉, the predecessor (parent) of 𝑣, denoted π 𝑣 , in the search.

■ i.e., the vertex that discovers 𝑣 during the search.

■ π 𝑣 is NIL if 𝑣 has no predecessor (yet).

– 𝑣 is the source vertex, or 𝑣 is not yet discovered.



Formal Description of the BFS Algorithm

■ The algorithm maintains the following information during the process.

– ∀𝑣 ∈ 𝑉, the distance to the source vertex, denoted d 𝑣 .

■ Initially, d 𝑣 = ∞ for all 𝑣 ∈ 𝑉.

– A first-in first-out (FIFO) queue 𝑄.

■ The queue is used to store the current gray vertices in the order 

they are discovered by the algorithm.



■ BFS 𝐺, 𝑠 - 𝐺 = 𝑉, 𝐸 the input graph, 𝑠 ∈ 𝑉 the start vertex.

A. For each 𝑣 ∈ 𝑉, 

set color 𝑣 ← white, 𝑑 𝑣 ← ∞, and 𝜋 𝑣 ← NIL.

B. Set color 𝑠 ← gray and 𝑑 𝑠 ← 0.

ENQUEUE 𝑄, 𝑠 .

C. While 𝑄 ≠ ∅, do the following.

■ 𝑢 ← DEQUEUE 𝑄 .

■ For each 𝑣 ∈ 𝑁 𝑢 , do the following.

– If color 𝑣 = white, then

■ Set 𝑐𝑜𝑙𝑜𝑟 𝑣 ← 𝑔𝑟𝑎𝑦, 𝑑 𝑣 ← 𝑑 𝑢 + 1, and 𝜋 𝑣 ← 𝑢.

𝐸𝑁𝑄𝑈𝐸𝑈𝐸 𝑄, 𝑣 .

■ Set color 𝑢 ← black.

𝑠 𝑢

𝑣



An Example

■ Consider the following graph and 

the execution of the BFS algorithm with the source vertex 𝑠.

𝑠𝑟 𝑡 𝑢

𝑣 𝑤 𝑥 𝑦



𝑠𝑟 𝑡 𝑢

𝑣 𝑤 𝑥 𝑦

∞ 𝟎 ∞ ∞

∞ ∞ ∞ ∞

𝑟 𝑠 𝑡 𝑢

𝑣 𝑤 𝑥 𝑦

𝑠𝑄

d[ ] 0

(initialization)

■ Initialization

A. For each 𝑣 ∈ 𝑉, set

color 𝑣 ← white, 

𝑑 𝑣 ← ∞, and 

𝜋 𝑣 ← NIL.

B. Set color 𝑠 ← gray and 

𝑑 𝑠 ← 0.

ENQUEUE 𝑄, 𝑠 .



∞ 𝟎 ∞ ∞

∞ ∞ ∞ ∞

𝑟 𝑠 𝑡 𝑢

𝑣 𝑤 𝑥 𝑦

𝑠𝑄

d[ ] 0

process (expand) 𝑠

1 𝟎 ∞ ∞

∞ 1 ∞ ∞

𝑟 𝑠 𝑡 𝑢

𝑣 𝑤 𝑥 𝑦

𝑤𝑄

d[ ] 1

𝑟

1

■ Process the gray nodes 

until 𝑄 becomes empty.

A. While 𝑄 ≠ ∅, do the following.

– 𝑢 ← DEQUEUE 𝑄 .

– For each 𝑣 ∈ 𝑁 𝑢 , do

■ If color 𝑣 = white, then

– Set 𝑐𝑜𝑙𝑜𝑟 𝑣 ← 𝑔𝑟𝑎𝑦, 

𝑑 𝑣 ← 𝑑 𝑢 + 1, and 

𝜋 𝑣 ← 𝑢.

– ENQUEUE 𝑄, 𝑣 .

– Set color 𝑢 ← black.

Discovery of distance-1 vertices is done.



process (expand) 𝑤

1 𝟎 2 ∞

∞ 1 2 ∞

𝑟 𝑠 𝑡 𝑢

𝑣 𝑤 𝑥 𝑦

𝑟𝑄

d[ ] 1

𝑡

2

1 𝟎 ∞ ∞

∞ 1 ∞ ∞

𝑟 𝑠 𝑡 𝑢

𝑣 𝑤 𝑥 𝑦

𝑤𝑄

d[ ] 1

𝑟

1

𝑥

2

■ Process the gray nodes 

until 𝑄 becomes empty.

A. While 𝑄 ≠ ∅, do the following.

– 𝑢 ← DEQUEUE 𝑄 .

– For each 𝑣 ∈ 𝑁 𝑢 , do

■ If color 𝑣 = white, then

– Set 𝑐𝑜𝑙𝑜𝑟 𝑣 ← 𝑔𝑟𝑎𝑦, 

𝑑 𝑣 ← 𝑑 𝑢 + 1, and 

𝜋 𝑣 ← 𝑢.

– ENQUEUE 𝑄, 𝑣 .

– Set color 𝑢 ← black.



process (expand) 𝑟

1 𝟎 2 ∞

2 1 2 ∞

𝑟 𝑠 𝑡 𝑢

𝑣 𝑤 𝑥 𝑦

𝑡𝑄

d[ ] 2

𝑥

2

𝑣

2

1 𝟎 2 ∞

∞ 1 2 ∞

𝑟 𝑠 𝑡 𝑢

𝑣 𝑤 𝑥 𝑦

𝑟𝑄

d[ ] 1

𝑡

2

𝑥

2

■ Process the gray nodes 

until 𝑄 becomes empty.

A. While 𝑄 ≠ ∅, do the following.

– 𝑢 ← DEQUEUE 𝑄 .

– For each 𝑣 ∈ 𝑁 𝑢 , do

■ If color 𝑣 = white, then

– Set 𝑐𝑜𝑙𝑜𝑟 𝑣 ← 𝑔𝑟𝑎𝑦, 

𝑑 𝑣 ← 𝑑 𝑢 + 1, and 

𝜋 𝑣 ← 𝑢.

– ENQUEUE 𝑄, 𝑣 .

– Set color 𝑢 ← black.

Discovery of distance-2 vertices is done.



process (expand) 𝑡

1 𝟎 2 3

2 1 2 ∞

𝑟 𝑠 𝑡 𝑢

𝑣 𝑤 𝑥 𝑦

𝑥𝑄

d[ ] 2

𝑣

2

𝑢

3

1 𝟎 2 ∞

2 1 2 ∞

𝑟 𝑠 𝑡 𝑢

𝑣 𝑤 𝑥 𝑦

𝑡𝑄

d[ ] 2

𝑥

2

𝑣

2

■ Process the gray nodes 

until 𝑄 becomes empty.

A. While 𝑄 ≠ ∅, do the following.

– 𝑢 ← DEQUEUE 𝑄 .

– For each 𝑣 ∈ 𝑁 𝑢 , do

■ If color 𝑣 = white, then

– Set 𝑐𝑜𝑙𝑜𝑟 𝑣 ← 𝑔𝑟𝑎𝑦, 

𝑑 𝑣 ← 𝑑 𝑢 + 1, and 

𝜋 𝑣 ← 𝑢.

– ENQUEUE 𝑄, 𝑣 .

– Set color 𝑢 ← black.



process (expand) 𝑥

1 𝟎 2 3

2 1 2 3

𝑟 𝑠 𝑡 𝑢

𝑣 𝑤 𝑥 𝑦

𝑣𝑄

d[ ] 2

𝑢

3

𝑦

3

1 𝟎 2 3

2 1 2 ∞

𝑟 𝑠 𝑡 𝑢

𝑣 𝑤 𝑥 𝑦

𝑥𝑄

d[ ] 2

𝑣

2

𝑢

3

■ Process the gray nodes 

until 𝑄 becomes empty.

A. While 𝑄 ≠ ∅, do the following.

– 𝑢 ← DEQUEUE 𝑄 .

– For each 𝑣 ∈ 𝑁 𝑢 , do

■ If color 𝑣 = white, then

– Set 𝑐𝑜𝑙𝑜𝑟 𝑣 ← 𝑔𝑟𝑎𝑦, 

𝑑 𝑣 ← 𝑑 𝑢 + 1, and 

𝜋 𝑣 ← 𝑢.

– ENQUEUE 𝑄, 𝑣 .

– Set color 𝑢 ← black.



process (expand) 𝑣

1 𝟎 2 3

2 1 2 3

𝑟 𝑠 𝑡 𝑢

𝑣 𝑤 𝑥 𝑦

𝑢𝑄

d[ ] 3

𝑦

3

1 𝟎 2 3

2 1 2 3

𝑟 𝑠 𝑡 𝑢

𝑣 𝑤 𝑥 𝑦

𝑣𝑄

d[ ] 2

𝑢

3

𝑦

3

■ Process the gray nodes 

until 𝑄 becomes empty.

A. While 𝑄 ≠ ∅, do the following.

– 𝑢 ← DEQUEUE 𝑄 .

– For each 𝑣 ∈ 𝑁 𝑢 , do

■ If color 𝑣 = white, then

– Set 𝑐𝑜𝑙𝑜𝑟 𝑣 ← 𝑔𝑟𝑎𝑦, 

𝑑 𝑣 ← 𝑑 𝑢 + 1, and 

𝜋 𝑣 ← 𝑢.

– ENQUEUE 𝑄, 𝑣 .

– Set color 𝑢 ← black.

Discovery of distance-3 vertices is done.



process (expand) 𝑢

1 𝟎 2 3

2 1 2 3

𝑟 𝑠 𝑡 𝑢

𝑣 𝑤 𝑥 𝑦

𝑦𝑄

d[ ] 3

1 𝟎 2 3

2 1 2 3

𝑟 𝑠 𝑡 𝑢

𝑣 𝑤 𝑥 𝑦

𝑢𝑄

d[ ] 3

𝑦

3

■ Process the gray nodes 

until 𝑄 becomes empty.

A. While 𝑄 ≠ ∅, do the following.

– 𝑢 ← DEQUEUE 𝑄 .

– For each 𝑣 ∈ 𝑁 𝑢 , do

■ If color 𝑣 = white, then

– Set 𝑐𝑜𝑙𝑜𝑟 𝑣 ← 𝑔𝑟𝑎𝑦, 

𝑑 𝑣 ← 𝑑 𝑢 + 1, and 

𝜋 𝑣 ← 𝑢.

– ENQUEUE 𝑄, 𝑣 .

– Set color 𝑢 ← black.



process (expand) 𝑦

1 𝟎 2 3

2 1 2 3

𝑟 𝑠 𝑡 𝑢

𝑣 𝑤 𝑥 𝑦

𝑄

d[ ]

1 𝟎 2 3

2 1 2 3

𝑟 𝑠 𝑡 𝑢

𝑣 𝑤 𝑥 𝑦

𝑦𝑄

d[ ] 3

■ Process the gray nodes 

until 𝑄 becomes empty.

A. While 𝑄 ≠ ∅, do the following.

– 𝑢 ← DEQUEUE 𝑄 .

– For each 𝑣 ∈ 𝑁 𝑢 , do

■ If color 𝑣 = white, then

– Set 𝑐𝑜𝑙𝑜𝑟 𝑣 ← 𝑔𝑟𝑎𝑦, 

𝑑 𝑣 ← 𝑑 𝑢 + 1, and 

𝜋 𝑣 ← 𝑢.

– ENQUEUE 𝑄, 𝑣 .

– Set color 𝑢 ← black.

𝑄 becomes empty, and the graph is traversed. 



Analysis of the BFS Algorithm



Time Complexity of the BFS Algorithm

■ The initialization step takes O |𝑉| time.

■ Consider the while loop.

– The while loop repeats for at most O |𝑉| times 

since every vertex enters the queue 𝑄 exactly once.

■ Consider the inner for loop.

– For any vertex 𝑣 ∈ 𝑉, it takes O deg(𝑣) time 

if adjacency list representation is used.

■ The overall time complexity is 𝑂 𝑉 + 𝐸 if adjacency list 

representation is used.



Correctness of the BFS Algorithm

■ We will prove the following theorem.

Theorem 1. (Correctness of Breadth-First Search)

When the algorithm terminates, we have d 𝑣 = 𝛿(𝑠, 𝑣) for all 𝑣 ∈ 𝑉.

Moreover, for any 𝑣 ≠ 𝑠 that is reachable from 𝑠, 

one of the shortest path from 𝑠 to 𝑣 consists of a shortest path from 𝑠 to

𝜋(𝑣) followed by the edge 𝜋 𝑣 , 𝑣 .

Definition.

For any u, 𝑣 ∈ 𝑉, let 𝛿(𝑢, 𝑣) denote the distance between 𝑢 and 𝑣 in 𝐺.

𝛿(𝑢, 𝑣) ≡ ∞ if there is no path connecting 𝑢 and 𝑣.



Breadth-First Tree (Shortest-Path Tree)

■ Define the predecessor subgraph

𝐺𝜋 = 𝑉𝜋 , 𝐸𝜋 ,  where   𝑉𝜋 = 𝑣 ∈ 𝑉 ∶ 𝜋[𝑣] ≠ NIL ∪ 𝑠 and

𝐸𝜋 = 𝜋 𝑣 , 𝑣 ∶ 𝑣 ∈ 𝑉𝜋 − 𝑠 .

s

The predecessor graph 𝐺𝜋 is connected and   

has exactly 𝑉𝜋 − 1 edges.

It is a tree.



Breadth-First Tree (Shortest-Path Tree)

■ Define the predecessor subgraph

𝐺𝜋 = 𝑉𝜋 , 𝐸𝜋 ,  where   𝑉𝜋 = 𝑣 ∈ 𝑉 ∶ 𝜋[𝑣] ≠ NIL ∪ 𝑠 and

𝐸𝜋 = 𝜋 𝑣 , 𝑣 ∶ 𝑣 ∈ 𝑉𝜋 − 𝑠 .

s

By Theorem 1,  

for any 𝑣 ∈ 𝑉𝜋 − {𝑠}, the 𝑠−𝑣 path in 𝐺𝜋

must be a shortest 𝑠−𝑣 path in the graph 𝐺.

We call 𝐺𝜋 the Bread-First Tree, or, 

the Shortest-Path Tree (SPT), induced by 𝑠.



■ To prove Theorem 1, we need the following lemma, 

which follows from the design of the algorithm.

■ If 𝑑 𝑣 > 𝑑 𝑢 , 

then consider the moment when 𝑢 is processed in the while loop.

– If 𝑣 is already discovered, then 𝑑 𝑣 is either 𝑑 𝑢 or 𝑑 𝑢 + 1.

– Otherwise, 𝑣 will be discovered by 𝑢 and 𝑑 𝑣 = 𝑑 𝑢 + 1.

Lemma 2.

When the BFS algorithm terminates, for any edge 𝑢, 𝑣 ∈ 𝐸, we have

d 𝑢 < ∞ ⟹ d 𝑣 ≤ d 𝑢 + 1.



■ Now let’s prove Theorem 1.

Proof.

■ For any 𝑣 ∈ 𝑉, the distance of the 𝑠-𝑣 path in the SPT is 𝑑 𝑣 .

– Hence, 𝑑 𝑣 ≥ 𝛿 𝑠, 𝑣 .

– It suffices to prove that 𝑑 𝑣 ≤ 𝛿 𝑠, 𝑣 .

Theorem 1. (Correctness of Breadth-First Search)

When the algorithm terminates, we have d 𝑣 = 𝛿(𝑠, 𝑣) for all 𝑣 ∈ 𝑉.

Moreover, for any 𝑣 ≠ 𝑠 that is reachable from 𝑠, 

one of the shortest path from 𝑠 to 𝑣 consists of a shortest path from 𝑠 to

𝜋(𝑣) followed by the edge 𝜋 𝑣 , 𝑣 .

: )



Proof. (continue)

Assume for contradiction that d 𝑣 > 𝛿(𝑠, 𝑣) for some 𝑣 ∈ 𝑉.

Let 𝑣′ be such a vertex with the minimum 𝛿(𝑠, 𝑣′).

It follows that 𝑣′ ≠ 𝑠 and 𝛿 𝑠, 𝑣′ < ∞.

Consider any shortest s-𝑣′ path, and let 𝑢 be the vertex preceding 𝑣′ on the path.

Hence 𝛿 𝑠, 𝑣′ = 𝛿 𝑠, 𝑢 + 1, and by our assumption we have d 𝑢 = 𝛿(𝑠, 𝑢).

It follows that d 𝑣′ > 𝛿 𝑠, 𝑣′ = 𝛿 𝑠, 𝑢 + 1 = 𝑑 𝑢 + 1, a contradiction to Lemma 2.

The second part of the theorem follows directly from d 𝑣 = 𝛿(𝑠, 𝑣) for all 𝑣 ∈ 𝑉.

𝑠 𝜋(𝑣) 𝑣𝑆𝑃(𝑠, 𝜋 𝑣 )

𝑠
𝑢 𝑣′

𝛿 𝑠, 𝑣 = 𝑑 𝑣 = 𝑑 𝜋 𝑣 +1 = 𝛿 𝑠, 𝜋 𝑣 +1.



Depth-First Search (DFS)

Prefer depth over breadth. 

Traverse / Search deeper whenever possible.



Depth-First Search (DFS)

■ The DFS algorithm search deeper in the graph whenever possible

until all the vertices are discovered.

– At any vertex, it picks an unexplored neighboring vertex and 

search recursively until all neighboring vertices are explored.

𝑠

2 3 4
5

6

7

9
10

11

16

8

12

13
14

15

17

1819
𝑠

DFS 

exploration

from 𝑠

1

20



Formal Description of the DFS Algorithm

■ The algorithm maintains the following information during its execution.

– ∀𝑣 ∈ 𝑉, the color (status) of 𝑣, denoted color[𝑣].

■ White: not yet discovered

■ Gray: discovered but not yet finished

■ Black: discovered & finished

– ∀𝑣 ∈ 𝑉, the predecessor of 𝜋 𝑣 of 𝑣 during the search.

■ NIL if 𝑣 has no predecessor (yet).



Formal Description of the DFS Algorithm

■ During the process, the DFS algorithm maintains the following data.

– ∀𝑣 ∈ 𝑉,

■ 𝑑[𝑣]: the timestamp when 𝑣 is first discovered.

■ 𝑓[𝑣]: the timestamp when the search from 𝑣 is done.

Discovered at timestamp 3.  Finished at 18.
Discovered at time 10.

Finished at 13.

𝑠

2 3 4
5

6

7

9
10

11

16

8

12

13
14

15

17

1819

1

20

Discovered at time 1.

Finished at 20.



DFS 𝐺 - DFS on 𝐺 = 𝑉, 𝐸 .

A. For each 𝑣 ∈ 𝑉, 

set color 𝑣 ← white and 

𝜋 𝑣 ← NIL.

B. Set time ← 0.

C. For each 𝑣 ∈ 𝑉, 

– If color 𝑣 = white, 

then call DFS-Visit 𝑣 .

DFS-Visit 𝑢 - Search recursively at 𝑢.

A. Set color 𝑢 ← gray and 

𝑑 𝑢 ← time ← time + 1 .

B. For each 𝑣 ∈ 𝑁 𝑢 , do

– If color 𝑣 = white, then 

set 𝜋 𝑣 ← 𝑢 and DFS-Visit 𝑣 .

C. Set color 𝑢 ← black and

𝑓 𝑢 ← time ← time + 1 .

Formal Description of the DFS Algorithm



An Example

■ Consider the following graph and the execution of the DFS algorithm.

𝑧

𝑢′ 𝑣′ 𝑤

𝑥 𝑦

/

𝑧

𝑢′ 𝑣′ 𝑤

𝑥 𝑦

/

/ /

/

/

initialize

time: 0



DFS(𝐺)

/

𝑧

𝑢′ 𝑣′ 𝑤

𝑥 𝑦

/

/ /

/

/

DFS-VISIT ( 𝑢 )

color[𝑢] ← gray.

𝑑 𝑢 ← ( time ← time + 1 ).

for each 𝑣 ∈ Adj[𝑢],  do

if color[𝑣] is white, then

𝜋[𝑣] ← 𝑢.

DFS-VISIT (𝑣).

color 𝑢 ← black.

𝑓 𝑢 ← ( time ← time + 1 ).

DFS ( 𝐺 )

…

…

for each 𝑢 ∈ 𝑉,  do

if color[𝑢] is white, then

DFS-VISIT (𝑢).

time: 0

examines 𝑢′ and calls DFS-VISIT(𝑢′)

1/

𝑧

𝑢′ 𝑣′ 𝑤

𝑥 𝑦

/

/ /

/

/

DFS-VISIT(𝑢′)Current calls :

time: 1

DFS(𝐺)Current calls :



1/

𝑧

𝑢′ 𝑣′ 𝑤

𝑥 𝑦

/

/ /

/

/

DFS-VISIT ( 𝑢 )

color[𝑢] ← gray.

𝑑 𝑢 ← ( time ← time + 1 ).

for each 𝑣 ∈ Adj[𝑢],  do

if color[𝑣] is white, then

𝜋[𝑣] ← 𝑢.

DFS-VISIT (𝑣).

color 𝑢 ← black.

𝑓 𝑢 ← ( time ← time + 1 ).

DFS ( 𝐺 )

…

…

for each 𝑢 ∈ 𝑉,  do

if color[𝑢] is white, then

DFS-VISIT (𝑢).

time: 1

examines 𝑣′ and calls DFS-VISIT(𝑣′)

1/

𝑧

𝑢′ 𝑣′ 𝑤

𝑥 𝑦

2/

/ /

/

/

Current calls :

time: 2

Current calls :

DFS(𝐺)DFS-VISIT(𝑢′)
DFS-VISIT(𝑣′)

DFS(𝐺)DFS-VISIT(𝑢′)



1/

𝑧

𝑢′ 𝑣′ 𝑤

𝑥 𝑦

2/

/ /

/

/

DFS-VISIT ( 𝑢 )

color[𝑢] ← gray.

𝑑 𝑢 ← ( time ← time + 1 ).

for each 𝑣 ∈ Adj[𝑢],  do

if color[𝑣] is white, then

𝜋[𝑣] ← 𝑢.

DFS-VISIT (𝑣).

color 𝑢 ← black.

𝑓 𝑢 ← ( time ← time + 1 ).

DFS ( 𝐺 )

…

…

for each 𝑢 ∈ 𝑉,  do

if color[𝑢] is white, then

DFS-VISIT (𝑢).

time: 2

examines 𝑦 and calls DFS-VISIT(𝑦)

1/

𝑧

𝑢′ 𝑣′ 𝑤

𝑥 𝑦

2/

/ 3/

/

/

Current calls :

time: 3

Current calls : DFS(𝐺)DFS-VISIT(𝑢′)DFS-VISIT(𝑣′)

DFS(𝐺)DFS-VISIT(𝑢′)
DFS-VISIT(𝑣′)

DFS-VISIT(𝑦)



1/

𝑧

𝑢′ 𝑣′ 𝑤

𝑥 𝑦

2/

/ 3/

/

/

DFS-VISIT ( 𝑢 )

color[𝑢] ← gray.

𝑑 𝑢 ← ( time ← time + 1 ).

for each 𝑣 ∈ Adj[𝑢],  do

if color[𝑣] is white, then

𝜋[𝑣] ← 𝑢.

DFS-VISIT (𝑣).

color 𝑢 ← black.

𝑓 𝑢 ← ( time ← time + 1 ).

DFS ( 𝐺 )

…

…

for each 𝑢 ∈ 𝑉,  do

if color[𝑢] is white, then

DFS-VISIT (𝑢).

time: 3

examines 𝑥 and calls DFS-VISIT(𝑥)

1/

𝑧

𝑢′ 𝑣′ 𝑤

𝑥 𝑦

2/

4/ 3/

/

/

Current calls :

time: 4

Current calls : DFS(𝐺)DFS-VISIT(𝑢′)DFS-VISIT(𝑣′)
DFS-VISIT(𝑦)

DFS(𝐺)DFS-VISIT(𝑢′)
DFS-VISIT(𝑣′)

DFS-VISIT(𝑦)
DFS-VISIT(𝑥)



1/

𝑧

𝑢′ 𝑣′ 𝑤

𝑥 𝑦

2/

4/ 3/

/

/

DFS-VISIT ( 𝑢 )

color[𝑢] ← gray.

𝑑 𝑢 ← ( time ← time + 1 ).

for each 𝑣 ∈ Adj[𝑢],  do

if color[𝑣] is white, then

𝜋[𝑣] ← 𝑢.

DFS-VISIT (𝑣).

color 𝑢 ← black.

𝑓 𝑢 ← ( time ← time + 1 ).

DFS ( 𝐺 )

…

…

for each 𝑢 ∈ 𝑉,  do

if color[𝑢] is white, then

DFS-VISIT (𝑢).

time: 4

examines 𝑣′, finishes 𝑥, and returns

1/

𝑧

𝑢′ 𝑣′ 𝑤

𝑥 𝑦

2/

4/5 3/

/

/

Current calls :

time: 5

Current calls : DFS(𝐺)DFS-VISIT(𝑢′)DFS-VISIT(𝑣′)
DFS-VISIT(𝑦)

DFS-VISIT(𝑥)

DFS(𝐺)DFS-VISIT(𝑢′)
DFS-VISIT(𝑣′)

DFS-VISIT(𝑦)



1/

𝑧

𝑢′ 𝑣′ 𝑤

𝑥 𝑦

2/

4/5 3/

/

/

DFS-VISIT ( 𝑢 )

color[𝑢] ← gray.

𝑑 𝑢 ← ( time ← time + 1 ).

for each 𝑣 ∈ Adj[𝑢],  do

if color[𝑣] is white, then

𝜋[𝑣] ← 𝑢.

DFS-VISIT (𝑣).

color 𝑢 ← black.

𝑓 𝑢 ← ( time ← time + 1 ).

DFS ( 𝐺 )

…

…

for each 𝑢 ∈ 𝑉,  do

if color[𝑢] is white, then

DFS-VISIT (𝑢).

time: 5

finishes 𝑦 and returns

1/

𝑧

𝑢′ 𝑣′ 𝑤

𝑥 𝑦

2/

4/5 3/6

/

/

Current calls :

time: 6

Current calls : DFS(𝐺)DFS-VISIT(𝑢′)DFS-VISIT(𝑣′)
DFS-VISIT(𝑦)

DFS(𝐺)DFS-VISIT(𝑢′)
DFS-VISIT(𝑣′)



1/

𝑧

𝑢′ 𝑣′ 𝑤

𝑥 𝑦

2/

4/5 3/6

/

/

DFS-VISIT ( 𝑢 )

color[𝑢] ← gray.

𝑑 𝑢 ← ( time ← time + 1 ).

for each 𝑣 ∈ Adj[𝑢],  do

if color[𝑣] is white, then

𝜋[𝑣] ← 𝑢.

DFS-VISIT (𝑣).

color 𝑢 ← black.

𝑓 𝑢 ← ( time ← time + 1 ).

DFS ( 𝐺 )

…

…

for each 𝑢 ∈ 𝑉,  do

if color[𝑢] is white, then

DFS-VISIT (𝑢).

time: 6

finishes 𝑣′ and returns

1/

𝑧

𝑢′ 𝑣′ 𝑤

𝑥 𝑦

2/7

4/5 3/6

/

/

Current calls :

time: 7

Current calls : DFS(𝐺)DFS-VISIT(𝑢′)DFS-VISIT(𝑣′)

DFS(𝐺)DFS-VISIT(𝑢′)



1/

𝑧

𝑢′ 𝑣′ 𝑤

𝑥 𝑦

2/7

4/5 3/6

/

/

DFS-VISIT ( 𝑢 )

color[𝑢] ← gray.

𝑑 𝑢 ← ( time ← time + 1 ).

for each 𝑣 ∈ Adj[𝑢],  do

if color[𝑣] is white, then

𝜋[𝑣] ← 𝑢.

DFS-VISIT (𝑣).

color 𝑢 ← black.

𝑓 𝑢 ← ( time ← time + 1 ).

DFS ( 𝐺 )

…

…

for each 𝑢 ∈ 𝑉,  do

if color[𝑢] is white, then

DFS-VISIT (𝑢).

time: 7

examines 𝑥, finishes 𝑢′ and returns

1/8

𝑧

𝑢′ 𝑣′ 𝑤

𝑥 𝑦

2/7

4/5 3/6

/

/

Current calls :

time: 8

Current calls : DFS(𝐺)DFS-VISIT(𝑢′)

DFS(𝐺)



1/8

𝑧

𝑢′ 𝑣′ 𝑤

𝑥 𝑦

2/7

4/5 3/6

/

/

DFS-VISIT ( 𝑢 )

color[𝑢] ← gray.

𝑑 𝑢 ← ( time ← time + 1 ).

for each 𝑣 ∈ Adj[𝑢],  do

if color[𝑣] is white, then

𝜋[𝑣] ← 𝑢.

DFS-VISIT (𝑣).

color 𝑢 ← black.

𝑓 𝑢 ← ( time ← time + 1 ).

DFS ( 𝐺 )

…

…

for each 𝑢 ∈ 𝑉,  do

if color[𝑢] is white, then

DFS-VISIT (𝑢).

time: 8

examines 𝑣′ and 𝑤, and calls DFS-VISIT(𝑤)

1/8

𝑧

𝑢′ 𝑣′ 𝑤

𝑥 𝑦

2/7

4/5 3/6

9/

/

Current calls :

time: 9

Current calls : DFS(𝐺)

DFS(𝐺)DFS-VISIT(𝑤)



1/8

𝑧

𝑢′ 𝑣′ 𝑤

𝑥 𝑦

2/7

4/5 3/6

9/

/

DFS-VISIT ( 𝑢 )

color[𝑢] ← gray.

𝑑 𝑢 ← ( time ← time + 1 ).

for each 𝑣 ∈ Adj[𝑢],  do

if color[𝑣] is white, then

𝜋[𝑣] ← 𝑢.

DFS-VISIT (𝑣).

color 𝑢 ← black.

𝑓 𝑢 ← ( time ← time + 1 ).

DFS ( 𝐺 )

…

…

for each 𝑢 ∈ 𝑉,  do

if color[𝑢] is white, then

DFS-VISIT (𝑢).

time: 9

examines 𝑦 and 𝑧, and calls DFS-VISIT(𝑧)

1/8

𝑧

𝑢′ 𝑣′ 𝑤

𝑥 𝑦

2/7

4/5 3/6

9/

10/

Current calls :

time: 10

Current calls : DFS(𝐺)

DFS(𝐺)DFS-VISIT(𝑤)

DFS-VISIT(𝑤)

DFS-VISIT(𝑧)



1/8

𝑧

𝑢′ 𝑣′ 𝑤

𝑥 𝑦

2/7

4/5 3/6

9/

10/

DFS-VISIT ( 𝑢 )

color[𝑢] ← gray.

𝑑 𝑢 ← ( time ← time + 1 ).

for each 𝑣 ∈ Adj[𝑢],  do

if color[𝑣] is white, then

𝜋[𝑣] ← 𝑢.

DFS-VISIT (𝑣).

color 𝑢 ← black.

𝑓 𝑢 ← ( time ← time + 1 ).

DFS ( 𝐺 )

…

…

for each 𝑢 ∈ 𝑉,  do

if color[𝑢] is white, then

DFS-VISIT (𝑢).

time: 10

examines 𝑧, finishes 𝑧, and returns

1/8

𝑧

𝑢′ 𝑣′ 𝑤

𝑥 𝑦

2/7

4/5 3/6

9/

10/11

Current calls :

time: 11

Current calls : DFS(𝐺)

DFS(𝐺)DFS-VISIT(𝑤)

DFS-VISIT(𝑤)DFS-VISIT(𝑧)



1/8

𝑧

𝑢′ 𝑣′ 𝑤

𝑥 𝑦

2/7

4/5 3/6

9/

10/11

DFS-VISIT ( 𝑢 )

color[𝑢] ← gray.

𝑑 𝑢 ← ( time ← time + 1 ).

for each 𝑣 ∈ Adj[𝑢],  do

if color[𝑣] is white, then

𝜋[𝑣] ← 𝑢.

DFS-VISIT (𝑣).

color 𝑢 ← black.

𝑓 𝑢 ← ( time ← time + 1 ).

DFS ( 𝐺 )

…

…

for each 𝑢 ∈ 𝑉,  do

if color[𝑢] is white, then

DFS-VISIT (𝑢).

time: 11

finishes 𝑤, and returns

1/8

𝑧

𝑢′ 𝑣′ 𝑤

𝑥 𝑦

2/7

4/5 3/6

9/12

10/11

Current calls :

time: 12

Current calls : DFS(𝐺)

DFS(𝐺)

DFS-VISIT(𝑤)



1/8

𝑧

𝑢′ 𝑣′ 𝑤

𝑥 𝑦

2/7

4/5 3/6

9/12

10/11

DFS-VISIT ( 𝑢 )

color[𝑢] ← gray.

𝑑 𝑢 ← ( time ← time + 1 ).

for each 𝑣 ∈ Adj[𝑢],  do

if color[𝑣] is white, then

𝜋[𝑣] ← 𝑢.

DFS-VISIT (𝑣).

color 𝑢 ← black.

𝑓 𝑢 ← ( time ← time + 1 ).

DFS ( 𝐺 )

…

…

for each 𝑢 ∈ 𝑉,  do

if color[𝑢] is white, then

DFS-VISIT (𝑢).

time: 12

examines 𝑥, 𝑦, 𝑧 and returns

1/8

𝑧

𝑢′ 𝑣′ 𝑤

𝑥 𝑦

2/7

4/5 3/6

9/12

10/11

Current calls :

time: 12

Current calls : DFS(𝐺)



Properties and Analysis 

of the DFS Algorithm



Time Complexity

■ By the algorithm design, 

once a vertex is colored, it never becomes white.

– So, the DFS algorithm…

■ Visits each vertex exactly once upon DFS-VISIT calls.

■ Examines each edge at most twice in the for loop.

■ The DFS algorithm runs in 𝑂( 𝑉 + 𝐸 ) time.



Properties of the DFS Algorithm

■ For any vertex 𝑣 ∈ 𝑉, 

consider the time interval 𝐼𝑣 ≔ 𝑑 𝑣 , 𝑓 𝑣 .

■ The DFS algorithm ensures the laminar (nesting or disjoint) property 

of the intervals of the nodes.

Theorem 3. (Parenthesis Theorem)

For any 𝑢, 𝑣 ∈ 𝑉, exactly one of the followings holds.

1. 𝐼𝑢 ∩ 𝐼𝑣 = ∅.

2. 𝐼𝑢 ⊂ 𝐼𝑣 or 𝐼𝑣 ⊂ 𝐼𝑢.

One is a proper descendant of the other.

None is a proper descendant of the other.

Consider the DFS forest.



■ Consider the DFS forest 𝐺𝜋.

The followings are obtained from Theorem 3.

Theorem 3. (White-Path Theorem)

Consider the DFS forest 𝐺𝜋. 

For any 𝑢, 𝑣 ∈ 𝑉, vertex 𝑣 is a descendant of 𝑢 if and only if 

at time 𝑑 𝑢 , there is a 𝑢-𝑣 path in 𝐺 that contains only white vertices.

Corollary 3.

For any 𝑢, 𝑣 ∈ 𝑉, vertex 𝑣 is a proper descendant of 𝑢 if and only if 

𝑑 𝑢 < 𝑑 𝑣 < 𝑓 𝑣 < 𝑓 𝑢 .



Classification of the Edges

■ One important characteristics of the DFS algorithm is that 

it classifies the edges of the input graphs into four categories.

– Tree edge

The edges that lead to undiscovered vertices during the search.

■ Formally, for each 𝑣 ∈ 𝑉 with 𝜋 𝑣 ≠ NIL, 

the edge (𝜋 𝑣 , 𝑣) is called a tree edge.

■ These are exactly the edges in the predecessor graph 𝐺𝜋,

or, the DFS-tree.



Classification of the Edges

■ One important characteristics of the DFS algorithm is that 

it classifies the edges of the input graphs into four categories.

– Back edge

The edges that lead to non-parent gray vertices during the search. 

■ These are the edges that connect the current vertex back to 

one of its predecessor vertices during the search.

■ Formally, on the call DFS-Visit on 𝑣 ∈ 𝑉, for any 𝑢 ∈ 𝑁 𝑣

such that color 𝑢 = gray and 𝑢 ≠ 𝜋[𝑣], 

the edge (𝑣, 𝑢) is called a back edge.



Classification of the Edges

■ One important characteristics of the DFS algorithm is that 

it classifies the edges of the input graphs into four categories.

– Tree edge

– Back edge

■ Note that, in undirected graphs,

edges are either tree edges or back edges.



Classification of the Edges

■ One important characteristics of the DFS algorithm is that 

it classifies the edges of the input graphs into four categories.

– Forward edge

The non-tree edges that lead to a proper descendant 

in the DFS tree. 

■ Formally, on the call DFS-Visit on 𝑣 ∈ 𝑉, 

for any 𝑢 ∈ 𝑁 𝑣 such that color 𝑢 = black and 𝑑 𝑣 < 𝑑 𝑢 , 

then the edge (𝑣, 𝑢) is a back edge.



Classification of the Edges

■ One important characteristics of the DFS algorithm is that 

it classifies the edges of the input graphs into four categories.

– Cross edge

All other edges that go between vertices in the DFS forest,

as long as one is not an ancestor of the other. 

■ Formally, for any edge 𝑢, 𝑣 ,

if 𝑓 𝑣 < 𝑑 𝑢 , then the 𝑢, 𝑣 is referred to as a cross edge.



Classification of the Edges

■ One important characteristics of the DFS algorithm is that 

it classifies the edges of the input graphs into four categories.

– Forward edge

– Cross edge

■ Note that, forward edges and cross edges only occur 

in directed graphs.



Classification of the Edges

■ One important characteristics of the DFS algorithm is that 

it classifies the edges of the input graphs into four categories.

– Tree edge, Back edge, Forward edge, and Cross edge

■ By the parenthesis theorem, 

any edge in the graph belongs to one of the above four categories.


