Introduction to Algorithms

Mong-Jen Kao (5 £§8)

Tuesday 10:10 — 12:00
Thursday 15:30 — 16:20

Graph Algorithms

— Graph problem pervades computer science, and

Algorithms for graphs are fundamental to the field.

Graph Traversal / Searching

Graph Traversal

m Traversal / Searching is a fundamental problem in graphs.
- To explore every vertex / edge in the graph

- To search for a particular vertex / edge in the graph

m In this lecture, we examine two different ways to do this.

1. Breadth-first search (BFS) — which reveals the shortest-path

map / distance information for the source vertex.

2. Depth-first search (DFS) - which reveals certain structural

properties / information of the graph.

Breadth-First Search (BFS)

During the process, the shortest-path map
from the source vertex is revealed.

Breadth-First Search (BFS)

m This process explores the vertices in the order of their (shortest)
distances to the source vertex s.

T ~ The process starts
S from the source vertex s.

Breadth-First Search (BFS)

m This process explores the vertices in the order of their (shortest)
distances to the source vertex s.

I
\\ I //
‘! .
\ \ /
\ \ g
\ N
\.\ N /ﬂ —::///J . . .
o ~ Next, the vertices with distance 1
.,/S . to s are explored.
1 \ \
r 7 Y . S
I S “““
STo--- ~ The process starts

S from the source vertex s.

Breadth-First Search (BFS)

m This process explores the vertices in the order of their (shortest)
distances to the source vertex s.

- gy _ Next, the vertices with distance 2
N ’
Q\ @0 to s are explored.
N g \
\ Ny e N
e e ~ Next, the vertices with distance 1
AN |
.,/S\ e ~ to s are explored.
- \ \
o . -7
¢ L SRR ~ The process starts

S from the source vertex s.

Breadth-First Search (BFS)

m This process explores the vertices in the order of their (shortest)
distances to the source vertex s.

o , ° m The vertices discovered at
Q o ’/' each level forms equidistant
b contours concentered at the
\'\ ,'ﬂ_,,,, source vertex s.
Ty
. A m Ashortest-path tree (SPT)
¢ é b\\._ from the source vertex s Is
28— produced.

The BFS Algorithm

m The algorithm uses a first-in first-out (FIFO) queue
to implement the aforementioned process.

- In each iteration, « ¢
the algorithm extracts the first vertex .
In the queue and process it. .

- For each vertex discovered
(which belongs to the next contour), o
the algorithm appends the vertex
to the tail of the queue.

Formal Description of the BFS Algorithm

m The algorithm maintains the following information during the process.

- Vv €V, the color (status) of v, denoted color|v].
m Wwhite: not discovered yet.
m gray: discovered, not yet processed.
m Dblack: discovered and processed.

- Vv €V, the predecessor (parent) of v, denoted m[v], in the search.
m l.e., the vertex that discovers v during the search.
m w[v] IS NIL If v has no predecessor (yet).

- wvis the source vertex, or v is not yet discovered.

Formal Description of the BFS Algorithm

m The algorithm maintains the following information during the process.

- Vv €V, the distance to the source vertex, denoted d|v].

m Initially, d[v] = o forall v e V.

- Afirst-in first-out (FIFO) queue Q.

m The queue is used to store the current gray vertices in the order
they are discovered by the algorithm.

m BFS(G,s) - G = (V,E) the input graph, s € V the start vertex.

A. Foreachv eV,
set color[v]| « white, d|v] « o, and w[v] « NIL.

B. Set color[s] « gray and d[s] « 0.
ENQUEUE(Q, s).

C. While Q # @, do the following.
m u < DEQUEUE(Q). »ﬁov
m For each v € N[u], do the following. s - —° u O

- If color[v] = white, then
m Set color|v] « gray, d[v] « d[u] + 1, and n[v] < wu.
ENQUEUE(Q, v).

m Set color[u] « black.

An Example

m Consider the following graph and
the execution of the BFS algorithm with the source vertex s.

m [nitialization
I L £ I A. Foreach v eV, set

color[v] « white,

d|v] « o, and

Initialization
() |v] « NIL.

@x

B. Set color|s] « gray and
d|s] « 0.
ENQUEUE(Q, s).

m Process the gray nodes
until Q becomes empty.

A. While Q # 9, do the following.
- u <« DEQUEUE(Q).

- For each v € N[u], do

m If color[v] = white, then

- Set color|v] « gray,
d|v] « d[u] + 1, and

[v] « u.

- ENQUEUE(Q, v).

- Set color[u] « black.

G 0 ° ° m Process the gray nodes
" until @ becomes empty.
° G e A. While Q # @, do the following.

- u « DEQUEUE(Q).

- For each v € N[u], do

m If color[v] = white, then

- Set color|v] « gray,
d|v] « d[u] + 1, and
[v] « u.

- ENQUEUE(Q, v).

- Set color[u] < black.

m Process the gray nodes
until Q becomes empty.

A. While Q # 9, do the following.
- u <« DEQUEUE(Q).

- For each v € N[u], do

m If color[v] = white, then

- Set color|v] « gray,
d|v] « d[u] + 1, and

[v] « u.

- ENQUEUE(Q, v).

- Set color[u] « black.

m Process the gray nodes
until Q becomes empty.

A. While Q # 9, do the following.
- u <« DEQUEUE(Q).

- For each v € N[u], do

m If color[v] = white, then

- Set color|v] « gray,
d|v] « d[u] + 1, and
[v] « u.

- ENQUEUE(Q, v).

- Set color[u] « black.

m Process the gray nodes
until Q becomes empty.

A. While Q # 9, do the following.
- u <« DEQUEUE(Q).

- For each v € N|u], do

m If color[v] = white, then

- Set color|v] < gray,
d|v] « d|u] + 1, and
wlv] « u.

- ENQUEUE(Q, v).

- Set color|u] < black.

m Process the gray nodes
until Q becomes empty.

A. While Q # 9, do the following.
- u <« DEQUEUE(Q).

- For each v € N|u], do

m If color[v] = white, then

r S { - - Set color|v] < gray,
d|v] « d|u] + 1, and

wlv] « u.

- ENQUEUE(Q, v).

- Set color|u] < black.

m Process the gray nodes
until Q becomes empty.

A. While Q # 9, do the following.
- u <« DEQUEUE(Q).

- For each v € N|u], do

m If color[v] = white, then

r s { - Set color|v] « gray,
d|v] « d|u] + 1, and

wlv] « u.

- ENQUEUE(Q, v).

______________ - Set color|u] « black.

m Process the gray nodes
until Q becomes empty.

A. While Q # 9, do the following.
- u <« DEQUEUE(Q).

- For each v € N|u], do

m If color[v] = white, then

r S { - - Set color|v] < gray,
d|v] « d|u] + 1, and

wlv] « u.

- ENQUEUE(Q, v).

- Set color|u] < black.

Analysis of the BFS Algorithm

Time Complexity of the BFS Algorithm

m The initialization step takes O(|V|) time.

m Consider the while loop.

- The while loop repeats for at most O(|V|) times
since every vertex enters the queue Q exactly once.

m Consider the inner for loop.

- For any vertex v € V, it takes O(deg(v)) time
If adjacency list representation is used.

m The overall time complexity is O(|V| + |E|) if adjacency list
representation is used.

Correctness of the BFS Algorithm

Definition.

Forany u,v €V, let §(u, v) denote the distance between u and v in G.
d(u,v) = o if there is no path connecting u and v.

m We will prove the following theorem.

Theorem 1. (Correctness of Breadth-First Search)

When the algorithm terminates, we have d[v] = §(s,v) forallv € V.

Moreover, for any v + s that is reachable from s,
one of the shortest path from s to v consists of a shortest path from s to
n(v) followed by the edge ((v), v).

Breadth-First Tree (Shortest-Path Tree)

m Define the predecessor subgraph

veV: m[v] #NIL}U{s} and

(mlv],v):v eV, —{s}}.

The predecessor graph G,; is connected and
has exactly || — 1 edges.

4

It is a tree.

Breadth-First Tree (Shortest-Path Tree)

m Define the predecessor subgraph

G, = V_,E;), where V. ={veV: m[v]#NIL}U{s} and
Er={(mlv],v):vel,—{s}}.

By Theorem 1,
for any v € I, — {s}, the s—v path in G,
must be a shortest s—v path in the graph G.

We call G,; the Bread-First Tree, or,
the Shortest-Path Tree (SPT), induced by s.

m To prove Theorem 1, we need the following lemma,
which follows from the design of the algorithm.

Lemma 2.

When the BFS algorithm terminates, for any edge (u,v) € E, we have

dlu] < o = d[v] <d[u] + 1.

m Ifd[v] > dlu],
then consider the moment when u Is processed in the while loop.

- If v is already discovered, then d[v] is either d[u] or d[u] + 1.

- Otherwise, v will be discovered by u and d[v] = d[u] + 1.

m Now let's prove Theorem 1. =

Theorem 1. (Correctness of Breadth-First Search)

When the algorithm terminates, we have d[v] = §(s,v) forallv € V.

Moreover, for any v +# s that is reachable from s,
one of the shortest path from s to v consists of a shortest path from s to
n(v) followed by the edge ((v), v).

Proof.

m Forany v € V, the distance of the s-v path in the SPT is d|v].
- Hence, d[v] = 6(s, v).

- It suffices to prove that d[v] < 6(s, v).

Proof. (continue)

Assume for contradiction that d[v] > 6(s, v) for some v € V.

Let v' be such a vertex with the minimum (s, v'). :/ w
It follows that v’ # s and 6(s, v") < oo.

Consider any shortest s-v’ path, and let u be the vertex preceding v’ on the path.
Hence 6(s,v") = 6(s,u) + 1, and by our assumption we have d[u] = §(s, u).

It follows that d[v'] > 6(s,v') = §(s,u) + 1 = d[u] + 1, a contradiction to Lemma 2.

The second part of the theorem follows directly from d[v] = 6(s,v) forall v € V.

SP(S,T[(U)) A —Ov
s e— m(v) 6(s,v) =d[v] = d[n[v]]+1 = 6(s, m[v])+1.

Depth-First Search (DFS)

Prefer depth over breadth.
Traverse / Search deeper whenever possible.

Depth-First Search (DFS)

m The DFS algorithm search deeper in the graph whenever possible

until all the vertices are discovered.

- At any vertex, it picks an unexplored neighboring vertex and
search recursively until all neighboring vertices are explored.

DFS °
exploration X/ 5 %
— from s ﬂlfg
20

7
10

Formal Description of the DFS Algorithm

m The algorithm maintains the following information during its execution.

- Vv €V, the color (status) of v, denoted color[v].
m \White: not yet discovered
m Gray: discovered but not yet finished

m Black: discovered & finished

- Vv €V, the predecessor of m|v] of v during the search.

m NIL if v has no predecessor (yet).

Formal Description of the DFS Algorithm

m During the process, the DFS algorithm maintains the following data.

- Vv el,
m d[v]: the timestamp when v Is first discovered.

m f[v]: the timestamp when the search from v is done.

{ Discovered at timestamp 3. Finished at 18.

Finished at 13.

Discovered at time 1. A 0

Finished at 20. s, = & =
l ERAN
20

Discovered at time 10. }

Formal Description of the DFS Algorithm

DFS(G) -DFSonG = (V,E). DFS-Visit(u) - Search recursively at u.
A. Foreachv eV, A. Set color[u] « gray and
set color[v] < white and d[u] « (time « time + 1).
n[v] < NIL. B. For each v € N(u), do
B. Settime « 0. — If color[v] = white, then
C. Foreachv eV, set [v] « u and DFS-Visit(v).
- If color[v] = white, C. Set color[u] < black and

then call DFS-Visit(v). flu] < (time « time + 1).

An Example

m Consider the following graph and the execution of the DFS algorithm.

u' v w
X y Z

initialize;

0“0

[Current calls :

{ DFS(G) J

v’ w
O— O
O—0 O

y A

X

time: 0O

@ examines u’' and calls DFS-VISIT (u')

[Currentcalls:H DFS-VISIT(u")

!/ !/

u v w

O—0 O
y

Z

o

|

time: 1

DFS (G)

for each u €V, do
if color[u] is white, then
I_ DFS-VISIT (u).

DFS-VISIT (u)

color[u] « gray.
dlu] « (time « time + 1).
for each v € Adj[u], do

if color[v] is white, then

\- n[v] « u.
L DFS-VISIT (v).

color[u] « black.
flu] « (time « time + 1).

[Current calls : W DFS-VISIT(u") }

v w
for each u €V, do
if color[u] is white, then
O—0 O | ors-vistr .
y Z

time: 1 -

-

DFS (G)

examines v' and calls DFS-VISIT(v") DFS-VISIT (u)
J L

[Current calls : Ui DFS-VISIT(»") } color[u] < gray.
dlu] « (time « time + 1).

for each v € Adj[u], do

w
a Q 0 if color[v] is white, then

n[v] « u.
DFS-VISIT (v).
Q color[u] « black.

Z time: 2 flu] « (time « time + 1).

~

[Current calls : Ui DFS-VISIT(v") }
v w
for each u €V, do

if color[u] is white, then
O—0 O | ors-vistr .
y Z

time: 2 -

DFS (G)

‘ ‘ examines y and calls DFS-VISIT (y) DFS-VISIT (u)

N

[Current calls [Ti{ SFSVISTO) ‘} color[u] « gray.
- y

dlu] « (time « time + 1).

for each v € Adj[u], do

w
a Q 0 if color[v] is white, then

n[v] « u.
DFS-VISIT (v).
Q color[u] « black.

Z time: 3 flu] « (time « time + 1).

~

[Current calls : H .
' i{ DFS-VISIT(y) } DFS (G)

v w
for each u €V, do
if color[u] is white, then
O—@w o | ors-vistr .
y Z

X time: 3 =
‘ ‘ examines x and calls DFS-VISIT (x) DFS-VISIT (u)
S | S G .
[Current calls : U m color[u] < gray.
DFS-VISIT(x) } d[u] <« (time « time + 1).

for each v € Adj[u], do

w
a Q 0 if color[v] is white, then

n[v] « u.
DFS-VISIT (v).
Q color[u] « black.

Z time: 4 flu] « (time « time + 1).

~

S
[Current calls : H N
, , DFS-VISIT(x) } DFS (G)
v w
for each u €V, do

if color[u] is white, then
D— o | ors-vistr .
y Z

X time: 4 -

DFS-VISIT (u)

N

[Current calls : Ui{ : color[u] « gray.
DFS-VISIT(y) }

d[u] « (time « time + 1).
for each v € Adj[u], do

w
Q 0 if color[v] is white, then
n[v] « u.
DFS-VISIT (v).
y

@ examines v', finishes x, and returns

!/ !/

u v

Q color[u] < black.
Z time: 5 flu] « (time « time + 1).

[Current calls : [L[[=
DFS-VISIT(y)]
v w
X y Z
@ finishes y and returns

/

u

4/5

time: 5

N

Current calls : [H DFS-VISIT(v") }

time: 6

DFS (G)

for each u €V, do
if color[u] is white, then

I_ DFS-VISIT (u).

DFS-VISIT (u)

color[u] « gray.

d[u] « (time « time + 1).
for each v € Adj[u], do

if color[v] is white, then

\- n[v] « u.
L DFS-VISIT (v).

color[u] < black.
flu] « (time « time + 1).

~

[Current calls : Ui DFS-VISIT(v") }

w

DFS (G)

for each u €V, do

if color[u] is white, then
4/5 3/6 Q I_ DFS-VISIT (u).
X y VA time: 6 -
@ finishes v' and returns DFS-VISIT (u)
[Current calls : U DFS-VISIT(u) } color[u] « gray.

d[u] « (time « time + 1).
for each v € Adj[u], do

if color[v] is white, then

\- n[v] « u.
I DFS-VISIT (v).

color[u] < black.

time: 7 f[u] — (time «— time + 1)

[Currentcalls:u DFS-VISIT(u") }

DFS (G)

for each u €V, do
if color[u] is white, then
I_ DFS-VISIT (u).

time: 7 -

DFS-VISIT (u)

‘ examines x, finishes u’ and returns

[Current calls : L DFS(G) J color[u] « gray.
d[u] « (time « time + 1).
u’ v' w for each v € Adj[u], do

if color[v] is white, then

\- n[v] « u.
L DFS-VISIT (v).

color[u] < black.

time: 8 flu] « (time « time + 1).

@

[Currentcalls:[DFS(G) J

time: 8

examines v’ and w, and calls DFS-VISIT(w)

[Current calls : U DFS-VISIT(w) }

time: 9

DFS (G)

for each u €V, do
if color[u] is white, then
I_ DFS-VISIT (u).

DFS-VISIT (u)

color[u] < gray.
dlu] « (time « time + 1).
for each v € Adj[u], do

if color[v] is white, then

\- n[v] « u.
L DFS-VISIT (v).

color[u] « black.
flu] « (time « time + 1).

[Current calls : [T DFS-VISIT(w) }

o

DFS (G)

u v w

for each u €V, do
if color[u] is white, then
I_ DFS-VISIT (u).

time: 9 -

DFS-VISIT (u)

‘ examines y and z, and calls DFS-VISIT(z)

[Current calls : Lu DFS-VISIT(2) \} color[u] « gray.
dlu] « (time « time + 1).
w for each v € Adj[u], do
@ if color[v] is white, then
a \- n[v] <« u.
I DFS-VISIT (v).
Q color[u] « black.
Z time: 10 flu] « (time « time + 1).

~

[Current calls : [H DFS-VISIT(2) }

DFS (G)

for each u €V, do

if color[u] is white, then
Q I_ DFS-VISIT (u).

Z time: 10 -

@ examines z, finishes z, and returns DFS-VISIT (u)

[Current calls : U DFS-VISIT(w) } color[u] « gray.
) dlu] « (time « time + 1).
w for each v € Adj[u], do
@ if color[v] is white, then
7/ \- n[v] « u.
L DFS-VISIT (v).

color[u] « black.

Z time: 11 flu] « (time « time + 1).

[Current calls : [T DFS-VISIT(w) }

. DFS (G)
w
/./ for each u €V, do
4 _ if color[u] is white, then
f ~
10/1 8 I_ DFS-VISIT (u).
Z time: 11 =
‘ finishes w, and returns DFS-VISIT (u)
[Current calls : L DFS(G) } color[u] < gray.

dlu] « (time « time + 1).
for each v € Adj[u], do

w
if color[v] is white, then
7/ \- n[v] « u.
i I DFS-VISIT (v).
;::’ color[u] < black.
Z

time: 12 flu] « (time « time + 1).

[Currentcalls:[DFS(G) J

DFS (G)
w
/./ for each u €V, do
v _ if color[u] is white, then

7/ ~
! I_ DFS-VISIT (u).

Z time: 12 -

‘ examines x, vy, z and returns DFS-VISIT (U)
[Current calls :] color[u] « gray.

d[u] « (time « time + 1).
for each v € Adj[u], do

w
if color[v] IS white, then
/' \- n[v] < u.
e I DFS-VISIT (v).
;::’ color[u] < black.
Z

time: 12 flu] « (time « time + 1).

Properties and Analysis

of the DFS Algorithm

Time Complexity

m By the algorithm design,
once a vertex Is colored, it never becomes white.

- So, the DFS algorithm...
m Visits each vertex exactly once upon DFS-VISIT calls.

m Examines each edge at most twice in the for loop.

m The DFS algorithm runs in O(|V| + |E]) time.

Properties of the DFS Algorithm

m Foranyvertexv eV,
consider the time interval I,, := |d[v], f[v]].

m The DFS algorithm ensures the laminar (nesting or disjoint) property
of the intervals of the nodes.

Theorem 3. (Parenthesis Theorem)

Consider the DFS forest.

77

1. I,nl,=0. - I g
2. I,clyorl,cl, D LR -

For any u, v € V, exactly one of the followings holds.

m Consider the DFS forest G,.
The followings are obtained from Theorem 3.

Corollary 3.

For any u,v € V, vertex v is a proper descendant of u if and only if

dlu] < d|v] < flv] < flul.

Theorem 3. (White-Path Theorem)

Consider the DFS forest G,.
For any u,v € V, vertex v is a descendant of u if and only if
at time d|u], there is a u-v path in G that contains only white vertices.

Classification of the Edges

m One important characteristics of the DFS algorithm is that
it classifies the edges of the input graphs into four categories.

- Tree edge
The edges that lead to undiscovered vertices during the search.

m Formally, for each v € VV with m[v] # NIL,
the edge (m[v], v) is called a tree edge.

m These are exactly the edges in the predecessor graph G,
or, the DFS-tree.

Classification of the Edges

m One important characteristics of the DFS algorithm is that
It classifies the edges of the input graphs into four categories.

- Back edge

The edges that lead to non-parent gray vertices during the search.

m These are the edges that connect the current vertex back to
one of its predecessor vertices during the search.

m Formally, on the call DFS-Visiton v € V, forany u € N(v)
such that color|[u] = gray and u # n[v],
the edge (v, u) Is called a back edge.

Classification of the Edges

m One important characteristics of the DFS algorithm is that
It classifies the edges of the input graphs into four categories.

- Tree edge

- Back edge

m Note that, in undirected graphs,

edges are either tree edges or back edges.

Classification of the Edges

m One important characteristics of the DFS algorithm is that
It classifies the edges of the input graphs into four categories.

- Forward edge

The non-tree edges that lead to a proper descendant
In the DFS tree.

m Formally, on the call DFS-Visiton v € V,
for any u € N(v) such that color[u] = black and d[v] < d[u],
then the edge (v, u) Is a back edge.

Classification of the Edges

m One important characteristics of the DFS algorithm is that
It classifies the edges of the input graphs into four categories.

- Cross edge

All other edges that go between vertices in the DFS forest,
as long as one Is not an ancestor of the other.

m Formally, for any edge (u, v),
If flv] < d|[u], then the (u,v) is referred to as a cross edge.

Classification of the Edges

m One important characteristics of the DFS algorithm is that
It classifies the edges of the input graphs into four categories.

- Forward edge

- Cross edge

m Note that, forward edges and cross edges only occur
In directed graphs.

Classification of the Edges

m One important characteristics of the DFS algorithm is that
it classifies the edges of the input graphs into four categories.

- Tree edge, Back edge, Forward edge, and Cross edge

m By the parenthesis theorem,
any edge in the graph belongs to one of the above four categories.

