
Introduction to Algorithms

Mong-Jen Kao (高孟駿)

Tuesday 10:10 – 12:00

Thursday 15:30 – 16:20

Greedy Algorithms

– Algorithms that compute solutions

by repeatedly taking locally optimal choices

Example 1.

Activity-Selection Problem

Activity-Selection Problem

■ You given a set of activities 𝑎1, 𝑎2, … , 𝑎𝑛, where 𝒂𝒊 = 𝒔𝒊, 𝒇𝒊 and

𝑠𝑖, 𝑓𝑖 denote the start time and finish time of the 𝑖𝑡ℎ-activity.

■ Select a maximum-cardinality subset of activities

to be scheduled in a conference room.

– That is, a subset 𝐴 ⊆ 1,2,… , 𝑛 such that

𝑎𝑖 ∩ 𝑎𝑗 = ∅

for all 𝑖, 𝑗 ∈ 𝐴 with 𝑖 ≠ 𝑗 and 𝐴 is as large as possible.

Activity-Selection Problem

■ You given a set of activities 𝑎1, 𝑎2, … , 𝑎𝑛, where 𝒂𝒊 = 𝒔𝒊, 𝒇𝒊 and

𝑠𝑖, 𝑓𝑖 denote the start time and finish time of the 𝑖𝑡ℎ-activity.

– For example,

we can select 𝑎4, 𝑎8 , 𝑎1, 𝑎4, 𝑎9 , or 𝑎3, 𝑎8, 𝑎11 .

– The optimal solution is 𝑎1, 𝑎4, 𝑎8, 𝑎11 .

𝒊 1 2 3 4 5 6 7 8 9 10 11

𝑠𝑖 1 3 0 5 3 5 6 7 8 2 12

𝑓𝑖 4 5 6 7 9 9 10 11 12 14 16

A Classic EDF-based Greedy Algorithm

■ A classic solution to this problem is to schedule the activities based

on the Earliest Deadline First (EDF) principle.

1. Consider the activities in sorted order of their finish times,

and schedule the activities whenever possible.

2. Output the schedule.

Is this algorithm correct? How can we prove it?

Observation

■ Consider the set of activities selected by the EDF algorithm.

– For any 𝑖 ≥ 1, let 𝜋 𝑖 be the index of the 𝑖𝑡ℎ activity.

■ The algorithm scheduled the activity 𝑎𝜋 1 = 𝑠𝜋 1 , 𝑓𝜋 1 .

– Hence, we know that any optimal solution can schedule

at most one activity up to time 𝑓𝜋 1 .

𝑓𝜋 1 If at least two activities are

scheduled before time 𝑓𝜋 1

Then, this activity must have an earlier finish time than 𝑎𝜋 1 , a contradiction.

Observation

■ The algorithm scheduled the activity 𝑎𝜋 1 = 𝑠𝜋 1 , 𝑓𝜋 1 .

– Hence, we know that any optimal solution can schedule

at most one activity up to time 𝑓𝜋 1 .

– There exists an optimal solution that schedules the activity 𝑎𝜋 1 .

■ If one optimal solution doesn’t do so, we can safely replace

the activity it selects with the earliest finish time with 𝒂𝝅 𝟏 .

– The same argument generalizes to 𝑎𝜋 𝑖 for any 𝑖 > 1.

Observation

■ For any 𝑖 > 1, suppose that there exists an optimal solution that

schedules 𝑎𝜋 1 , … , 𝑎𝜋 𝑖−1 .

– Since the algorithm chooses to schedule 𝑎𝜋 𝑖 ,

any feasible schedule can select at most one activity

between 𝑓𝜋 𝑖−1 and 𝑓𝜋 𝑖 .

𝑓𝜋 𝑖𝑓𝜋 𝑖−1

There cannot be more than one compatible activity in between.

Observation

■ For any 𝑖 > 1, suppose that there exists an optimal solution that

schedules 𝑎𝜋 1 , … , 𝑎𝜋 𝑖−1 .

– Since the algorithm chooses to schedule 𝑎𝜋 𝑖 ,

any feasible schedule can select at most one activity

between 𝑓𝜋 𝑖−1 and 𝑓𝜋 𝑖 .

■ Hence, there exists an optimal solution that schedules

𝑎𝜋 1 , … , 𝑎𝜋 𝑖 .

– This holds for all 𝑖 ≥ 1. Hence the EDF algorithm is optimal.

Elements of Greedy Algorithms

When is greedy algorithms applicable in general?

Elements of Greedy Algorithms

■ Problems that can be solved by greedy algorithms exhibits

the following properties.

1. Optimal Substructure – An optimal solution to the problem

contains within it optimal solutions to subproblems.

2. Greedy-Choice Property – A globally optimal solution can be

assembled by making a sequence of locally optimal (greedy)

choices.

The Correctness of a Greedy Algorithm

■ In general, to prove the correctness of a greedy algorithm,

you need to show that...

– For the greedy choices made by the algorithm

up to any moment,

there always exists an optimal solution that takes

the same set of decisions.

How can this be proved in general?

■ In general, to prove the correctness of a greedy algorithm,

you need to show that...

– For the greedy choices made by the algorithm

up to any moment, there always exists an optimal solution

that exhibits the same set of decisions.

– Take any optimal solution.

Show that, switching to your choices is never worse.

■ This often involves proving by induction,

i.e., for any 𝑖 ≥ 1, the first 𝑖 choices are always optimal.

For this step, it requires optimal substructure

and greedy choice property from the problem.

Example 2.

Huffman Codes

Optimal prefix-free code used for data compression.

Data Compression – The Scenario

■ We have a string 𝑠 ∈ Π∗,

where Π is the set of alphabets we consider.

■ We want to encode each character 𝛼 ∈ Π with a bit string 0,1 ∗

such that

– The total number of bits used to represent 𝑠 is as small as

possible.

– The encoding of 𝑠 can be (uniquely) decoded back to 𝑠.

Binary Prefix-Free Codes

■ Let enc ∶ Π ↦ 0,1 ∗ be a function that encodes the characters in Π

with a bit string.

■ The encoding enc is prefix-free

if none of the codewords is a prefix of another.

– Hence, the encoded string enc 𝑠 is never ambiguous

when parsing in order.

■ Question: How can we compute a prefix-free coding enc for Π such

that enc 𝑠 has a minimum length possible.

Decoding is very simple.

Characterization of Binary Prefix-Free Codes

■ Let enc ∶ Π ↦ 0,1 ∗ be a prefix-free encoding of the characters in Π.

– Let Π = 𝑛.

■ Observe that, each of such functions corresponds to

a binary tree with 𝒏 leaf nodes, where

– Each character in Π is stored in one leaf node, and

– Each leaf node stores one character in Π.

■ Hence, it suffices to consider binary trees with 𝑛 = Π leaves.

Huffman Code

■ Huffman code is an optimal prefix-free coding that can be used

for data compression.

– It compresses data well – savings of 20% to 90% are typical.

– It is optimal when prefix-free codes are to be used.

■ If non-prefix-free codes are allowed,

better encoding is possible.

Huffman Code

■ Let 𝑠 ∈ Π∗ be the string to be compressed.

– For each character 𝛼 ∈ Π,

let 𝑝𝛼 denote the frequency of 𝛼 in 𝑠.

■ Goal – Compute a binary tree 𝑇 with 𝑛 leaves and assign each

character in Π to one leaf node such that

෍

𝛼∈Π

𝑝𝛼 ⋅ 𝑑𝑇 𝛼

is minimized, where 𝑑𝑇 𝛼 is the depth of 𝛼 in 𝑇.

W.L.O.G., we may assume

that Π > 1 and 𝑝𝛼 > 0.

Length of the encoding of 𝑠.

Observing the Optimal Solutions

■ Let 𝑇 be an optimal binary tree for Π, s .

– If not, the depth of 𝑥 can be decreased by 1, and

the quality of 𝑇 can be strictly improved.

– A contradiction to the optimality of 𝑇.

Observation 1.

Let 𝑥 be a leaf node with the maximum depth, and 𝑝 be the parent of 𝑥.

Then 𝑝 must have two children nodes.

W.L.O.G., Π > 1, 𝑝𝛼 > 0.

𝒙

𝒑

𝑝 can be

spliced.

■ Let 𝑇 be an optimal binary tree for Π, s .

– Let 𝑢 and 𝑣 be two sibling leaf nodes with maximum depth.

– Let 𝛼, 𝛽 ∈ Π be two characters with the lowest frequencies.

Observation 2.

If 𝛼, 𝛽 are not stored at 𝑢 and 𝑣,

swapping them there never worsens the quality of the tree.

𝛼′

W.L.O.G., Π > 1, 𝑝𝛼 > 0.

𝛽′

𝛼By the setting, we have

𝑑𝑇 𝛼 ≤ 𝑑𝑇 𝛼′ and 𝑝𝛼 ≤ 𝑝𝛼′.

■ By the setting, we have 𝑑𝑇 𝛼 ≤ 𝑑𝑇 𝛼′ and 𝑝𝛼 ≤ 𝑝𝛼′.

■ Let 𝑇′ be the tree obtained by swapping 𝛼 and 𝛼′.

len 𝑇 − len 𝑇′

= 𝑝𝛼 ⋅ 𝑑𝑇 𝛼 − 𝑑𝑇 𝛼′ + 𝑝𝛼′ ⋅ 𝑑𝑇 𝛼′ − 𝑑𝑇 𝛼

= 𝑑𝑇 𝛼′ − 𝑑𝑇 𝛼 ⋅ 𝑝𝛼′ − 𝑝𝛼 ≥ 0 .

Observation 2.

If 𝛼, 𝛽 are not stored at 𝑢 and 𝑣,

swapping them there never worsens the quality of the tree.

𝛼′ 𝛽′

𝛼

Swapping 𝛼 and 𝛼′

is never worse.

Observing the Optimal Solutions

■ Let 𝛼, 𝛽 ∈ Π be two characters with the lowest frequencies in 𝑠.

■ From Observation 1 and Observation 2,

we know that

– There exists an optimal tree 𝑻 that places 𝛼 and 𝛽 as two

sibling leaf nodes.

– Hence, it is equivalent to replace 𝛼 and 𝛽 with a new character 𝑧

with frequency 𝑝𝑧 ≔ 𝑝𝛼 + 𝑝𝛽.

– Then we can repeat this argument until Π = 1.

W.L.O.G., Π > 1, 𝑝𝛼 > 0.

■ The Huffman code is constructed by the following greedy algorithm.

■ Huffman(Π, 𝑝) – Π is the alphabets with frequency 𝑝.

A. Let 𝑄 be a min-heap for Π, 𝑝 .

B. While 𝑄 > 1, repeat the following.

1. Let 𝑥 ← Extract-Min 𝑄 and 𝑦 ← Extract-Min 𝑄 .

2. Create a new node 𝑧

with left-child 𝑥, right-child 𝑦, and 𝑝𝑧 ≔ 𝑝𝑥 + 𝑝𝑦.

3. Insert 𝑧, 𝑝𝑧 into 𝑄.

C. Return Extract-Min 𝑄 .

Huffman Codes

f e c

1295

b

13

d

16

a

45

14

Huffman Codes

f e

c

12

95

b

13

d

16

a

4514

25

Huffman Codes

f e c

1295

b

13

d

16

a

4514 25

30

Huffman Codes

f e

c

12

95

b

13

d

16

a

45

14

25 30

55

Huffman Codes

f e

c

12

95

b

13

d

16

a

45

14

25 30

55

100

Huffman Codes

■ The resulting codes

– a : 0

– b : 101

– c : 100

– d : 111

– e : 1101

– f : 1100

■ Note that, the labeling of 0,1

on the edges is not important and can be arbitrary.

f e

c 12

95

b13
d

16

a

45

14

25 30

55

100

0 1

0

0

0

01

1

1

1

Matroids and Greedy Algorithms

Matroid

■ Matroid is a combinatorial structure that abstracts and generalizes

the notion of linear independence in vector spaces.

– There are many equivalent ways to define a matroid.

■ Independence of elements – Independent sets

■ Bases – Maximal independent sets

■ Circuits – Minimal dependent sets

– On graphs with acyclic being independent, the above concepts

correspond to Forests, Spanning Trees, and Cycles, respectively.

Definition 1

■ A (finite) matroid 𝑀 is a pair 𝐸, 𝐼 , where 𝐸 is the (finite) ground set of

elements, 𝐼 ⊆ 2𝐸 is a collection of subsets of 𝐸 such that

1. ∅ ∈ 𝐼, i.e., the empty set is independent.

2. If 𝐴 ∈ 𝐼 and 𝐵 ⊆ 𝐴, then 𝐵 ∈ 𝐼,

i.e., subsets of independent sets are also independent.

3. If 𝐴, 𝐵 ∈ 𝐼 and 𝐴 > |𝐵|,

then there exists 𝑥 ∈ 𝐴 − 𝐵 such that 𝐵 ∪ 𝑥 ∈ 𝐼,

i.e., we can augment elements to form larger independent sets.

Imagine that

𝐸 is the set of vectors in a (finite) vector space, and

𝐼 is the collection of all independent vector subsets.

Example

■ Let 𝐺 = 𝑉, 𝐸 be an undirected graph.

– Let 𝒜 be the collection of all edge subsets that will induce an

acyclic subgraph of 𝐺, i.e.,

𝒜 ≔ 𝐾 ⊆ 𝐸 ∶ the graph 𝐻 = 𝑉,𝐾 is acyclic .

– The pair 𝑀1 = 𝐸,𝒜 satisfies all the conditions in Definition 1.

■ 𝑀1 = 𝐸,𝒜 is a matroid.

Example

■ Let 𝐺 = 𝑈, 𝑉, 𝐸 be a bipartite graph with partite sets 𝑈 and 𝑉.

– For any matching 𝑀 ⊆ 𝐸,

define 𝑈 𝑀 to be the set of endpoints of 𝑀 in 𝑈.

– Let 𝒰 be the collection of 𝑈 𝑀 for all possible matchings of 𝐺,

i.e.,
𝒰 ≔ 𝑈 𝐾 ∶ 𝐾 ⊆ 𝐸 is a matching in 𝐺 .

– It can be verified that the pair 𝑀2 = 𝐸,𝒰 satisfies all the

conditions in Definition 1.

■ 𝑀2 = 𝐸,𝒰 is a matroid.

An edge subset 𝑀 ⊆ 𝐸 is a matching

if none of the edges in 𝑀 share a common endpoint.

Definition 2

■ A (finite) matroid 𝑀 is a pair 𝐸, ℬ , where 𝐸 is the (finite) ground set

of elements, ℬ ⊆ 2𝐸 is a collection of subsets of 𝐸 such that

1. ℬ ≠ ∅.

2. If 𝐴, 𝐵 ∈ ℬ, 𝐴 ≠ 𝐵, and 𝑎 ∈ 𝐴 − 𝐵,

then there exists 𝑏 ∈ 𝐵 − 𝐴 such that 𝐴 − 𝑎 ∪ 𝑏 ∈ ℬ,

i.e., we can exchange elements from two distinct bases

to form a new base.

Imagine that

𝐸 is the set of vectors in a (finite) vector space, and

ℬ is the collection of all bases of the space.

Example

■ Let 𝐺 = 𝑉, 𝐸 be an undirected graph.

– Let 𝒯 be the collection of all edge subsets that will induce a

spanning tree (maximal acyclic subgraph) of 𝐺, i.e.,

𝒯 ≔ 𝐾 ⊆ 𝐸 ∶ the graph 𝐻 = 𝑉,𝐾 is a spanning tree of 𝐺 .

– The pair 𝑀3 = 𝐸,𝒯 satisfies all the conditions in Definition 2.

■ 𝑀3 = 𝐸,𝒯 is a matroid.

Let’s prove this.

■ For 𝑇1, removing 𝑒1 = 𝑢, 𝑣 creates two components 𝐶1, 𝐶2,

where 𝑢 ∈ 𝐶1, 𝑣 ∈ 𝐶2.

■ For 𝑇2, adding 𝑒1 creates a unique cycle 𝐶 that contains 𝑢 and 𝑣.

– Hence, traversing the edges of 𝐶 crosses 𝐶1 and 𝐶2 at least twice.

– Other than 𝑒1, some edge in 𝐶 has to connect 𝐶1 and 𝐶2.

Pick one of such edges to be 𝑒2.

Theorem 1. (Exchange Property of Spanning Trees)

Let 𝐺 = 𝑉, 𝐸 be an undirected graph and

𝑇1, 𝑇2 ⊆ 𝐸 be two spanning trees of 𝐺 with 𝑇1 ≠ 𝑇2.

For any 𝑒1 ∈ 𝑇1 − 𝑇2, there exists 𝑒2 ∈ 𝑇2 − 𝑇1 such that

𝑇1 − 𝑒1 ∪ 𝑒2 is a spanning tree of 𝐺.

Definition 3

■ A (finite) matroid 𝑀 is a pair 𝐸, 𝒞 , where 𝐸 is the (finite) ground set

of elements, 𝒞 ⊆ 2𝐸 is a collection of subsets of 𝐸 such that

1. If 𝐴, 𝐵 ∈ 𝒞 with 𝐴 ⊆ 𝐵, then 𝐴 = 𝐵,

i.e., each circuit in 𝒞 is minimal in size.

2. If 𝐴, 𝐵 ∈ 𝒞, 𝐴 ≠ 𝐵, and 𝑒 ∈ 𝐴 ∩ 𝐵,

then there exists 𝐶 ∈ 𝒞 such that 𝐶 ⊆ 𝐴 ∪ 𝐵 − 𝑒 ,

i.e., 𝐴 ∪ 𝐵 − 𝑒 contains another circuit in 𝒞.

Imagine that 𝐸 is the set of vectors in a (finite) vector

space, and 𝒞 is the collection of minimal dependent

vector sets of the space.

Example

■ Let 𝐺 = 𝑉, 𝐸 be an undirected graph.

– Let 𝒞 be the collection of all simple cycles of 𝐺, i.e.,

𝒞 ≔ 𝐾 ⊆ 𝐸 ∶ 𝐾 forms a simple cycle in 𝐺 .

– The pair 𝑀4 = 𝐸, 𝒞 satisfies all the conditions in Definition 3.

■ 𝑀4 = 𝐸, 𝒞 is a matroid.

Matroid

■ The structure of a matroid is characterized completely by its

independent sets, its bases, or its circuits.

– It can be shown that the three definitions lead to one another.

■ Why matroids?

– It provides an abstraction of a wide category of problems.

– Properties or algorithms for matroids automatically apply to

all of these problems.

Rank of a Matroid

■ The structure of a matroid is characterized completely by its

independent sets, its bases, or its circuits.

■ This lemma holds directly from the 3𝑟𝑑 condition in the definition.

■ We define the size of a base to be the rank of the matroid.

Lemma 2. (Size of Maximal Independent Sets)

Let 𝑀 = 𝐸, 𝐼 be a matroid and 𝐵1, 𝐵2 ∈ 𝐼 be two distinct bases for 𝑀.

Then we have 𝐵1 = 𝐵2 .

Greedy Algorithms

for Weighted Matroids

Weighted Matroid

■ Let 𝑀 = 𝐸, 𝐼 be a matroid with a weight function 𝑤 ∶ 𝐸 ↦ 𝑄>0 that

assigns each element 𝑒 ∈ 𝐸 a positive weight.

■ The following algorithm computes a maximum-weight base 𝐵 for 𝑀.

■ Weighted-Matroid(𝑀 = 𝐸, 𝐼 , 𝑤) – 𝐸 = {1,2,…𝑛} the set of elements.

A. Relabel the elements such that 𝑤1 ≥ 𝑤2 ≥ ⋯ ≥ 𝑤𝑛.

B. Let 𝐵 ← ∅.

C. For 𝑖 ← 1 to 𝑛, do the following.

■ Add 𝑖 to 𝐵 if 𝐵 ∪ 𝑖 ∈ 𝐼.

D. Return 𝐵.

Theorem 3. (Maximum-Weight Base for Weighted Matroid)

The algorithm Weighted-Matroid computes a maximum-weight

subset in 𝐼 if and only if 𝑀 = 𝐸, 𝐼 is a matroid.

■ Weighted-Matroid(𝑀 = 𝐸, 𝐼 , 𝑤) – 𝐸 = {1,2,…𝑛} the set of elements.

A. Relabel the elements such that 𝑤1 ≥ 𝑤2 ≥ ⋯ ≥ 𝑤𝑛.

B. Let 𝐵 ← ∅.

C. For 𝑖 ← 1 to 𝑛, do the following.

■ Add 𝑖 to 𝐵 if 𝐵 ∪ 𝑖 ∈ 𝐼.

D. Return 𝐵.

Theorem 3. (Maximum-Weight Base for Weighted Matroid)

The algorithm Weighted-Matroid computes a maximum-weight

subset in 𝐼 if and only if 𝑀 = 𝐸, 𝐼 is a matroid.

Proof.

■ Suppose that 𝑀 = 𝐸, 𝐼 is a matroid.

– Let 𝐵 = 𝜋1 ≤ 𝜋2 ≤ ⋯ ≤ 𝜋𝑘 be the set returned by the algorithm.

– First, we prove that

There exists an optimal subset 𝑂∗ that contains the element 𝜋1.

Claim. (Greedy-choice Property)

Let 𝜋 be the element that is added by the algorithm to 𝐵 first.

Then there exists an optimal subset 𝑂∗ ∈ 𝐼 such that 𝜋 ∈ 𝑂∗.

■ Let 𝑂 ∈ 𝐼 be a maximum-weight base for 𝑀.

– If 𝜋 ∈ 𝑂, then we are done.

■ Suppose that 𝜋 ∉ 𝑂.

– Since the algorithm added 𝜋 first, 𝑗 ∉ 𝐼 for all 𝑗 < 𝜋.

This implies that any superset of 𝑗 is not independent.

– Hence 𝑤 𝜋 ≥ 𝑤 𝜋′ for all 𝜋′ ∈ 𝑂.

The largest element in 𝑂

has weight at most 𝑤 𝜋 .

■ Let 𝑂 ∈ 𝐼 be a maximum-weight base for 𝑀.

– If 𝜋 ∈ 𝑂, then we are done.

■ Suppose that 𝜋 ∉ 𝑂.

Then 𝑤 𝜋 ≥ 𝑤 𝜋′ for all 𝜋′ ∈ 𝑂.

■ Repeatedly apply the augment property for matroids in Definition 1

on 𝑂 and 𝜋 , we obtain an independent set 𝑂′ such that

𝑂′ = 𝑂 − 𝜋′ ∪ 𝜋

for some 𝜋′ ∈ 𝑂.

■ Then 𝑤 𝑂′ = 𝑤 𝑂 −𝑤 𝜋′ +𝑤 𝜋 ≥ 𝑤 𝑂 , and

𝑂′ is an optimal independent set containing 𝜋.

𝜋 ∈ 𝐼 by the hereditary property.

Proof. (continue)

■ Suppose that 𝑀 = 𝐸, 𝐼 is a matroid.

– Let 𝐵 = 𝜋1 ≤ 𝜋2 ≤ ⋯ ≤ 𝜋𝑘 be the set returned by the algorithm.

– Then, there exists an optimal subset 𝑂∗ ∈ 𝐼 with 𝜋1 ∈ 𝑂∗.

(Optimal Substructure of Matroids.)

– Consider the collection of subsets 𝐼′ ≔ 𝐴 − 𝜋1 ∶ 𝜋1 ∈ 𝐴 ∈ 𝐼 .

■ Then 𝑀′ = 𝐸, 𝐼′ forms a matroid (submatroid from 𝑀).

■ 𝑂∗ − 𝜋1 ∈ 𝐼′.

■ The same argument applies on 𝐵′ ≔ 𝐵 − 𝜋1 and 𝑀′.

■ Hence, 𝐵 is an optimal base.

Theorem 3. (Maximum-Weight Base for Weighted Matroid)

The algorithm Weighted-Matroid computes a maximum-weight

subset in 𝐼 if and only if 𝑀 = 𝐸, 𝐼 is a matroid.

Proof.

■ Suppose that 𝑀 = 𝐸, 𝐼 does not satisfy the matroid property.

– We show that, for some weight functions, the greedy algorithm

fails to compute a maximum-weight set from the set family 𝐼.

■ Suppose that 𝑀 = 𝐸, 𝐼 does not satisfy the matroid property.

– If the hereditary property is not satisfied,

then there exists 𝑆, 𝑇 ⊆ 𝐸 with 𝑆 ⊂ 𝑇 such that 𝑇 ∈ 𝐼, 𝑆 ∉ 𝐼.

– For any 𝑒 ∈ 𝐸, define the weight

𝑤𝑒 ≔ ቐ
2, if 𝑒 ∈ 𝑆,
1, if 𝑒 ∈ 𝑇 − 𝑆,
0, otherwise.

– The optimal set is 𝑇.

– The greedy algorithm first considers the elements in 𝑆 and will

skip some of the elements in 𝑆 since 𝑆 ∉ 𝐼.

𝑺 ∉ 𝐼
𝑻 ∈ 𝐼

– If the augmentation (extension) property is not satisfied,

then there exists 𝑆, 𝑇 ⊆ 𝐸 with 𝑆 < 𝑇 such that

𝑆 ∪ 𝑒 ∉ 𝐼 for all 𝑒 ∈ 𝑇 − 𝑆 .

– For any 𝑒 ∈ 𝐸, define the weight

𝑤𝑒 ≔

1+
1

2|𝑆|
, if 𝑒 ∈ 𝑆,

1, if 𝑒 ∈ 𝑇 − 𝑆,
0, otherwise.

– 𝑤 𝑇 ≥ 𝑇 ≥ 𝑆 + 1.

– The algorithm cannot augment any 𝑒 ∈ 𝑇 − 𝑆.

Hence 𝑤 𝐵 ≤ 𝑤 𝑆 = 𝑆 + 1/2 < 𝑤 𝑇 .

𝑺 𝑻

𝑺 𝑻

Example 3.

Scheduling Unit-sized Jobs

with Deadlines and Penalties

The Scenario

■ We have a set of 𝑛 unit-sized jobs 𝐽 = 𝑎1, 𝑎2, … , 𝑎𝑛 ,

where each job 𝑎𝑖 has a deadline 𝑑𝑖 and a penalty 𝑝𝑖 (to be paid) if 𝑎𝑖

fails to finish its execution in time.

■ We want to schedule the jobs on one machine so as to minimize the

total penalties due to deadline misses.

– Define 𝐼 to be the collection of all subsets of 𝐽 that can be

scheduled on the machine.

– Then 𝑀 = 𝐽, 𝐼 is a matroid.
Apply the greedy algorithm

and we are done.

Example 3.

Minimum Spanning Tree

Minimum / Maximum Spanning Tree

■ Let 𝒯 be the collection of all edge subsets that will induce a spanning

tree (maximal acyclic subgraph) of 𝐺, i.e.,

𝒯 ≔ 𝐾 ⊆ 𝐸 ∶ the graph 𝐻 = 𝑉,𝐾 is a spanning tree of 𝐺 .

■ The pair 𝑀3 = 𝐸,𝒯 forms a matroid.

– Hence, we an apply the greedy algorithm to compute a spanning

tree with minimum / maximum weights.

This is also known as the Kruskal’s algorithm

for minimum spanning trees.

Disjoint-set Data Structure &

Implementation of Kruskal’s Algorithm

Disjoint Set

■ Suppose that we want to maintain a partition (as disjoint sets) for a

given set of elements, so as to support the following operations.

– Make-set(x) – to create a set of a new element 𝑥.

– Union(x, y) – to union the set containing 𝑥 and that containing 𝑦.

– Find-Set(x) – to return a representative for the set containing 𝑥.

Disjoint Set

■ We introduce a data structure that supports a sequence of 𝑚 operations

in 𝑂 𝑚 ⋅ 𝛼 𝑛 time, where

– 𝑛 is the number of elements (calls to the Make-set operation), and

– 𝛼 𝑛 is the inverse Ackerman’s function,

which is an extraordinarily slow growing function.

■ 𝛼 𝑛 ≤ 4, for any number that can be written-down

in the physical universe.

Disjoint Set

■ The idea is to use a rooted tree for each disjoint set.

■ In each node, we store the following information.

– 𝑥 - The element stored in the node.

– 𝑝 - The pointer to its parent node.

– 𝑟 - The rank of the node, which is the maximum height ever attained

for the subtree rooted at that node.

■ We will use “union-by-rank” and “path-compression” techniques to

achieve the claimed complexity.

The Procedures

■ Make-Set(𝑥) – 𝑥 is the new element to be considered.

A. Set 𝑝 𝑥 ← 𝑥 and 𝑟 𝑥 ← 0.

■ Find-Set(𝑥) – Return the representative of the set containing 𝑥.

A. If 𝑥 ≠ 𝑝[𝑥], then 𝑝 𝑥 ←Find-Set(𝑝 𝑥).

B. Return 𝑝 𝑥 .

■ Link(𝑥, 𝑦) – Link the two subtrees by rank.

A. If 𝑟 𝑥 > 𝑟 𝑦 , then

■ Set 𝑝 𝑦 ← 𝑥.

B. Else,

■ Set 𝑝 𝑥 ←y.

■ Increase 𝑟 𝑦 by 1 if 𝑟 𝑥 = 𝑟[𝑦].

■ Union(𝑥, 𝑦) – Union the sets containing 𝑥 and 𝑦.

A. Link(Find-Set(𝑥), Find-Set(𝑦).

The Kruskal’s Algorithm for MST

■ Kruskal-MST(𝐺, 𝑤) – graph 𝐺 = 𝑉, 𝐸 with edge-weight function 𝑤.

A. 𝐴 ← ∅.

B. Relabel the edges so that 𝑤 𝑒1 ≤ 𝑤 𝑒2 ≤ ⋯ ≤ 𝑤 𝑒𝑚 .

C. For 𝑖 = 1,2,… ,𝑚, do the following

■ Let 𝑒𝑖 = 𝑢, 𝑣 .

■ If Find-Set 𝑢 ≠ Find-Set 𝑣 ,

– Add 𝑒𝑖 to 𝐴 and call Union 𝑢, 𝑣 .

D. Return 𝐴.

