Introduction to Algorithms

Mong-Jen Kao (高孟駿)

Tuesday 10:10 – 12:00

Thursday 15:30 – 16:20

Dynamic Programming (DP)

A <u>Powerful Paradigm</u> for Solving

Combinatorial Optimization Problems

Example 1.

Rod-Cutting Problem

The Rod-Cutting Problem

- You have a rod of length N, where N is a positive integer. You're given $p_1, p_2, ..., p_N$, where p_i denotes <u>the value of a rod with</u> <u>length i</u>. Determine a way to cut the rod to <u>maximize the total value</u>.
 - For example, if N = 7 and p_i as follows,

i	1	2	3	4	5	6	7
p_i	1	5	8	9	10	17	17

then, cutting it into 3 + 4 or just 7 gives a total value of 17.

On the other hand, 1 + 6 or 2 + 2 + 3 has a total value of 18.

Observation

- For any $i \ge 0$, let A(i) denote the maximum value obtainable from a rod with length i.
 - Then, A(0) = 0.
 - For any $0 < i \le N$,

The optimal solution comes from <u>one of</u> the scenarios we have considered.

$$A(i) = \max_{1 \le k \le i} (p_k + A(i - k)).$$

i-k

worth p_k

worth A(i - k) at max

Observation

For any $i \ge 0$, let A(i) denote the maximum value obtainable from a rod with length i.

- Then,
$$A(i) = \begin{cases} 0, & \text{if } i = 0, \\ \max_{1 \le k \le i} (p_k + A(i-k)), & \text{if } i > 0. \end{cases}$$

- The above is known as a recurrence formula for A(i).
 - With the formula, we can compute A(i) for all i either in a **bottom-up** or a **top-down** manner.

Solving the Problem
$$A(i) = \begin{cases} 0, & \text{if } i = 0, \\ \max_{1 \le k \le i} (p_k + A(i-k)), & \text{if } i > 0. \end{cases}$$

- \blacksquare Declare an array A of size N.
- We can compute A(i) for all i.
 - 1. **Bottom-up** Based on the formula, compute A(0), A(1), ..., A(N) in order.
 - 2. **Top-down** Use a recursion function to compute A(N). During the process, **recurse on** A(i - k) **only if** it has not been computed yet.
- The computation takes $O(N^2)$.

Solving the Problem

$$A(i) = \begin{cases} 0, & \text{if } i = 0, \\ \max_{1 \le k \le i} (p_k + A(i - k)), & \text{if } i > 0. \end{cases}$$

- \blacksquare Declare an array A of size N.
- We can compute A(i) for all i.
 - 1. Bottom-up
 - 2. **Top-down**
- The computation takes $O(N^2)$.
- By recording the choices made during the computation process, we can construct the solution backward.

That is, which k results in the maximum value for A(i).

The Dynamic Programming Paradigm

Dynamic Programming Paradigm

 To apply the dynamic programming technique, we proceed in following steps. Requires <u>observation</u> & <u>creativity</u>.

- Define a <u>suitable subproblem</u> that is <u>expressed</u> with <u>a few indexes</u>.
- 2. Write down <u>the recurrence formula</u> for the solution of the subproblem, using solutions for instances of smaller sizes.
- 3. Compute the answer according to the recurrence formula.

Elements of Dynamic Programming

- Problems that can be solved via dynamic programming exhibits the following properties.
 - 1. Optimal Substructure An optimal solution to the problem contains within it optimal solutions to subproblems.
 - 2. Overlapping Subproblems.
 - 3. Memorization.
- With the above, suitable problems can be defined, and recurrence formulas can be written down.

Example 2.

Matrix Chain Multiplication

Matrix Chain Multiplication

- Suppose that for any $A \in \mathbb{R}^{p \times q}$ and any $B \in \mathbb{R}^{q \times r}$, computing $A \times B$ takes $p \times q \times r$ number of multiplications.
- Given n+1 positive integers $p_1, p_2, ..., p_{n+1}$, consider the scenario that we are to compute

$$M_1 \times M_2 \times \cdots \times M_n$$
,

where $M_i \in \mathbb{R}^{p_i \times p_{i+1}}$ is a $p_i \times p_{i+1}$ matrix.

■ Find the <u>optimal way</u> to computing $M_1 \times M_2 \times \cdots \times M_n$ such that the total <u>number of multiplications</u> is <u>minimized</u>.

Matrix Chain Multiplication

- For example, for $M_1 \times M_2 \times M_3 \times M_4$, there are 5 different ways to do it.
 - $(M_1(M_2(M_3M_4))), (M_1((M_2M_3)M_4)), ((M_1M_2)(M_3M_4)),$
 - $((M_1(M_2M_3))M_4), (((M_1M_2)M_3)M_4).$
- If $(p_1, ..., p_5) = (13, 5, 89, 3, 34)$, then
 - $(M_1(M_2(M_3M_4)))$ takes (89 * 3 * 34) + (5 * 89 * 34) +(13 * 5 * 34) = 26418 multiplications.

Matrix Chain Multiplication

- For example, for $M_1 \times M_2 \times M_3 \times M_4$, there are 5 different ways to do it.
 - $(M_1(M_2(M_3M_4))), (M_1((M_2M_3)M_4)), ((M_1M_2)(M_3M_4)),$
 - $((M_1(M_2M_3))M_4), (((M_1M_2)M_3)M_4).$
- If $(p_1, ..., p_5) = (13, 5, 89, 3, 34)$, then
 - The 5 different ways take 26418, 4055, 54201, **2856**, and 10582 multiplications, respectively.
 - $((M_1(M_2M_3))M_4)$ is the optimal way.

Define a Proper Subproblem

Given n+1 positive integers $p_1, p_2, ..., p_{n+1}$, consider the scenario that we are to compute

$$M_1 \times M_2 \times \cdots \times M_n$$
,

where $M_i \in \mathbb{R}^{p_i \times p_{i+1}}$ is a $p_i \times p_{i+1}$ matrix.

For any $[\ell, r]$ with $1 \le \ell \le r \le n$, let $m[\ell, r]$ denote the minimum number of multiplications required by

$$M_{\ell} \times M_{\ell+1} \times \cdots \times M_r$$
.

Derive the Recurrence Formula

For any $[\ell, r]$ with $1 \le \ell \le r \le n$, let $m[\ell, r]$ denote the minimum number of multiplications required by

$$M_{\ell} \times M_{\ell+1} \times \cdots \times M_r$$
.

- For $1 \le \ell = r \le n$, we have $m[\ell, r] = 0$.
- For $\ell < r$,

$$m[\ell,r] = \min_{\ell \le k < r} (m[\ell,k] + m[k+1,r] + p_{\ell} * p_{k+1} * p_{r+1}).$$

For any $[\ell, r]$ with $1 \le \ell \le r \le n$, let $m[\ell,r]$ denote the minimum number of multiplications required by

$$M_{\ell} \times M_{\ell+1} \times \cdots \times M_r$$
.

■ For $\ell < r$,

$$m[\ell,r] = \min_{\ell \le k < r} (m[\ell,k] + m[k+1,r] + p_{\ell} * p_{k+1} * p_{r+1}).$$

takes $p_{\ell} * p_{k+1} * p_{r+1}$ multiplications

requires $m[\ell, k]$ at min

requires m[k+1,r] at min

Fill-in the Table

- Declare a matrix m with size $n \times n$.
- For any segment $I = [\ell, r]$, computing m[I] requires the values of m[I'] for all I' with |I'| < |I|.
 - Note Top-down computation using recursion is easier.
- The time it takes is $O(n^3)$.

- Declare a matrix m with size $n \times n$.
- For any segment $I = [\ell, r]$, computing m[I] requires the values of m[I'] for all I' with |I'| < |I|.

Example 3.

The Knapsack Problem

The Knapsack Problem

Given n items $I_1 = (a_1, b_1), I_2 = (a_2, b_2), ..., I_n = (a_n, b_n),$ where a_i and b_i are <u>the size</u> and <u>the value</u> of the i^{th} -item, and a <u>knapsack size W</u>,

compute a subset $A \subseteq \{1,2,...,n\}$ such that $\sum_{i\in A} a_i \leq W$ and $\sum_{i\in A} b_i$ is maximized.

That is, select a subset of items that have size at most W
 such that the total value of the selected items is maximized.

The Knapsack Problem

That is, select a subset of items that have size at most W
 such that the total value of the selected items is maximized.

To maximize the **total value** to be put in the knapsack

Define a Proper Subproblem

- For any $0 \le i \le n$ and $p \ge 0$, let A(i,p) denote the **minimum total size** it requires to get a **total value of** p **using only the first** i **items**.
 - A(i,p) is defined to be ∞ if no such combination exists.

Derive the Recurrence Formula

- Consider an "optimal combination" for A(i, p).
 - There are <u>only two possibilities</u> it either contains I_i or excludes I_i .
 - If I_i is not contained, then it must be an **optimal combination** for A(i-1,p).

Derive the Recurrence Formula

- Consider an "optimal combination" for A(i, p).
 - There are <u>only two possibilities</u> it either contains I_i or excludes I_i .
 - If I_i is contained, then it consists of an *optimal combination* for $A(i-1,p-b_i)$ and I_i .

The Recurrence Formula for A(i, p)

■ Based on the observation, we can write down the recurrence for A(i, p) as follows.

$$A(i, p) = \begin{cases} \begin{cases} \infty, & \text{if } p < 0 \\ \min\{A(i-1, p), A(i-1, p-b_i) + a_i\}, & \text{if } p \ge 0 \end{cases}, & \text{for } i > 0, \\ \begin{cases} 0, & \text{if } p = 0 \\ \infty, & \text{if } p \ne 0 \end{cases}, & \text{for } i = 0. \end{cases}$$

Solving the Knapsack Problem via DP

- Based on the recurrence formula, we can compute A(i,p) for all $0 \le i \le n$ and $0 \le p \le P$, where $P := \sum_{1 \le i \le n} b_i$ is the total value of the items.
- The answer is then given by the maximum p such that $A(n,p) \leq W$.
- The time complexity is $O(n \cdot P)$.
 - Note that, this is <u>not a polynomial-time algorithm</u>.
 - We call it a "pseudo-polynomial time" algorithm.

It is not efficient.

Recurrence Formula is not Unique

- The following is an alternative way to defining a proper subproblem.
- For any $0 \le i \le n$ and $w \ge 0$, let B(i, w) denote the **maximum total value** we can get with a **total size** w **using only the first** i **items**.
 - B(i, w) is defined to be $-\infty$ if no such combination exists.
- As an exercise, write down the recurrence formula for B(i, w) so that the Knapsack problem can be solved in $O(n^2W)$ time.
 - Also describe & explain what the answer is.

Example 4.

The Longest Common Subsequence

(LCS) Problem

String Alignment in DNA Sequence

- Suppose that we are given two DNA sequences,
 each of which is a string consisting of the characters 'C', 'G', 'T', 'A'.
 - For example, $s_1 = AGCAT$ and $s_2 = GAC$.
- We want to compute a string s with a maximum length such that s is a subsequence of both s_1 and s_2 .
 - For example, both GC and GA are common subsequences of s_1 and s_2 .

The <u>longer</u> a common subsequence is, the <u>more similar</u> the two DNA sequences are.

Sequence and Subsequence

- Let $s = s_1 s_2 \cdots s_n$ be a string of length n.
- We say that a string $t = t_1 t_2 \cdots t_k$ is a <u>subsequence</u> of s, if there exists <u>indexes</u> j_1, j_2, \dots, j_k with $1 \le j_1 < j_2 < \dots < j_k \le n$ such that

 $t_i = s_{j_i}$ for all $1 \le i \le k$.

There is a way to align *t* with *s*.

The Longest Common Subsequence (LCS) Problem

- In the LCS problem, we are given two strings s_1 and s_2 . The goal is to compute a common subsequence t of s_1 and s_2 such that the length of t is the longest possible.
 - For example, if $s_1 = MZJAWXU$ and $s_2 = XMJYAUZ$, then one optimal solution is t = MJAU.

Find an optimal way to align the two strings.

Define a Suitable Subproblem

- $\blacksquare \text{ Let } n = |s_1| \text{ and } m = |s_2|$
- For any $1 \le i \le n$ and $1 \le j \le m$, define L(i,j) to be the length of the **optimal alignment** of $s_1[1 ... i]$ and $s_2[1 ... j]$.

Make Observations on the Optimal Solution

- For any $1 \le i \le n$ and $1 \le j \le m$, define L(i,j) to be the length of the *optimal alignment* of $s_1[1 \dots i]$ and $s_2[1 \dots j]$.
- The optimal alignment <u>must be</u> one of the following 3 cases.
 - 1. If $s_1[i] = s_2[j]$, then there exists an optimal solution that align $s_1[i]$ with $s_2[j]$.
 - The rest is the optimal alignment between $s_1[1 ... i 1]$ and $s_2[1 ... j 1]$.
 - That is, L(i 1, j 1).

Make Observations on the Optimal Solution

- For any $1 \le i \le n$ and $1 \le j \le m$, define L(i,j) to be the length of the *optimal alignment* of $s_1[1 \dots i]$ and $s_2[1 \dots j]$.
- The optimal alignment <u>must be</u> one of the following 3 cases.
 - 2. If $s_1[i] \neq s_2[j]$, then either $s_1[i]$ or $s_2[j]$ is not aligned in the optimal solution.
 - The optimal alignment is either L(i-1,j) or L(i,j-1).

The Recurrence Formula for L(i, j)

■ Based on the observation, we can write down the recurrence for L(i,j) as follows.

$$L(i,j) = \begin{cases} 0, & \text{if } \min(i,j) = 0, \\ \left\{ L(i-1,j-1) + 1, & \text{if } s_1[i] = s_2[j] \\ \max\{L(i-1,j), L(i,j-1)\}, & \text{if } s_1[i] \neq s_2[j] \end{cases} \text{ otherwise.}$$

- By the recurrence formula, we can compute L(i, j) for all i and j in O(nm) time.
- The answer is L(n, m).

Example 5.

Optimal Binary Search Tree

The Scenario

Suppose that you have a set of keywords

$$k_1 \leq k_2 \leq \ldots \leq k_n$$
.

Furthermore, consider $I_0 = (-\infty, k_1), I_1 = (k_1, k_2), ..., I_n = (k_n, \infty).$

- Suppose that you are given the probability distribution that a key is to be searched.
 - p_i : the probability that k_i is to be searched.
 - q_i : the probability that a key $k \in I_i$ is to be searched.
- Furthermore,

$$\sum_{1 \le i \le n} p_i + \sum_{0 \le i \le n} q_i = 1.$$

■ Build a BST that *minimizes* the expected search time.

Optimal BST

■ For example, consider the following distribution.

i	0	1	2	3	4	5
p_i		0.15	0.1	0.05	0.1	0.2
q_i	0.05	0.1	0.05	0.05	0.05	0.1

Expected Cost

i	0	1	2	3	4	5
p_{i}		0.15	0.1	0.05	0.1	0.2
q_i	0.05	0.1	0.05	0.05	0.05	0.1

■ The overall cost is now 2.75, instead of 2.8.

i	0	1	2	3	4	5
p_i		0.15	0.1	0.05	0.1	0.2
q_i	0.05	0.1	0.05	0.05	0.05	0.1

Observation and Optimal Substructure

Since a BST is to be built, one of the key k_i has to be the root of the BST.

Expected cost to the subtree is

$$\sum_{0 \le j < i} p_j + \sum_{0 \le j \le i} q_j .$$

 p_i k_i

Expected cost to the subtree

 $\sum p_j + \sum q_j$.

Optimal BST

for $k_1, ..., k_{i-1}$. (recursive problem)

 $< k_i$

 $> k_i$

Optimal BST

for $k_{i+1}, ..., k_n$. (recursive problem)

Define a Suitable Subproblem

- For any i, j with $1 \le i \le j \le n$, let E[i, j] be the expected cost of the optimal BST for $k_i, ..., k_j$.
 - Also let

$$p(i,j) \coloneqq \sum_{i \le \ell \le j} p_{\ell} + \sum_{i \le \ell \le j+1} q_{\ell}$$

be the cumulative probability that a key within (k_{i-1}, k_{j+1}) is to be searched.

$$I_i$$
 I_{i+1} \cdots I_{j+1} k_i k_{i+1} k_j

- For any i, j with $1 \le i \le j \le n$, let E[i, j] be the expected cost of the optimal BST for k_i, \dots, k_j .
 - Some k_{ℓ} with $i \leq \ell \leq j$ has to be the root.

The Recurrence Formula for E[i, j]

We have the following recurrence formula.

$$E[i,j] = \begin{cases} 0, & \text{if } i > j, \\ \min_{i \le \ell \le j} \left(E[i,\ell-1] + E[\ell+1,j] \right), & \text{otherwise.} \end{cases}$$

where
$$p(i,j)\coloneqq \sum_{i\leq \ell\leq j} p_\ell + \sum_{i\leq \ell\leq j+1} q_\ell$$
 .

■ In time $O(n^3)$, we can compute E[i,j] for all $1 \le i \le j \le n$.