Introduction to Algorithms

Mong-Jen Kao (5 £§8)

Tuesday 10:10 — 12:00
Thursday 15:30 — 16:20

Dynamic Programming (DP)

— A Powerful Paradigm for Solving

Combinatorial Optimization Problems

Example 1.

Rod-Cutting Problem

The Rod-Cutting Problem

m You have arod of length N, where N is a positive integer.

You're given p4, po, ..., Py, Where p; denotes the value of a rod with

length i. Determine a way to cut the rod to maximize the total value.

- For example, if N = 7 and p; as follows,

D; 1 5 8 9 10 17 17

then, cutting it into 3 + 4 or just 7 gives a total value of 17.

On the other hand, 1 + 6 or 2 + 2 + 3 has a total value of 18.

Observation

m Foranyi > 0, let A(i) denote the maximum value obtainable
from a rod with length i.

- Then, A(0) = 0. The optimal solution comes from one of
~ the scenarios we have considered. |
- FOr any O < i S N, \\“/7 ///////////”///— ff //’
A@) = max(p + Al —k)) .
|
k : i —k

Observation

m Foranyi = 0, let A(i) denote the maximum value obtainable
from a rod with length i.

- Then, (
0, ifi =0,
A(i) =+

max(p, + A(i—k)), ifi>0.
\ 1sksi

- The above is known as a recurrence formula for A(i).

m With the formula, we can compute A(i) for all i
either in a bottom-up or a top-down manner.

[0, ifi =0,
Solving the Problem 4q) =+
max(p, + A(i—k)), ifi>0.

\ 1<k<i

m Declare an array A of size N.
m We can compute A(i) for all i.

1. Bottom-up — Based on the formula,
compute A(0),A(1),...,A(N) in order.

2. Top-down — Use a recursion function to compute A(N).

During the process, recurse on A(i — k) only if
It has not been computed yet.

m The computation takes 0(N?).

. (0, ifi =0,
Solving the Problem 4q) =+

max(p, + A(i—k)), ifi>0.
\ 1<k<i

m Declare an array A of size N.

m We can compute A(i) for all i.

1. Bottom-up T

That is, which k results in
the maximum value for A(i).

2. Top-down

m The computation takes 0(N?).

m By recording the choices made during the computation process,
we can construct the solution backward.

The Dynamic Programming Paradigm

Dynamic Programming Paradigm

m To apply the dynamic programming technique, Requires |
.~ observation & creativity.

we proceed Iin following steps.

,,

1. Define a suitable subproblem that is expressed
with a few indexes.

2. Write down the recurrence formula for the solution of the

subproblem, using solutions for instances of smaller sizes.

3. Compute the answer according to the recurrence formula.

Elements of Dynamic Programming

m Problems that can be solved via dynamic programming exhibits
the following properties.

1. Optimal Substructure — An optimal solution to the problem

contains within it optimal solutions to subproblems.
2. Overlapping Subproblems.

3. Memorization.

m With the above, suitable problems can be defined, and
recurrence formulas can be written down.

Example 2.

Matrix Chain Multiplication

Matrix Chain Multiplication

m Suppose that for any A € RP*1 and any B € R?*",
computing A X B takes p X g X r number of multiplications.

m Given n + 1 positive integers pq, py, ..., Pn+1, CONSider the scenario
that we are to compute

M1XM2X XMn,

where M; € RPi*Pi+1 is @ p; X p;,, Matrix.

m Find the optimal way to computing M; X M, X --- X M,, such that

the total number of multiplications is minimized.

Matrix Chain Multiplication

m For example, for M; X M, X M3 X M,,
there are 5 different ways to do it.

- (M;(M; (M3My))), (My ((My;M3) My)), (M M) (M3M,)),
- ((My (My;M3)) My), (C(M M) M3) M,).
m If (py,...,ps) =(13,5,89,3,34), then

- (My(M, (M;M,))) takes (89 * 3« 34) + (5 x89 *34) +

(13 * 5 % 34) = 26418 multiplications.

Matrix Chain Multiplication

m For example, for M; X M, X M; X M,,
there are 5 different ways to do It.

- (M;(M; (M3M,))), (My ((MyM3) My)), (M My) (M3M,)),
- ((My (My;M3)) My), (C(M M) M3) M,).
m If (py,...,ps) =(13,5,89,3,34), then

- The 5 different ways take 26418, 4055, 54201, 2856, and 10582
multiplications, respectively.

- ((M; (My;M3)) M,) is the optimal way.

Define a Proper Subproblem

m Given n 4+ 1 positive integers pq, vy, ..., Pn+1, CONsider the scenario
that we are to compute

M1XM2X e XMn,
where M; € RPi*Pi+1 s a p; X p;,, mMatrix.
m Forany [¢,r]withl < ¥ <r <n,
let m[¢, r] denote the minimum number of multiplications required by

MgXMg_I_l X "'XMr.

Derive the Recurrence Formula

m Forany [/, r]withl < ¢ <r <n,
let m|[¢, r] denote the minimum number of multiplications required by

My X Mpyq X -+ X M, .

m Forl<{¢=r<n,wehave m[f,r] =0.

m Forf <r,

mie,r] = min (mlek] + mlk+ 1,71 + pe* P *Pres) -

m Forany [/, r]withl < ¢ <r <n,

let m|[#,] denote the minimum number of multiplications required by
My X Mp,q X -+ X M, .

m Forf <r,

mle,r] = min (mlek] + mlk+1L7] + pp* Pros * Prea)

~ takes py * pr+1 * Pryq Multiplications

[M, M,] [Mk+1 M,]

Fill-in the Table

m Declare a matrix m with size n X n.

m Foranysegment] = [¢,7],
computing m[I] requires the values of m[I'] for all I" with |I'| < |I].

- Note - Top-down computation using recursion Is easier.

m The time it takes is 0(n3).

m Declare a matrix m with size n X n.

m Foranysegment] = [4,r],
computing m|I] requires the values of m[I'] for all I" with [I'| < |I].

matrix | A] A2 A 8 A4 AS A 6

dimension | 30 x35 35 x15 15 x5 S5x10 10 x20 20 x25

Example 3.

The Knapsack Problem

The Knapsack Problem

m Given n items 11 — (al,bl), 12 — (az, bz), ...,In — (an, bn),
where a; and b; are the size and the value of the i**-item, and

a knapsack size W,

compute a subset 4 € {1,2,...,n} such that },;c,a; < W and
Yica b; is maximized.

- That is, select a subset of items that have size at most W
such that the total value of the selected items is maximized.

The Knapsack Problem

- That Is, select a subset of items that have size at most W

such that the total value of the selected items Is maximized.

item1 sSize a4

item 2 Size a,

itemn size a,

value b, ?
value b, /\
value b,,

size W

knapsack

-

N

To maximize the total value
to be put in the knapsack

~

/

Define a Proper Subproblem

m Forany0<i<nandp =0,
let A(i, p) denote the minimum total size it requires to get

a total value of p using only the first i items.

- A(i,p) Is defined to be oo if no such combination exists.

()

item 1 Only the first i items are used.

item 2
l% ------------- —

A Combination
X with a total value p and

[J
[J
(J]
° minimum total size
item n [N e

item i

_

o EE— - —

Derive the Recurrence Formula

m Consider an “optimal combination” for A(i, p).

- There are only two possibilities — it either contains I; or excludes I;.

- If I; is not contained,
then it must be an optimal combination for A(i — 1, p).

Only the first i items are used. I; is not used.
2)
tem1 | s e e e e — e = e = — .
item 2 ' 2 A Combination |
- ;% ' 2 with a total value p and
item i | minimum total size)
\ _/ e e e e e

Derive the Recurrence Formula

m Consider an “optimal combination” for A(i,p).

- There are only two possibilities — it either contains I; or excludes I;.

- If I; is contained, then it consists of an optimal combination for
A(l —1,p — bl) and I;.

tem1 | | @ e e s e m = s = = s - - —_
2 A Combination |
with a total value p and |
minimum total size

item 2

Z

item i

The Recurrence Formula for A(i, p)

m Based on the observation,
we can write down the recurrence for A(i,p) as follows.

[00, |fp<0 :
fori1 >0,

min{ A(i-1,p), A(i-1, p-b)+a }, if p>0’
A(l, p) =+

_ , fori1=0.
o, Ifp=0

{ 0, if p=0

Solving the Knapsack Problem via DP

m Based on the recurrence formula,
we can compute A(i,p) forall0 <i<nand 0<p <P,
where P := Y ,.,-,,b; IS the total value of the items.

m The answer is then given by the maximum p such that A(n,p) < W.

m The time complexity is O(n - P).

- Note that, this is not a polynomial-time algorithm.

- We call it a “pseudo-polynomial time” algorithm.
It is not efficient. }

Recurrence Formula is not Unique

m The following is an alternative way to defining a proper subproblem.

m Forany0<i<nandw =0,
let B(i, w) denote the maximum total value we can get

with a total size w using only the first i items.

- B(i,w) Is defined to be —oo if no such combination exists.

m As an exercise, write down the recurrence formula for B(i, w) so that
the Knapsack problem can be solved in 0(n?W) time.

- Also describe & explain what the answer is.

Example 4.

The Longest Common Subsequence

(LCS) Problem

String Alignment in DNA Sequence

m Suppose that we are given two DNA sequences,

each of which is a string consisting of the characters ‘C’, ‘G’, ‘T, ‘A’.

- For example, s; = AGCAT and s, = GAC.

m We want to compute a string s with a maximum length

such that s is a subsequence of both s; and s,.

- For example, both GC and GA are common subsequences of
s; and s,.

the more similar the two DNA sequences are.

[The longer a common subsequence Is, }

Seguence and Subseguence

m Lets =s;5,:+s, be a string of length n.

m We say that a string t = t;t, - t; IS a subsequence of s,
If there exists indexes j;,j,, ., jkWith1 <j, <j, < <j, <n

such that
ti=S;, foralll1<i<k.

7 8 9 10 There Is a way
to align t with s.

O | W
> |
— | »01
> | O
@)
O
>
—

s = AGCATAGCAT | A | G

O
—
>
—

t = CTAT

The Longest Common Subsequence (LCS) Problem

m In the LCS problem, we are given two strings s; and s,.
The goal Is to compute a common subsequence t of s; and s,
such that the length of t is the longest possible.

- For example, if s; = MZJAWXU and s, = XMJYAUZ,
then one optimal solution is t = MJAU.

Find an optimal
way to align
AlW| XU the two strings.

s; = MZJAWXU M

\

S, = XMJYAUZ XM

Define a Suitable Subproblem
m Letn=|s;| and m = |s,|

m Foranyl<i<nand1l<j<m,
define L(i,) to be the length of the optimal alignment of
s1|1...i] and s,[1 ...j].

Make Observations on the Optimal Solution

m Foranyl<i<nand1<j<m,define L(i,j) to be the length of the
optimal alignment of s{[1 ...i] and s,[1 ...j].

m The optimal alignment must be one of the following 3 cases.

1. If s;]i] = s,[j], then there exists an optimal solution Li—1 j—1) }
that align s [i] with s, [j]. ' |
i

m The restis the optimal alignment o1 —-
s«l1,...,1 —

between s;[1...i — 1] and s[1..j — 1]. -

m Thatis, L(i—1,j —1). sp[1,...,j — 1] i B

Make Observations on the Optimal Solution

m Foranyl<i<nand1<j<m,define L(i,j) to be the length of the
optimal alignment of s{[1 ...i] and s,[1 ...j].

m The optimal alignment must be one of the following 3 cases.

2. If sq|i] # s,lj], then either s;[i] or s,[j] is not aligned in the
optimal solution.

m The optimal alignment is either L(i — 1,j) or L(i,j — 1).

The Recurrence Formula for L(i, j)

m Based on the observation,
we can write down the recurrence for L(i,j) as follows.

t 0, if min(i,j) =0,

L(i,j) = 4 { Li-1j-D+1, L T —

max{ L(i — 1,j), L(i,j—1)}, ifs[i] #s,[j]"

\

m By the recurrence formula, we can compute
L(i,j) forall i and j in O(nm) time.

m The answer is L(n, m).

Example 5.

Optimal Binary Search Tree

The Scenario

m Suppose that you have a set of keywords
ki <k, < ... < k,.

Furthermore, consider I, = (—,k,),1; = (k1,k5), ..., I, = (k;,,).

m Suppose that you are given the probability distribution
that a key Is to be searched.

- p; . the probability that k; Is to be searched.
- q; . the probability that a key k € I; is to be searched.

m Furthermore,
2 p; + Z q; =1.
0<isn

1<i<n

kl k2 ooc kn

m Build a BST that minimizes the expected search time.

Optimal BST

m For example, consider the following distribution.

0.15 0.05
q; 0.05 0.1 0.05 0.05 0.05 0.1
0.05 0.1 0.05 0.05 0.05 0.1
@ @ @ @ @
kl kz k3 k4. k5

0.15 0.1 0.05 0.1 0.2

Expected Cost 0.1 @
0.3 0.2

0.15 0.6

0.15 0.3
0.2 0.2 0.2 0.4

m [he overall costis 2.8.

Di 0.15 0.1 0.05 0.1 0.2
q; 0.05 0.1 0.05 0.05 0.05 0.1

Expected Cost

m [he overall costis now 2.75,
Instead of 2.8.

D; 0.15
q; 0.05 0.1

0.1
0.05

0.05
0.05

0.1
0.05

0.3

Observation and Optimal Substructure

m Since a BST is to be built,
one of the key k; has to be the root of the BST.

\

Expected cost to the subtree

IS Pi ic
prJ’E"f' ij‘l'ZCIj-

Expected cost to the subtree

0<j<i 0<j<i i<j<n ISjsn)
Optimal BST St BT N
|
for ki, ..., k;_1. P

for ki q, ..., kqy.

(recursive problem) :
(recursive problem)

/

Define a Suitable Subproblem

m Foranyi,jwithl<i<j<n,

let E[i, j] be the expected cost of the optimal BST for ki, ..., k;.

]
p(i,j) = z Pe + z qe

i<f<j i<f<j+1

- Also let

be the cumulative probability that a key within (kl-_l, kj+1)
IS to be searched.

I [i+1 li+1
o o o o

ki Kit1 Kj

m Foranyi,jwithl1<i<j<n,

let E[i, j] be the expected cost of the optimal BST for k;, ...

- Some k, with i < £ < j has to be the root.

D¢
m The expected cost is @
p(i,j) + E[i,£—1]+E[£+1,/].

Between Between
Ii ki_4 and k, ko and kj_|_1

The Recurrence Formula for E[i, j]

m We have the following recurrence formula.

[0, ifi > j,
Eljl=4 (E[i,£—1]+E[€+1,j]> |
min .. , otherwise.
| i=t=) +p(i,))
where p(i,) = z pe + z 9e -
i<f<j isf<j+1

m Intime 0(n3), we can compute E[i,j]forall 1 <i<j <n.

