
Introduction to Algorithms

Mong-Jen Kao (高孟駿)

Tuesday 10:10 – 12:00

Thursday 15:30 – 16:20

Dynamic Programming (DP)

– A Powerful Paradigm for Solving

Combinatorial Optimization Problems

Example 1.

Rod-Cutting Problem

The Rod-Cutting Problem

■ You have a rod of length 𝑁, where 𝑁 is a positive integer.

You’re given 𝒑𝟏, 𝒑𝟐, … , 𝒑𝑵, where 𝒑𝒊 denotes the value of a rod with

length 𝒊. Determine a way to cut the rod to maximize the total value.

– For example, if 𝑁 = 7 and 𝑝𝑖 as follows,

then, cutting it into 3 + 4 or just 7 gives a total value of 17.

On the other hand, 1 + 6 or 2 + 2 + 3 has a total value of 18.

𝒊 1 2 3 4 5 6 7

𝑝𝑖 1 5 8 9 10 17 17

Observation

■ For any 𝑖 ≥ 0, let 𝐴 𝑖 denote the maximum value obtainable

from a rod with length 𝑖.

– Then, 𝐴 0 = 0.

– For any 0 < 𝑖 ≤ 𝑁,

𝐴 𝑖 = max
1≤𝑘≤𝑖

𝑝𝑘 + 𝐴 𝑖 − 𝑘 .

𝑖 − 𝑘𝑘

worth 𝑝𝑘 worth 𝐴 𝑖 − 𝑘 at max

The optimal solution comes from one of

the scenarios we have considered.

Observation

■ For any 𝑖 ≥ 0, let 𝐴 𝑖 denote the maximum value obtainable

from a rod with length 𝑖.

– Then,

𝐴 𝑖 = ൞

0 , if 𝑖 = 0,

max
1≤𝑘≤𝑖

𝑝𝑘 + 𝐴 𝑖 − 𝑘 , if 𝑖 > 0.

– The above is known as a recurrence formula for 𝑨 𝒊 .

■ With the formula, we can compute 𝐴 𝑖 for all 𝑖

either in a bottom-up or a top-down manner.

Solving the Problem

■ Declare an array 𝐴 of size 𝑁.

■ We can compute 𝐴 𝑖 for all 𝑖.

1. Bottom-up – Based on the formula,

compute 𝐴 0 , 𝐴 1 ,… , 𝐴 𝑁 in order.

2. Top-down – Use a recursion function to compute 𝐴 𝑁 .

During the process, recurse on 𝐴 𝑖 − 𝑘 only if

it has not been computed yet.

■ The computation takes 𝑂 𝑁2 .

𝐴 𝑖 = ൞

0 , if 𝑖 = 0,

max
1≤𝑘≤𝑖

𝑝𝑘 + 𝐴 𝑖 − 𝑘 , if 𝑖 > 0.

Solving the Problem

■ Declare an array 𝐴 of size 𝑁.

■ We can compute 𝐴 𝑖 for all 𝑖.

1. Bottom-up

2. Top-down

■ The computation takes 𝑂 𝑁2 .

■ By recording the choices made during the computation process,

we can construct the solution backward.

That is, which 𝑘 results in

the maximum value for 𝐴 𝑖 .

𝐴 𝑖 = ൞

0 , if 𝑖 = 0,

max
1≤𝑘≤𝑖

𝑝𝑘 + 𝐴 𝑖 − 𝑘 , if 𝑖 > 0.

The Dynamic Programming Paradigm

Dynamic Programming Paradigm

■ To apply the dynamic programming technique,

we proceed in following steps.

1. Define a suitable subproblem that is expressed

with a few indexes.

2. Write down the recurrence formula for the solution of the

subproblem, using solutions for instances of smaller sizes.

3. Compute the answer according to the recurrence formula.

Requires

observation & creativity.

Requires

observation & creativity.

Elements of Dynamic Programming

■ Problems that can be solved via dynamic programming exhibits

the following properties.

1. Optimal Substructure – An optimal solution to the problem

contains within it optimal solutions to subproblems.

2. Overlapping Subproblems.

3. Memorization.

■ With the above, suitable problems can be defined, and

recurrence formulas can be written down.

Example 2.

Matrix Chain Multiplication

See also ProgHW-IV-D

Matrix Chain Multiplication

■ Suppose that for any 𝐴 ∈ ℝ𝑝×𝑞 and any 𝐵 ∈ ℝ𝑞×𝑟,

computing 𝐴 × 𝐵 takes 𝑝 × 𝑞 × 𝑟 number of multiplications.

■ Given 𝑛 + 1 positive integers 𝑝1, 𝑝2, … , 𝑝𝑛+1, consider the scenario

that we are to compute

𝑀1 ×𝑀2 × ⋯ ×𝑀𝑛 ,

where 𝑀𝑖 ∈ ℝ𝑝𝑖×𝑝𝑖+1 is a 𝑝𝑖 × 𝑝𝑖+1 matrix.

■ Find the optimal way to computing 𝑀1 ×𝑀2 × ⋯ ×𝑀𝑛 such that

the total number of multiplications is minimized.

Matrix Chain Multiplication

■ For example, for 𝑀1 ×𝑀2 ×𝑀3 ×𝑀4,

there are 5 different ways to do it.

– 𝑀1 𝑀2 𝑀3𝑀4 , 𝑀1 𝑀2𝑀3 𝑀4 , 𝑀1𝑀2 𝑀3𝑀4 ,

– 𝑀1 𝑀2𝑀3 𝑀4 , 𝑀1𝑀2 𝑀3 𝑀4 .

■ If 𝑝1, … , 𝑝5 = 13, 5, 89, 3, 34 , then

– 𝑀1 𝑀2 𝑀3𝑀4 takes 89 ∗ 3 ∗ 34 + 5 ∗ 89 ∗ 34 +

13 ∗ 5 ∗ 34 = 26418 multiplications.

Matrix Chain Multiplication

■ For example, for 𝑀1 ×𝑀2 ×𝑀3 ×𝑀4,

there are 5 different ways to do it.

– 𝑀1 𝑀2 𝑀3𝑀4 , 𝑀1 𝑀2𝑀3 𝑀4 , 𝑀1𝑀2 𝑀3𝑀4 ,

– 𝑀1 𝑀2𝑀3 𝑀4 , 𝑀1𝑀2 𝑀3 𝑀4 .

■ If 𝑝1, … , 𝑝5 = 13, 5, 89, 3, 34 , then

– The 5 different ways take 26418, 4055, 54201, 𝟐𝟖𝟓𝟔, and 10582

multiplications, respectively.

– 𝑀1 𝑀2𝑀3 𝑀4 is the optimal way.

Define a Proper Subproblem

■ Given 𝑛 + 1 positive integers 𝑝1, 𝑝2, … , 𝑝𝑛+1, consider the scenario

that we are to compute

𝑀1 ×𝑀2 × ⋯ ×𝑀𝑛 ,

where 𝑀𝑖 ∈ ℝ𝑝𝑖×𝑝𝑖+1 is a 𝑝𝑖 × 𝑝𝑖+1 matrix.

■ For any ℓ, 𝑟 with 1 ≤ ℓ ≤ 𝑟 ≤ 𝑛,

let 𝑚 ℓ, 𝑟 denote the minimum number of multiplications required by

𝑀ℓ ×𝑀ℓ+1 ×⋯×𝑀𝑟 .

Derive the Recurrence Formula

■ For any ℓ, 𝑟 with 1 ≤ ℓ ≤ 𝑟 ≤ 𝑛,

let 𝑚 ℓ, 𝑟 denote the minimum number of multiplications required by

𝑀ℓ ×𝑀ℓ+1 ×⋯×𝑀𝑟 .

■ For 1 ≤ ℓ = 𝑟 ≤ 𝑛, we have 𝑚 ℓ, 𝑟 = 0.

■ For ℓ < 𝑟,

𝑚 ℓ, 𝑟 = min
ℓ≤𝑘<𝑟

𝑚 ℓ, 𝑘 + 𝑚 𝑘 + 1, 𝑟 + 𝑝ℓ ∗ 𝑝𝑘+1 ∗ 𝑝𝑟+1 .

■ For any ℓ, 𝑟 with 1 ≤ ℓ ≤ 𝑟 ≤ 𝑛,

let 𝑚 ℓ, 𝑟 denote the minimum number of multiplications required by

𝑀ℓ ×𝑀ℓ+1 ×⋯×𝑀𝑟 .

■ For ℓ < 𝑟,

𝑚 ℓ, 𝑟 = min
ℓ≤𝑘<𝑟

𝑚 ℓ, 𝑘 + 𝑚 𝑘 + 1, 𝑟 + 𝑝ℓ ∗ 𝑝𝑘+1 ∗ 𝑝𝑟+1 .

𝑀ℓ 𝑀𝑘 𝑀𝑟𝑀𝑘+1

requires 𝑚 ℓ, 𝑘 at min requires 𝑚 𝑘 + 1, 𝑟 at min

takes 𝑝ℓ ∗ 𝑝𝑘+1 ∗ 𝑝𝑟+1 multiplications

Fill-in the Table

■ Declare a matrix 𝑚 with size 𝑛 × 𝑛.

■ For any segment 𝐼 = ℓ, 𝑟 ,

computing 𝑚 𝐼 requires the values of 𝑚 𝐼′ for all 𝐼′ with 𝐼′ < 𝐼 .

– Note - Top-down computation using recursion is easier.

■ The time it takes is 𝑂 𝑛3 .

■ Declare a matrix 𝑚 with size 𝑛 × 𝑛.

■ For any segment 𝐼 = ℓ, 𝑟 ,

computing 𝑚 𝐼 requires the values of 𝑚 𝐼′ for all 𝐼′ with 𝐼′ < 𝐼 .

Example 3.

The Knapsack Problem

The Knapsack Problem

■ Given 𝑛 items 𝐼1 = 𝑎1, 𝑏1 , 𝐼2 = 𝑎2, 𝑏2 , … , 𝐼𝑛 = 𝑎𝑛, 𝑏𝑛 ,

where 𝒂𝒊 and 𝒃𝒊 are the size and the value of the 𝑖𝑡ℎ-item, and

a knapsack size 𝑾,

compute a subset 𝐴 ⊆ 1,2,… , 𝑛 such that σ𝑖∈𝐴 𝑎𝑖 ≤ 𝑊 and

σ𝑖∈𝐴 𝑏𝑖 is maximized.

– That is, select a subset of items that have size at most 𝑾

such that the total value of the selected items is maximized.

The Knapsack Problem

– That is, select a subset of items that have size at most 𝑾

such that the total value of the selected items is maximized.

size 𝑎1item 1 value 𝑏1

size 𝑎2

size 𝑎𝑛

size W

knapsack

?

To maximize the total value

to be put in the knapsack

item 2 value 𝑏2

value 𝑏𝑛item n

Define a Proper Subproblem

■ For any 0 ≤ 𝑖 ≤ 𝑛 and 𝑝 ≥ 0,

let 𝐴(𝑖, 𝑝) denote the minimum total size it requires to get

a total value of 𝒑 using only the first 𝒊 items.

– 𝐴(𝑖, 𝑝) is defined to be ∞ if no such combination exists.

item 1

item 2

item 𝑛

item 𝑖

Only the first 𝒊 items are used.

A Combination

with a total value 𝒑 and

minimum total size

?

Derive the Recurrence Formula

■ Consider an “optimal combination” for 𝐴 𝑖, 𝑝 .

– There are only two possibilities – it either contains 𝑰𝒊 or excludes 𝑰𝒊 .

– If 𝐼𝑖 is not contained,

then it must be an optimal combination for 𝐴 𝑖 − 1, 𝑝 .

item 1

item 2

item 𝑖

Only the first 𝒊 items are used.

A Combination

with a total value 𝒑 and

minimum total size

?

𝑰𝒊 is not used.

Derive the Recurrence Formula

■ Consider an “optimal combination” for 𝐴 𝑖, 𝑝 .

– There are only two possibilities – it either contains 𝑰𝒊 or excludes 𝑰𝒊 .

– If 𝐼𝑖 is contained, then it consists of an optimal combination for

𝐴 𝑖 − 1, 𝑝 − 𝑏𝑖 and 𝐼𝑖.

item 1

item 2

item 𝑖

Only the first 𝒊 items are used.

A Combination

with a total value 𝒑 and

minimum total size

?

𝑰𝒊 is used.

The Recurrence Formula for 𝐴(𝑖, 𝑝)

■ Based on the observation,

we can write down the recurrence for 𝐴(𝑖, 𝑝) as follows.

 


















=


=






+



=

.0for ,
0 if,

0 if0,

,0for ,
0 if,) 1 (),1(min

0 if,

),(

i
p

p

i
pa, p-bi-A,pi-A

p

piA
ii

Solving the Knapsack Problem via DP

■ Based on the recurrence formula,

we can compute 𝐴(𝑖, 𝑝) for all 0 ≤ 𝑖 ≤ 𝑛 and 0 ≤ 𝑝 ≤ 𝑃,

where P ≔ σ1≤𝑖≤𝑛𝑏𝑖 is the total value of the items.

■ The answer is then given by the maximum 𝑝 such that 𝐴 𝑛, 𝑝 ≤ 𝑊.

■ The time complexity is 𝑂(𝑛 ⋅ 𝑃).

– Note that, this is not a polynomial-time algorithm.

– We call it a “pseudo-polynomial time” algorithm.

It is not efficient.

Recurrence Formula is not Unique

■ The following is an alternative way to defining a proper subproblem.

■ For any 0 ≤ 𝑖 ≤ 𝑛 and 𝑤 ≥ 0,

let 𝐵(𝑖, 𝑤) denote the maximum total value we can get

with a total size 𝒘 using only the first 𝒊 items.

– 𝐵(𝑖, 𝑤) is defined to be −∞ if no such combination exists.

■ As an exercise, write down the recurrence formula for 𝐵 𝑖, 𝑤 so that

the Knapsack problem can be solved in 𝑂 𝑛2𝑊 time.

– Also describe & explain what the answer is.

Example 4.

The Longest Common Subsequence

(LCS) Problem

String Alignment in DNA Sequence

■ Suppose that we are given two DNA sequences,

each of which is a string consisting of the characters ‘C’, ‘G’, ‘T’, ‘A’.

– For example, 𝑠1 = 𝐴𝐺𝐶𝐴𝑇 and 𝑠2 = 𝐺𝐴𝐶.

■ We want to compute a string 𝑠 with a maximum length

such that 𝑠 is a subsequence of both 𝑠1 and 𝑠2.

– For example, both 𝐺𝐶 and 𝐺𝐴 are common subsequences of

𝑠1 and 𝑠2.

The longer a common subsequence is,

the more similar the two DNA sequences are.

Sequence and Subsequence

■ Let 𝑠 = 𝑠1𝑠2⋯𝑠𝑛 be a string of length 𝑛.

■ We say that a string 𝑡 = 𝑡1𝑡2⋯𝑡𝑘 is a subsequence of 𝑠,

if there exists indexes 𝑗1, 𝑗2, … , 𝑗𝑘 with 1 ≤ 𝑗1 < 𝑗2 < ⋯ < 𝑗𝑘 ≤ 𝑛

such that
𝑡𝑖 = 𝑠𝑗𝑖 for all 1 ≤ 𝑖 ≤ 𝑘.

A G C A T A G C A T

1 2 𝟏𝟎𝟑 4 𝟓 6 7 8 𝟗

C T A T

1 2 3 4

𝑠 = 𝐴𝐺𝐶𝐴𝑇𝐴𝐺𝐶𝐴𝑇

𝑡 = 𝐶𝑇𝐴𝑇

There is a way

to align 𝑡 with 𝑠.

1

The Longest Common Subsequence (LCS) Problem

■ In the LCS problem, we are given two strings 𝑠1 and 𝑠2.

The goal is to compute a common subsequence 𝑡 of 𝑠1 and 𝑠2

such that the length of 𝑡 is the longest possible.

– For example, if 𝑠1 = 𝑀𝑍𝐽𝐴𝑊𝑋𝑈 and 𝑠2 = 𝑋𝑀𝐽𝑌𝐴𝑈𝑍,

then one optimal solution is 𝑡 = 𝑀𝐽𝐴𝑈.

M Z J A W X U𝑠1 = 𝑀𝑍𝐽𝐴𝑊𝑋𝑈

𝑠2 = 𝑋𝑀𝐽𝑌𝐴𝑈𝑍 X M J Y A U Z

Find an optimal

way to align

the two strings.

Define a Suitable Subproblem

■ Let 𝑛 = 𝑠1 and 𝑚 = 𝑠2

■ For any 1 ≤ 𝑖 ≤ 𝑛 and 1 ≤ 𝑗 ≤ 𝑚,

define 𝐿 𝑖, 𝑗 to be the length of the optimal alignment of

𝒔𝟏 𝟏… 𝒊 and 𝒔𝟐 𝟏… 𝒋 .

𝑠2 1,2,… , 𝑗

𝑠1 1,2,… , 𝑖

𝑖

𝑗

Make Observations on the Optimal Solution

■ For any 1 ≤ 𝑖 ≤ 𝑛 and 1 ≤ 𝑗 ≤ 𝑚, define 𝐿 𝑖, 𝑗 to be the length of the

optimal alignment of 𝒔𝟏 𝟏… 𝒊 and 𝒔𝟐 𝟏… 𝒋 .

■ The optimal alignment must be one of the following 3 cases.

1. If 𝑠1 𝑖 = 𝑠2 𝑗 , then there exists an optimal solution

that align 𝑠1 𝑖 with 𝑠2 𝑗 .

■ The rest is the optimal alignment

between 𝑠1 1… 𝑖 − 1 and 𝑠2 1… 𝑗 − 1 .

■ That is, 𝐿 𝑖 − 1, 𝑗 − 1 . 𝑠2 1,… , 𝑗 − 1

𝑠1 1,… , 𝑖 − 1

𝑖

𝑗

𝐿 𝑖 − 1, 𝑗 − 1 .

Make Observations on the Optimal Solution

■ For any 1 ≤ 𝑖 ≤ 𝑛 and 1 ≤ 𝑗 ≤ 𝑚, define 𝐿 𝑖, 𝑗 to be the length of the

optimal alignment of 𝒔𝟏 𝟏… 𝒊 and 𝒔𝟐 𝟏… 𝒋 .

■ The optimal alignment must be one of the following 3 cases.

2. If 𝑠1 𝑖 ≠ 𝑠2 𝑗 , then either 𝑠1 𝑖 or 𝑠2 𝑗 is not aligned in the

optimal solution.

■ The optimal alignment is either 𝐿 𝑖 − 1, 𝑗 or 𝐿 𝑖, 𝑗 − 1 .

The Recurrence Formula for 𝐿(𝑖, 𝑗)

■ Based on the observation,

we can write down the recurrence for 𝐿(𝑖, 𝑗) as follows.

■ By the recurrence formula, we can compute

𝐿 𝑖, 𝑗 for all 𝑖 and 𝑗 in 𝑂 𝑛𝑚 time.

■ The answer is 𝐿 𝑛,𝑚 .

𝐿(𝑖, 𝑗) =

0, if min 𝑖, 𝑗 = 0,

ቊ
𝐿 𝑖 − 1, 𝑗 − 1 + 1, if 𝑠1 𝑖 = 𝑠2 𝑗

max 𝐿(𝑖 − 1, 𝑗), 𝐿(𝑖, 𝑗 − 1) , if 𝑠1 𝑖 ≠ 𝑠2 𝑗
, otherwise.

𝐿(𝑖, 𝑗)

Example 5.

Optimal Binary Search Tree

The Scenario

■ Suppose that you have a set of keywords

𝑘1 ≤ 𝑘2 ≤ … ≤ 𝑘𝑛 .

Furthermore, consider 𝐼0 = −∞, 𝑘1 , 𝐼1 = 𝑘1, 𝑘2 , … , 𝐼𝑛 = 𝑘𝑛, ∞ .

𝑘1 𝑘2 𝑘𝑛⋯

𝐼0 𝐼1 𝐼2 𝐼𝑛

■ Suppose that you are given the probability distribution

that a key is to be searched.

– 𝑝𝑖 : the probability that 𝑘𝑖 is to be searched.

– 𝑞𝑖 : the probability that a key 𝑘 ∈ 𝐼𝑖 is to be searched.

■ Furthermore,
෍

1≤𝑖≤𝑛

𝑝𝑖 + ෍

0≤𝑖≤𝑛

𝑞𝑖 = 1 .

■ Build a BST that minimizes the expected search time.

𝑘1 𝑘2 𝑘𝑛⋯

𝐼0 𝐼1 𝐼2 𝐼𝑛

Optimal BST

■ For example, consider the following distribution.

𝑘1 𝑘2 𝑘5

𝐼0 𝐼1 𝐼2 𝐼5

𝒊 0 1 2 3 4 5

𝑝𝑖 0.15 0.1 0.05 0.1 0.2

𝑞𝑖 0.05 0.1 0.05 0.05 0.05 0.1

0.05 0.1 0.05

𝑘3 𝑘4

𝐼3 𝐼4

0.05 0.050.1 0.1

0.1 0.1 0.20.15 0.05

𝒊 0 1 2 3 4 5

𝑝𝑖 0.15 0.1 0.05 0.1 0.2

𝑞𝑖 0.05 0.1 0.05 0.05 0.05 0.1

Expected Cost 𝒌𝟐

𝒌𝟏 𝒌𝟒

𝑰𝟎 𝑰𝟏 𝒌𝟓𝒌𝟑

𝑰𝟑𝑰𝟐 𝑰𝟓𝑰𝟒

0.1

0.3 0.2

0.15 0.6

0.15 0.3

0.2 0.2 0.2 0.4
■ The overall cost is 2.8.

𝒊 0 1 2 3 4 5

𝑝𝑖 0.15 0.1 0.05 0.1 0.2

𝑞𝑖 0.05 0.1 0.05 0.05 0.05 0.1

Expected Cost
𝒌𝟐

𝒌𝟏 𝒌𝟓

𝑰𝟎 𝑰𝟏

𝒌𝟑

𝒌𝟒

𝑰𝟑𝑰𝟐

𝑰𝟓

𝑰𝟒

0.1

0.3
0.4

0.3 0.3

0.15 0.3

0.25

0.2

0.25

0.2

■ The overall cost is now 2.75,

instead of 2.8.

Observation and Optimal Substructure

■ Since a BST is to be built,

one of the key 𝑘𝑖 has to be the root of the BST.

𝑘𝑖

𝑝𝑖

< 𝒌𝒊 > 𝒌𝒊

Optimal BST

for 𝑘1, … , 𝑘𝑖−1.

(recursive problem)

Optimal BST

for 𝑘𝑖+1, … , 𝑘𝑛.

(recursive problem)

Expected cost to the subtree

is
෍

𝑖<𝑗≤𝑛

𝑝𝑗 + ෍

𝑖≤𝑗≤𝑛

𝑞𝑗 .

Expected cost to the subtree

is
෍

0≤𝑗<𝑖

𝑝𝑗 + ෍

0≤𝑗≤𝑖

𝑞𝑗 .

Define a Suitable Subproblem

■ For any 𝑖, 𝑗 with 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛,

let 𝐸 𝑖, 𝑗 be the expected cost of the optimal BST for 𝑘𝑖 , … , 𝑘𝑗.

– Also let

𝑝 𝑖, 𝑗 ≔ ෍

𝑖≤ℓ≤𝑗

𝑝ℓ + ෍

𝑖≤ℓ≤𝑗+1

𝑞ℓ

be the cumulative probability that a key within 𝑘𝑖−1, 𝑘𝑗+1
is to be searched.

𝑘𝑖 𝑘𝑗

𝐼𝑖 𝐼𝑖+1 𝐼𝑗+1

𝑘𝑖+1 ⋯

⋯ ⋯

■ For any 𝑖, 𝑗 with 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛,

let 𝐸 𝑖, 𝑗 be the expected cost of the optimal BST for 𝑘𝑖 , … , 𝑘𝑗.

– Some 𝑘ℓ with 𝑖 ≤ ℓ ≤ 𝑗 has to be the root.

𝑘𝑖 𝑘𝑗

𝐼𝑖 𝐼𝑗+1

𝑘ℓ

𝑝ℓ

Between

𝑘𝑖−1 and 𝑘ℓ

Between

𝑘ℓ and 𝑘𝑗+1

■ The expected cost is

𝑝 𝑖, 𝑗 + 𝐸 𝑖, ℓ − 1 + 𝐸 ℓ + 1, 𝑗 .

The Recurrence Formula for 𝐸 𝑖, 𝑗

■ We have the following recurrence formula.

𝐸 𝑖, 𝑗 =

0, if 𝑖 > 𝑗,

min
𝑖≤ℓ≤𝑗

𝐸 𝑖, ℓ − 1 + 𝐸 ℓ + 1, 𝑗

+𝑝 𝑖, 𝑗
, otherwise.

where 𝑝 𝑖, 𝑗 ≔ ෍

𝑖≤ℓ≤𝑗

𝑝ℓ + ෍

𝑖≤ℓ≤𝑗+1

𝑞ℓ .

■ In time 𝑂 𝑛3 , we can compute 𝐸 𝑖, 𝑗 for all 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛.

