Introduction to Algorithms

Mong-Jen Kao (高孟駿)

Tuesday 10:10 – 12:00

Thursday 15:30 – 16:20

Data Structures

Particular ways of storing data to support special operations.

Hash Tables & Hash Functions

A data structure that *performs extremely well in practice* for the *dictionary* operations.

Also a data structure that allows us to <u>escape from</u> the natural barriers of comparison-based algorithms.

Natural Barrier of Comparison-Based Algorithms

- We have seen that, $\underline{comparison\text{-}based\ algorithms}$ for the $\underline{sorting}$ problem requires $\Omega(n \log n)$ time to solve.
 - Achieved by *Quicksort*, *Heapsort*, *Mergesort*, etc.
- We have also seen that, with further prior-knowledge given for the input, sorting in O(n) time is possible.
 - For example, *counting sort*, *radix sort*, *bucket sort*, etc.
 - In essence, all of these algorithm achieves the O(n) running time by *mapping the input elements properly*.

This is what a *hashing function* does.

Natural Barrier of Comparison-Based Algorithms

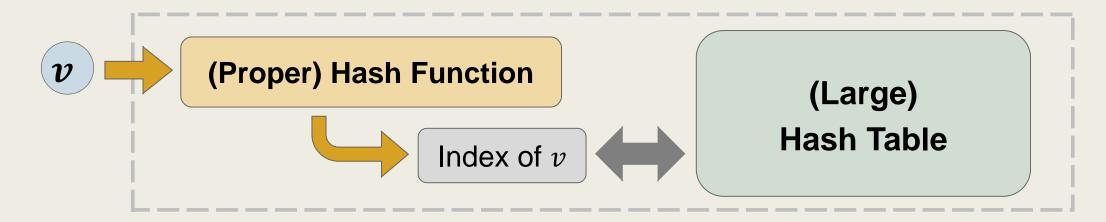
- We have seen (in the midterm exam problems) that,
 it takes Ω(n log n)-time for any comparison-based algorithm to solve
 the element uniqueness (EU) problem.
- We will see in this lecture that, <u>with proper assumptions</u>, the EU problem can be solved in expected O(n) time.
 - Many problems can be solved <u>more efficiently and easily</u>
 if there is a proper way to map the elements to a <u>certain domain</u>.

Hash Tables

A data structure that *performs extremely well in practice* for the *dictionary* operations.

Hash Table

- In general, *hash table* is a data structure that supports the *dictionary* operations such as *Insert*, *Search*, and *Delete*.
 - Under reasonable assumptions, these operations take O(1) time in average. (!)
- To process a given element v, we use a (proper) hash function to compute *the supposed index of* v *in the hash table*.

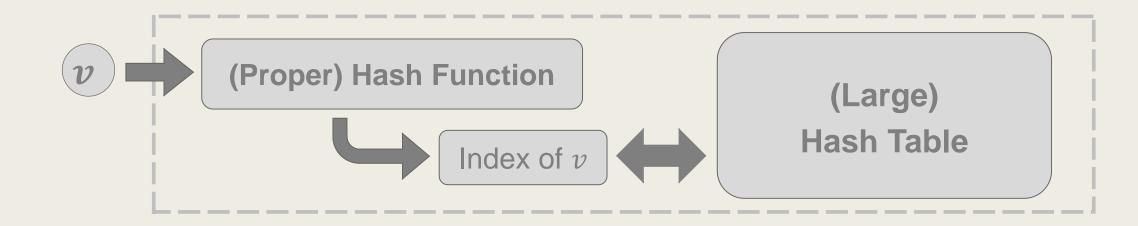


- To process a given element v, we use a (proper) hash function to compute <u>the supposed index of v in the hash table</u>.
 - Let m be the number of slots in the hash table.
 - A hash function

$$h: U \mapsto \{0, 1, ..., m-1\}$$

maps the *universe U of all possible keys* to *the slots in the table*.

Then, <u>insertion</u>, <u>search</u>, and <u>deletion</u> are done <u>accordingly</u>.



Independent Uniform Hash Functions

- \blacksquare An ideal hash function h would have the property that
 - For each key k in the domain U, the output h(k) is an element chosen (uniformly) randomly and independently from $\{0, 1, ..., m-1\}$.
- We call such an ideal hash function an <u>independent uniform</u> hash function.
 - Such a function is also referred to as a *random oracle*.

The result of hashing appears to be uniformly random.

- An ideal hash function *h* would have the property that
 - For each key k in the domain U, the output h(k) is an element chosen (uniformly) randomly and independently from $\{0, 1, ..., m-1\}$.
- We call such an ideal hash function an independent uniform hash function.
 - Such a function is also referred to as a *random oracle*.
- The result (without prior knowledge) appears to be random.
 - After the first call, any subsequent call returns the same result.

Density / Load Factor of the Elements

- Let T be a hash table with m slots that stores a total number of n elements.
 - We define the load factor of T to be $\alpha := n/m$.
- With <u>independent uniform hashing</u>, the **expected number of elements** stored **in each slot** would be α .

Resolving the Collisions

- When <u>multiple elements</u> are <u>mapped to the same index</u> by the hash function we use, we have a **collision**.
- There are two different ways to handle collisions.
 - 1. Store the elements *in place* with another data structure.
 - Store the elements with a *linked list* (*chain*).
 - Use a <u>second hash table</u>.
 - Use a BST, etc.

Effective in practice.

 $O(1 + \alpha)$ time *in average*, O(n) in the *worst-case*.

- When <u>multiple elements</u> are <u>mapped to the same index</u> by the hash function we use, we have a **collision**.
- There are fundamentally two different ways to handle collisions.
 - 1. Store the elements *in place*.
 - 2. Open addressing.
 - Store at most one element in each slot.
 - Upon collision,
 store the element in the next slot available.
 (search till the next empty slot)

We will discuss this approach later.

Hash Functions

Hash Functions

- Recall that, we prefer ideal hash functions that provide independent uniform hashing guarantees.
- If a *fixed, static* hash function is used, then...
 - The performance will be determined by the distribution of the input data set.
 - If the adversary knows the hash function, he/she can choose
 a set of keys that would be hashed to the same slot.
 - Then the time it takes *for each operation* becomes $\omega(1)$.

Random Hash Functions

- Recall that, we prefer ideal hash functions that provide independent uniform hashing guarantees.
- To achieve the goal, one solution is to choose a hash function randomly from a set of hash functions with good properties.
 - This is the concept of <u>universal hashing</u>.

Uniform Family of Hash Functions

- Let \mathcal{U} be the universe of <u>all possible keys</u>, and \mathcal{H} be a <u>family of hash functions</u> that maps \mathcal{U} into the range $\{0,1,2,...,m-1\}$.
 - ${\mathcal H}$ is **uniform** if

$$\Pr_{h \leftarrow \mathcal{H}, k \leftarrow \mathcal{U}, q \leftarrow \{0, \dots, m-1\}} [h(k) = q] = \frac{1}{m}.$$

- i.e., when h is picked <u>uniformly at random</u> from \mathcal{H} , then, for every $k \in \mathcal{U}$ and every slot $q \in \{0,1,...,m-1\}$, the probability that k is hashed to q is equal to 1/m.

Every slot is *equally likely*.

Universal Family of Hash Functions

- Let \mathcal{H} be a *family of hash functions* mapping \mathcal{U} into $\{0,1,2,...,m-1\}$.
 - \mathcal{H} is *universal* if

$$\Pr_{h \leftarrow \mathcal{H}, k_1, k_2 \leftarrow \mathcal{U}} [h(k_1) = h(k_2)] \le \frac{1}{m}.$$

- i.e., when h is picked <u>uniformly at random</u> from \mathcal{H} , then, for every $k_1, k_2 \in \mathcal{U}$, the probability that k_1 and k_2 result in a **collision** is **at most 1**/m.

Note that, 1/m is the best possible when $|\mathcal{U}| \geq m$.

ϵ -Universal Family of Hash Functions

- Let \mathcal{H} be a *family of hash functions* mapping \mathcal{U} into $\{0,1,2,...,m-1\}$.
 - \mathcal{H} is ϵ -universal if

$$\Pr_{h \leftarrow \mathcal{H}, k_1, \dots, k_d \leftarrow \mathcal{U}} [h(k_1) = h(k_2)] \leq \epsilon.$$

- i.e., when h is picked <u>uniformly at random</u> from \mathcal{H} , then, for every $k_1, k_2 \in \mathcal{U}$, the probability that k_1 and k_2 result in a **collision** is **at most** ϵ .

Here $\epsilon \geq 1/m$ (as a relaxed notion) when $|\mathcal{U}| \geq m$.

d-Independent Family of Hash Functions

- Let \mathcal{H} be a *family of hash functions* mapping \mathcal{U} into $\{0,1,2,...,m-1\}$.
 - \mathcal{H} is d-independent if

$$\Pr_{h \leftarrow \mathcal{H}, \, \mathbf{k_1}, \mathbf{k_2} \leftarrow \mathbf{u}, \, \mathbf{q_1}, \dots, \mathbf{q_d} \leftarrow \{\mathbf{0}, \dots, \mathbf{m-1}\}} [h(k_i) = q_i \, \forall 1 \le i \le d] \le \frac{1}{m^d}.$$

- i.e., when h is picked <u>uniformly at random</u> from \mathcal{H} , then, for every subset $K \subseteq \mathcal{U}$ of keys with $|K| \leq d$, h hashes the keys in K independently.

Ideal Hash Functions

- Recall that, we prefer ideal hash functions that provide independent uniform hashing guarantees.
- Let \mathcal{U} be the universe of <u>all possible keys</u>, and \mathcal{H} be a <u>family of hash functions</u> that maps \mathcal{U} into the range $\{0,1,2,...,m-1\}$.
- Independent uniform hashing can be achieved if we have a family of hash functions that is <u>uniform</u>, <u>universal</u>, and $|\mathcal{U}|$ -independent.
 - In the following,
 we discuss some practical constructions.

(Perhaps) too good to be true in practice.

Universal Hashing

Universal Family of Hash Functions

- We describe a (uniform) universal family of hash functions with a certain degree of independence.
 - Let *u* be the universe of keys that are (short) *nonnegative integers*.
- Let p be a sufficiently large prime number such that $\mathcal{U} \subseteq [0, p-1]$.
 - Then, $\mathbb{Z}_p = \{0,1,\ldots,p-1\}$ is a field with
 - Multiplicative group $\mathbb{Z}_p^* = \{1, ..., p-1\}$ and
 - Additive group $\mathbb{Z}_p = \{0,1,...,p-1\}.$

Designing a Universal Family of Hash Functions

- lacktriangle Let $\mathcal U$ be the universe of keys that are nonnegative integers.
 - Let p be a prime number such that $\mathcal{U} \subseteq [0, p-1]$.
- For any $a \in \mathbb{Z}_p^*$ and $b \in \mathbb{Z}_p$, define

$$h_{\{a,b\}}(k) := ((ak + b) \mod p) \mod m$$
,

where $k \in \mathcal{U}$ is the key to be hashed and m is the number of slots.

Designing a Universal Family of Hash Functions

For any $a \in \mathbb{Z}_p^*$ and $b \in \mathbb{Z}_p$, define

$$h_{\{a,b\}}(k) := ((ak+b) \mod p) \mod m$$
,

where k is the key to be hashed.

Theorem 1.

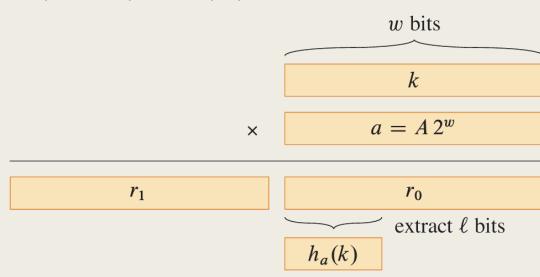
The family $H_{p,m} \coloneqq \{ h_{\{a,b\}} : a \in \mathbb{Z}_p^* \text{ and } b \in \mathbb{Z}_p \} \text{ is uniform,}$ universal, and 2-independent.

Another Practical Construction

- Suppose that the keys are *w*-bit integers.
- Let $0 < a < 2^w$ and $0 \le \ell \le w$ be two chosen parameters.

Define

$$h_a(k) \coloneqq ((k \cdot a \mod 2^w) \gg (w - \ell)).$$



Another Practical Construction

- Suppose that the keys are *w*-bit integers.
- Let $0 < a < 2^w$ and $0 \le \ell \le w$ be two chosen parameters.

Define

$$h_a(k) \coloneqq ((k \cdot a \mod 2^w) \gg (w - \ell)).$$

Theorem 2.

The family $H \coloneqq \{ h_a : 1 \le a < m, a \text{ odd } \} \text{ is } (2/m)$ -universal.

Hashing Long Inputs

Hashing Long Inputs

- We have seen how hashing can be done for keys that are (short) non-negative integers.
- For long inputs, such as *vectors* or *strings*,
 one can *convert* the input *into short non-negative integers*.
- Possible approaches includes
 - Number-theoretic Theory
 - Cryptographic Hashing

Open-Addressing

Resolving Collisions via Open-Addressing

In the open-addressing scheme, we consider <u>hash functions</u> of the following form

$$h': \mathcal{U} \times \{0,1,...,m-1\} \longrightarrow \{0,1,...,m-1\}$$

such that $\{h'(k,i)\}_{0 \le i < m}$ is a **permutation** of $\{0,1,...,m-1\}$.

- We will store at most one element in each slot.
- To process an operation, we <u>consider</u> h'(k,i) for i=0,1,...,m-1 <u>in order</u> until the desired operation is done.

Resolving Collisions via Open-Addressing

- We will consider h'(k, i) for i = 0, 1, ..., m 1 in order until the desired operation is done.
 - For insertion, we find the smallest i such that h'(k,i) is "empty" or "deleted" and insert k at h'(k,i).
 - For search, we iterate over i until either the key k is found, h'(k,i) is "empty", or i=m-1.
 - For deletion, however, we have to mark the entry as "deleted" instead of "empty".

Resolving Collisions via Open-Addressing

- Intuitively, when collision happens,
 we "probe" the slots in a certain order (permutation).
- There are basically two different ways to probe the slots.
 - **Linear probing** to test the slots starting from h(k) in order, i.e., $h'(k,i) \coloneqq h(k) + i \mod m$.
 - Double hashing to use a second hash function for probing, i.e., $h'(k,i) \coloneqq (h_1(k) + h_2(i)) \mod m$.