Introduction to Algorithms

Mong-Jen Kao (5 £§8)

Tuesday 10:10 — 12:00
Thursday 15:30 — 16:20

Data Structures

Hash Tables & Hash Functions

A data structure that performs extremely well
In practice for the dictionary operations.

Also a data structure that allows us to escape from
the natural barriers of comparison-based algorithms.

Natural Barrier of Comparison-Based Algorithms

m We have seen that, comparison-based algorithms for the sorting
problem requires Q(nlogn) time to solve.

- Achieved by Quicksort, Heapsort, Mergesort, etc.

m We have also seen that, with further prior-knowledge given for the input,
sorting in O(n) time is possible.

- For example, counting sort, radix sort, bucket sort, etc.

- In essence, all of these algorithm achieves the 0(n) running time

Natural Barrier of Comparison-Based Algorithms

m We have seen (in the midterm exam problems) that,
it takes Q(nlogn)-time for any comparison-based algorithm to solve
the element uniqueness (EU) problem.

m We will see In this lecture that, with proper assumptions,

the EU problem can be solved in expected 0(n) time.

- Many problems can be solved more efficiently and easily

If there is a proper way to map the elements to a certain domain.

Hash Tables

A data structure that performs extremely well
In practice for the dictionary operations.

Hash Table

m In general, hash table is a data structure that supports the dictionary
operations such as Insert, Search, and Delete.

- Under reasonable assumptions,
these operations take 0(1) time in average. (!)

m TO process a given element v, we use a (proper) hash function to
compute the supposed index of v in the hash table.

a N

@ :>[(Proper) Hash Function } (Large)
Hash Table
H[Indexofvlﬁk /

m To process a given element v, we use a (proper) hash function to
compute the supposed index of v in the hash table.

- Let m be the number of slots in the hash table.

- Ahash function
h: U+~ {01,.. m—1}

maps the universe U of all possible keys to the slots in the table.

- Then, insertion, search, and deletion are done accordingly.

@ »[(Proper) Hash Function } - (Large) :
L}[index of v | 4y Hash Table

Independent Uniform Hash Functions

m An ideal hash function h would have the property that

- For each key k in the domain U,

the output h(k) is an element chosen (uniformly) randomly
and independently from {0,1,...,m — 1 }.

m We call such an ideal hash function an independent uniform

hash function.

- Such a function iIs also referred to as a random oracle.

m An ideal hash function h would have the property that

- For each key k in the domain U,

the output h(k) is an element chosen (uniformly) randomly
and independently from {0,1,..,m —1 }.

m We call such an ideal hash function an independent uniform
hash function.

- Such a function is also referred to as a random oracle.

m The result (without prior knowledge) appears to be random.

- After the first call, any subsequent call returns the same result.

Density / Load Factor of the Elements

m Let T be a hash table with m slots that stores a total number of

n elements.

- We define the load factor of T to be a == n/m.

m With independent uniform hashing,
the expected number of elements stored in each slot would be «a.

Resolving the Collisions

m When multiple elements are mapped to the same index by the
hash function we use, we have a collision.

m There are two different ways to handle collisions.

1. Store the elements in place with another data structure.

m Store the elements with a linked list (chain).

m Use a second hash table.

,,,

m Use a BST, etc. A - 0(1+) time in average,
A \ ‘ Effective O(n) in the worst-case.

G ~in practice.

m When multiple elements are mapped to the same index by the

hash function we use, we have a collision.

m There are fundamentally two different ways to handle collisions.

1. Store the elements in place.

2. Open addressing.

m Store at most one element in each slot.

m Upon collision,
store the element in the next slot available.
(search till the next empty slot)

Hash Functions

Hash Functions

m Recall that, we prefer ideal hash functions that provide
Independent uniform hashing guarantees.

m If a fixed, static hash function is used, then...

- The performance will be determined by the distribution of

the input data set.

- |If the adversary knows the hash function, he/she can choose

a set of keys that would be hashed to the same slot.

- Then the time it takes for each operation becomes w(1).

Random Hash Functions

m Recall that, we prefer ideal hash functions that provide
Independent uniform hashing guarantees.

m To achieve the goal, one solution is to choose a hash function
randomly from a set of hash functions with good properties.

- This is the concept of universal hashing.

Uniform Family of Hash Functions

m Let U be the universe of all possible keys, and H be a family of

hash functions that maps U into the range {0,1,2, ..., m — 1}.

- His uniform if

Prpcar keu, q<—{0,...,m—1}[h(k) = q|] -

- I.e., when h is picked uniformly at random from #, then,

for every k € U and every slot g € {0,1, ..., m — 1},
the probability that k is hashed to g is equal to 1/m.

Universal Family of Hash Functions

m Let H be afamily of hash functions mapping U into {0,1,2,...,m — 1}.

- Hi1s universal if

1
Pricor ko k,eul hky) = h(ky) | < —

- I.e., when h is picked uniformly at random from #, then,

for every ki, k, € U,
the probability that k; and k, result in a collision is at most 1/m.

e-Universal Family of Hash Functions

m Let H be afamily of hash functions mapping U into {0,1,2, ...,m — 1}.

- H I1s e-universal If

Procac, ky,.kgeul R(ky) = h(ky) | < €.

- l.e., when h is picked uniformly at random from H, then,

for every kq,k, € U,
the probability that k; and k, result in a collision is at most e.

d-Independent Family of Hash Functions

m Let H be afamily of hash functions mapping U into {0,1,2, ...,m — 1}.

- H is d-independent if

Pryc s ky ke, q,..qq<0,..m-13L R(k)) =q; V1<i<d | < -

- l.e., when h is picked uniformly at random from H, then,

for every subset K € U of keys with |K| < d,
h hashes the keys in K independently.

ldeal Hash Functions

m Recall that, we prefer ideal hash functions that provide
Independent uniform hashing guarantees.

m Let U be the universe of all possible keys, and be a family of
hash functions that maps U into the range {0,1,2, ..., m — 1}.

m Independent uniform hashing can be achieved if we have a family of

hash functions that is uniform, universal, and |U|-independent.

- In the following,

we discuss some practical constructions. (Perhaps) too good
 to be true in practice.

Universal Hashing

Universal Family of Hash Functions

m We describe a (uniform) universal family of hash functions with a
certain degree of independence.

- Let U be the universe of keys that are (short) nonnegative
Integers.

m Let p be a sufficiently large prime number such that U < [0,p — 1].
- Then, Z, ={0,1,...,p — 1} is a field with
m Multiplicative group Z,, = {1, ...,p — 1} and
m Additive group Z, ={0,1, ...,p — 1}.

Designing a Universal Family of Hash Functions

m Let U be the universe of keys that are nonnegative integers.
- Let p be a prime number such that U < [0,p — 1].
m Foranya € Zy, and b € Z,, define

higpy(k) = ((ak+b)modp) modm,

where k € U Is the key to be hashed and m Is the number of slots.

Designing a Universal Family of Hash Functions

m Foranya €Z,and b € Z,, define

higpy(k) == ((ak +b) modp) modm,

where k Is the key to be hashed.

Theorem 1.

The family Hy ., =={ hapy * @ € Z} and b € Z,, }is uniform,
universal, and 2-independent.

Another Practical Construction

m Suppose that the keys are w-bit integers.

m let0<a<2%and 0 < ¢ <w be two chosen parameters.

Define
h,(k) = ((k-amod2¥) > (w—17%)).

——— extract £ bits
ha(k)

Another Practical Construction

m Suppose that the keys are w-bit integers.

m Let0<a<?2%and 0 < ¥ < w be two chosen parameters.

Define
ho(k) = ((k-a mod 2¥) » (w—17%)).

Theorem 2.

Thefamily H:={ h; :1<a<m, aodd } is (2/m)-universal.

Hashing Long Inputs

Hashing Long Inputs

m We have seen how hashing can be done for keys that are
(short) non-negative integers.

m For long inputs, such as vectors or strings,
one can convert the input into short non-negative integers.

m Possible approaches includes
- Number-theoretic Theory

- Cryptographic Hashing

Open-Addressing

Resolving Collisions via Open-Addressing

m In the open-addressing scheme, we consider hash functions of the

following form
h:ux{01,..m—1} — {0,1,..,m— 1}

such that { h'(k,i) }y<i<m IS @ permutation of {0,1, ..., m — 1}.

m \We will store at most one element in each slot.

m To process an operation, we consider h'(k,i) fori =0,1,...,m—1

In order until the desired operation is done.

Resolving Collisions via Open-Addressing

m We will consider h'(k,i) fori =0,1,...,m — 1 in order
until the desired operation is done.

- For insertion, we find the smallest i such that h'(k, i) is “empty” or
“deleted” and insert k at h' (k,i).

- For search, we iterate over i until either the key k Is found,
h'(k,i) is “empty”, ori =m — 1.

- For deletion, however, we have to mark the entry as “deleted”

Instead of “empty”.

Resolving Collisions via Open-Addressing

m [ntuitively, when collision happens,
we “probe” the slots in a certain order (permutation).

m There are basically two different ways to probe the slots.
- Linear probing — to test the slots starting from h(k) in order,

l.e., h'(k,i) = h(k) +i mod m.

- Double hashing — to use a second hash function for probing,
l.e., h'(k,i) = (h{(k) + h,(i)) mod m.

