
Introduction to Algorithms

Mong-Jen Kao (高孟駿)

Tuesday 10:10 – 12:00

Thursday 15:30 – 16:20

Data Structures

Particular ways of storing data to support special operations.

Hash Tables & Hash Functions

Also a data structure that allows us to escape from

the natural barriers of comparison-based algorithms.

A data structure that performs extremely well

in practice for the dictionary operations.

Natural Barrier of Comparison-Based Algorithms

■ We have seen that, comparison-based algorithms for the sorting

problem requires Ω 𝑛 log 𝑛 time to solve.

– Achieved by Quicksort, Heapsort, Mergesort, etc.

■ We have also seen that, with further prior-knowledge given for the input,

sorting in 𝑂 𝑛 time is possible.

– For example, counting sort, radix sort, bucket sort, etc.

– In essence, all of these algorithm achieves the 𝑂 𝑛 running time

by mapping the input elements properly.

This is what a hashing function does.

Natural Barrier of Comparison-Based Algorithms

■ We have seen (in the midterm exam problems) that,

it takes 𝛀 𝒏 𝐥𝐨𝐠𝒏 -time for any comparison-based algorithm to solve

the element uniqueness (EU) problem.

■ We will see in this lecture that, with proper assumptions,

the EU problem can be solved in expected 𝑂 𝑛 time.

– Many problems can be solved more efficiently and easily

if there is a proper way to map the elements to a certain domain.

Hash Tables

A data structure that performs extremely well

in practice for the dictionary operations.

Hash Table

■ In general, hash table is a data structure that supports the dictionary

operations such as Insert, Search, and Delete.

– Under reasonable assumptions,

these operations take 𝑂 1 time in average. (!)

■ To process a given element 𝑣, we use a (proper) hash function to

compute the supposed index of 𝒗 in the hash table.

(Large)

Hash Table

(Proper) Hash Function

Index of 𝑣

𝒗

■ To process a given element 𝑣, we use a (proper) hash function to

compute the supposed index of 𝒗 in the hash table.

– Let 𝑚 be the number of slots in the hash table.

– A hash function

ℎ ∶ 𝑈 ↦ 0, 1,… ,𝑚 − 1

maps the universe 𝑼 of all possible keys to the slots in the table.

– Then, insertion, search, and deletion are done accordingly.

(Large)

Hash Table

(Proper) Hash Function

Index of 𝑣

𝒗

Independent Uniform Hash Functions

■ An ideal hash function ℎ would have the property that

– For each key 𝑘 in the domain 𝑈,

the output ℎ 𝑘 is an element chosen (uniformly) randomly

and independently from 0, 1,… ,𝑚 − 1 .

■ We call such an ideal hash function an independent uniform

hash function.

– Such a function is also referred to as a random oracle.

The result of hashing appears to be uniformly random.

■ An ideal hash function ℎ would have the property that

– For each key 𝑘 in the domain 𝑈,

the output ℎ 𝑘 is an element chosen (uniformly) randomly

and independently from 0, 1,… ,𝑚 − 1 .

■ We call such an ideal hash function an independent uniform

hash function.

– Such a function is also referred to as a random oracle.

■ The result (without prior knowledge) appears to be random.

– After the first call, any subsequent call returns the same result.

Density / Load Factor of the Elements

■ Let 𝑇 be a hash table with 𝑚 slots that stores a total number of

𝑛 elements.

– We define the load factor of 𝑇 to be 𝛼 ≔ 𝑛/𝑚.

■ With independent uniform hashing,

the expected number of elements stored in each slot would be 𝛼.

Resolving the Collisions

■ When multiple elements are mapped to the same index by the

hash function we use, we have a collision.

■ There are two different ways to handle collisions.

1. Store the elements in place with another data structure.

■ Store the elements with a linked list (chain).

■ Use a second hash table.

■ Use a BST, etc. 𝑂 1 + 𝛼 time in average,

𝑂 𝑛 in the worst-case.Effective

in practice.??

■ When multiple elements are mapped to the same index by the

hash function we use, we have a collision.

■ There are fundamentally two different ways to handle collisions.

1. Store the elements in place.

2. Open addressing.

■ Store at most one element in each slot.

■ Upon collision,

store the element in the next slot available.

(search till the next empty slot)

We will discuss this approach later.

Hash Functions

Hash Functions

■ Recall that, we prefer ideal hash functions that provide

independent uniform hashing guarantees.

■ If a fixed, static hash function is used, then...

– The performance will be determined by the distribution of

the input data set.

– If the adversary knows the hash function, he/she can choose

a set of keys that would be hashed to the same slot.

– Then the time it takes for each operation becomes 𝝎 𝟏 .

Random Hash Functions

■ Recall that, we prefer ideal hash functions that provide

independent uniform hashing guarantees.

■ To achieve the goal, one solution is to choose a hash function

randomly from a set of hash functions with good properties.

– This is the concept of universal hashing.

Uniform Family of Hash Functions

■ Let 𝓤 be the universe of all possible keys, and 𝓗 be a family of

hash functions that maps 𝒰 into the range 0,1,2,… ,𝑚 − 1 .

– ℋ is uniform if

Prℎ←ℋ, 𝑘←𝒰, 𝑞← 0,…,𝑚−1 ℎ 𝑘 = 𝑞 =
1

𝑚
.

– i.e., when ℎ is picked uniformly at random from ℋ, then,

for every 𝑘 ∈ 𝒰 and every slot 𝑞 ∈ {0,1,… ,𝑚 − 1},

the probability that 𝑘 is hashed to 𝑞 is equal to 1/𝑚.

Every slot is equally likely.

Universal Family of Hash Functions

■ Let 𝓗 be a family of hash functions mapping 𝒰 into 0,1,2,… ,𝑚 − 1 .

– ℋ is universal if

Prℎ←ℋ, 𝑘1,𝑘2←𝒰 ℎ 𝑘1 = ℎ 𝑘2 ≤
1

𝑚
.

– i.e., when ℎ is picked uniformly at random from ℋ, then,

for every 𝑘1, 𝑘2 ∈ 𝒰,

the probability that 𝑘1 and 𝑘2 result in a collision is at most 𝟏/𝒎.

Note that, 1/𝑚 is the best possible when 𝒰 ≥ 𝑚.

𝜖-Universal Family of Hash Functions

■ Let 𝓗 be a family of hash functions mapping 𝒰 into 0,1,2,… ,𝑚 − 1 .

– ℋ is 𝜖-universal if

Prℎ←ℋ, 𝑘1,…,𝑘𝑑←𝒰 ℎ 𝑘1 = ℎ 𝑘2 ≤ 𝜖 .

– i.e., when ℎ is picked uniformly at random from ℋ, then,

for every 𝑘1, 𝑘2 ∈ 𝒰,

the probability that 𝑘1 and 𝑘2 result in a collision is at most 𝝐.

Here 𝜖 ≥ 1/𝑚 (as a relaxed notion) when 𝒰 ≥ 𝑚.

𝑑-Independent Family of Hash Functions

■ Let 𝓗 be a family of hash functions mapping 𝒰 into 0,1,2,… ,𝑚 − 1 .

– ℋ is 𝑑-independent if

Prℎ←ℋ, 𝐤𝟏,𝐤𝟐←𝓤, 𝐪𝟏,…,𝐪𝐝← 𝟎,…,𝐦−𝟏 ℎ 𝑘𝑖 = 𝑞𝑖 ∀1 ≤ 𝑖 ≤ 𝑑 ≤
1

𝑚𝑑
.

– i.e., when ℎ is picked uniformly at random from ℋ, then,

for every subset 𝐾 ⊆ 𝒰 of keys with 𝐾 ≤ 𝑑,

ℎ hashes the keys in 𝐾 independently.

Ideal Hash Functions

■ Recall that, we prefer ideal hash functions that provide

independent uniform hashing guarantees.

■ Let 𝓤 be the universe of all possible keys, and 𝓗 be a family of

hash functions that maps 𝒰 into the range 0,1,2,… ,𝑚 − 1 .

■ Independent uniform hashing can be achieved if we have a family of

hash functions that is uniform, universal, and 𝓤 -independent.

– In the following,

we discuss some practical constructions. (Perhaps) too good

to be true in practice.

Universal Hashing

Universal Family of Hash Functions

■ We describe a (uniform) universal family of hash functions with a

certain degree of independence.

– Let 𝒰 be the universe of keys that are (short) nonnegative

integers.

■ Let 𝑝 be a sufficiently large prime number such that 𝒰 ⊆ [0, 𝑝 − 1].

– Then, ℤ𝑝 = 0,1,… , 𝑝 − 1 is a field with

■ Multiplicative group ℤ𝑝
∗ = 1,… , 𝑝 − 1 and

■ Additive group ℤ𝑝 = 0,1,… , 𝑝 − 1 .

Designing a Universal Family of Hash Functions

■ Let 𝒰 be the universe of keys that are nonnegative integers.

– Let 𝑝 be a prime number such that 𝒰 ⊆ [0, 𝑝 − 1].

■ For any 𝑎 ∈ ℤ𝑝
∗ and 𝑏 ∈ ℤ𝑝, define

ℎ 𝑎,𝑏 𝑘 ≔ 𝑎𝑘 + 𝑏 mod 𝑝 mod 𝑚 ,

where 𝑘 ∈ 𝒰 is the key to be hashed and 𝑚 is the number of slots.

Designing a Universal Family of Hash Functions

■ For any 𝑎 ∈ ℤ𝑝
∗ and 𝑏 ∈ ℤ𝑝, define

ℎ 𝑎,𝑏 𝑘 ≔ 𝑎𝑘 + 𝑏 mod 𝑝 mod 𝑚 ,

where 𝑘 is the key to be hashed.

Theorem 1.

The family 𝐻𝑝,𝑚 ≔ ℎ 𝑎,𝑏 ∶ 𝑎 ∈ ℤ𝑝
∗ and 𝑏 ∈ ℤ𝑝 is uniform,

universal, and 𝟐-independent.

Another Practical Construction

■ Suppose that the keys are 𝑤-bit integers.

■ Let 0 < 𝑎 < 2𝑤 and 0 ≤ ℓ ≤ 𝑤 be two chosen parameters.

Define

ℎ𝑎 𝑘 ≔ 𝑘 ⋅ 𝑎 mod 2𝑤 ≫ 𝑤 − ℓ .

Another Practical Construction

■ Suppose that the keys are 𝑤-bit integers.

■ Let 0 < 𝑎 < 2𝑤 and 0 ≤ ℓ ≤ 𝑤 be two chosen parameters.

Define

ℎ𝑎 𝑘 ≔ 𝑘 ⋅ 𝑎 mod 2𝑤 ≫ 𝑤 − ℓ .

Theorem 2.

The family 𝐻 ≔ ℎ𝑎 ∶ 1 ≤ 𝑎 < 𝑚, 𝑎 odd is 2/𝑚 -universal.

Hashing Long Inputs

Hashing Long Inputs

■ We have seen how hashing can be done for keys that are

(short) non-negative integers.

■ For long inputs, such as vectors or strings,

one can convert the input into short non-negative integers.

■ Possible approaches includes

– Number-theoretic Theory

– Cryptographic Hashing

Open-Addressing

Resolving Collisions via Open-Addressing

■ In the open-addressing scheme, we consider hash functions of the

following form

ℎ′ ∶ 𝒰 × 0,1,… ,𝑚 − 1 ⟶ 0,1,… ,𝑚 − 1

such that ℎ′ 𝑘, 𝑖 0≤𝑖<𝑚 is a permutation of 0,1,… ,𝑚 − 1 .

■ We will store at most one element in each slot.

■ To process an operation, we consider ℎ′ 𝑘, 𝑖 for 𝑖 = 0,1,… ,𝑚 − 1

in order until the desired operation is done.

Resolving Collisions via Open-Addressing

■ We will consider ℎ′ 𝑘, 𝑖 for 𝑖 = 0,1,… ,𝑚 − 1 in order

until the desired operation is done.

– For insertion, we find the smallest 𝑖 such that ℎ′ 𝑘, 𝑖 is “empty” or

“deleted” and insert 𝑘 at ℎ′ 𝑘, 𝑖 .

– For search, we iterate over 𝑖 until either the key 𝑘 is found,

ℎ′ 𝑘, 𝑖 is “empty”, or 𝑖 = 𝑚 − 1.

– For deletion, however, we have to mark the entry as “deleted”

instead of “empty”.

Resolving Collisions via Open-Addressing

■ Intuitively, when collision happens,

we “probe” the slots in a certain order (permutation).

■ There are basically two different ways to probe the slots.

– Linear probing – to test the slots starting from ℎ 𝑘 in order,

i.e., ℎ′ 𝑘, 𝑖 ≔ ℎ 𝑘 + 𝑖 mod 𝑚.

– Double hashing – to use a second hash function for probing,

i.e., ℎ′ 𝑘, 𝑖 ≔ ℎ1 𝑘 + ℎ2 𝑖 mod 𝑚.

