Introduction to Algorithms

Mong-Jen Kao (高孟駿)

Tuesday 10:10 – 12:00

Thursday 15:30 – 16:20

Data Structures

Particular ways of storing data to support special operations.

Search Trees

with Self-Balancing Guarantees

BSTs that have an $O(\log n)$ height guarantee.

BSTs with Self-Balancing Mechanisms

■ In this lecture, we are going to see two types of BSTs with an $O(\log n)$ -height guarantee.

Treap

- a data structure that has both <u>the BST property</u> and <u>the heap property</u> and has an **expected** $O(\log n)$ height.

Red-Black Tree

– a data structure that has a <u>counting-based</u> <u>self-balancing mechanism</u> and a worst-case $O(\log n)$ height.

Treap

Treap

- A treap is a binary tree *T* where
 - Each node $v \in T$ is associated with a key val(v) and a <u>randomly-assigned</u> priority pri(v).
 - For any $u, v \in T$, the probability that pri(u) = pri(v) is small enough and <u>negligible</u>.
 - It has the <u>BST property</u> with respect to val(.) and
 the <u>max-heap property</u> with respect to (random) pri(.).

Treap

- Let $A = \{a_1, a_2, ..., a_n\}$ be a set of numbers and $p_1, ..., p_n$ be <u>randomly</u> assigned priorities such that $p_i \neq p_j$ for $i \neq j$.
 - Then, the treap T_A for A w.r.t. p_1, \dots, p_n is uniquely defined.
 - Most importantly, we will (later) see that, *the expected height of* T_A is $O(\log n)$.

Operations Supported by Treaps

- Treap supports all the standard operations for BSTs in expected $O(\log n)$ time.
 - Search, Predecessor, Successor,
 Minimum, Maximum, Insert, and Delete.

Unique Operations Supported by Treaps

■ In addition, treap supports two unique operations in expected $O(\log n)$ time that other BSTs don't.

- $Merge(T_1, T_2, x)$ -

Given T_1, T_2 with $u \le x$ for all $u \in T_1$ and $v \ge x$ for all $v \in T_2$, produce a treap $T = T_1 \cup T_2$.

- Split(T, x) -

to split T into two treaps T_1 and T_2 such that $u \le x$ for all $u \in T_1$ and $v \ge x$ for all $v \in T_2$.

Unique Operations Supported by Treaps

- In addition, treap supports two unique operations in expected $O(\log n)$ time that other BSTs don't.
 - $Merge(T_1, T_2, x)$
 - Split(T, x)
- In other words, treaps allow us to
 - Concatenate two ordered sorted lists or
 - Split a sorted list into two ordered sorted lists

while *maintaining the searchable property* in *expected O*(log n) *time*.

Treap Operations

With existing operations for Max-Heap and BSTs, the operations for treap can be *implemented easily*.

We describe the operations for treaps based on the operations we have seen so far for Max-Heap and BSTs.

Insertion

- To insert a node v into a treap T, we proceed as follows.
 - Use Tree-Insert(root[T], v) to insert v as a leaf of T.
 - Use Increase-Key(root[T], v, pri(v)) to restore the max-heap property for T.
 - However, we use **tree rotations** instead of swap operation.
- After this, both max-heap property and BST property are maintained.

This ensures the BST property.

Deletion

■ To delete a given node v from a treap T, we proceed as follows.

This ensures the heap property.

- Change pri(v) to be $-\infty$ and perform Max-Heapify(T, v) to sink the vertex v to the bottom of the treap T as a leaf.
 - However, we use <u>tree rotations</u> instead of swap operation.
- Use Tree-Delete(root[T], v) to delete v from T or just delete v.
- After this, both max-heap property and BST property are still maintained.

This does not alter the BST property.

Building a Treap Offline

- When the elements $a_1, ..., a_n$ are given in sorted order, the treap can be built in O(n) time.
 - First, we build a balanced BST T for $a_1, ..., a_n$ in O(n) time.
 - Then, we use Build-Max-Heap(T) to establish the max-heap property in O(n) time.
 - Similarly, we use <u>tree rotations</u> instead of swap operation.

Merging Two Ordered Treaps

- Given two treaps T_1 and T_2 such that $u \le x \le v$ for all $u \in T_1$, $v \in T_2$ and some (unknown) x, we can merge T_1 and T_2 as follows.
 - Let y ←Tree-Max(T₁) and z ←Tree-Min(T₂).
 Report fail if y > z.
 - Create a new tree T with a new root node v, where T_1 and T_2 are the left- and the right- subtree of v.
 - Call Treap-Delete(T, v).

Splitting a Treap w.r.t. a Given Value

- Given a treap T and an element x, we can split T into T_1 and T_2 such that $u \le x \le v$ for all $u \in T_1$, $v \in T_2$.
 - Create a new node x with $pri(x) := \infty$.
 - Call Treap-Insert(T, x).
 - Let T_1 and T_2 be the left- and the right- subtrees of the node x.
 - Delete x and return T_1 and T_2 .

Analysis of Treap Operations

It suffices to analyze the expected height of the treaps.

All the nontrivial treap operations take time O(h).

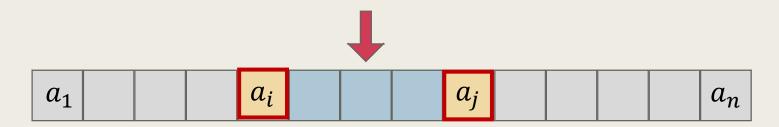
Expected Height of a Treap

- In the following we analyze the average-case performance / expected height of a treap.
- Let $a_1 < a_2 < \dots < a_n$ be the elements in the treap.
 - We also assume that the $\operatorname{pri}(a_i) \neq \operatorname{pri}(a_j)$ for all $i \neq j$.
- We will show that the expected height of any a_i in the treap T is $O(\log n)$.

Expected Height of a Treap

- Let $a_1 < a_2 < \cdots < a_n$ be the elements in the treap.
 - We also assume that the $pri(a_i) \neq pri(a_i)$ for all $i \neq j$.
- We will show that the expected height of any a_i in the treap T is $O(\log n)$.
 - The height of a node in the tree is equal to the *number of* ancestors of it.
 - Hence, we count the **expected number of ancestors** of a_i .

When can a_j become an ancestor of a_i ?



- Let $X_{i,j}$ be the indicator variable for the event that " a_j is an ancestor of a_i ".
- $E_{i,j}$ is determined <u>completely</u> by the element a_k between $a_i, ..., a_j$ with <u>the highest priority</u>.
 - $X_{i,j} = 1$ if and only if a_k is equal to a_j .

When can a_j become an ancestor of a_i ?

When the priorities of the elements are <u>randomly drawn</u> and <u>distinct</u>, we have

$$\Pr[X_{i,j}] = \frac{1}{|j-i|+1}.$$

■ The expected number of ancestors of a_i is

$$\sum_{j \neq i} \frac{1}{|j-i|+1} \le 2 \cdot H_n = O(\log n).$$

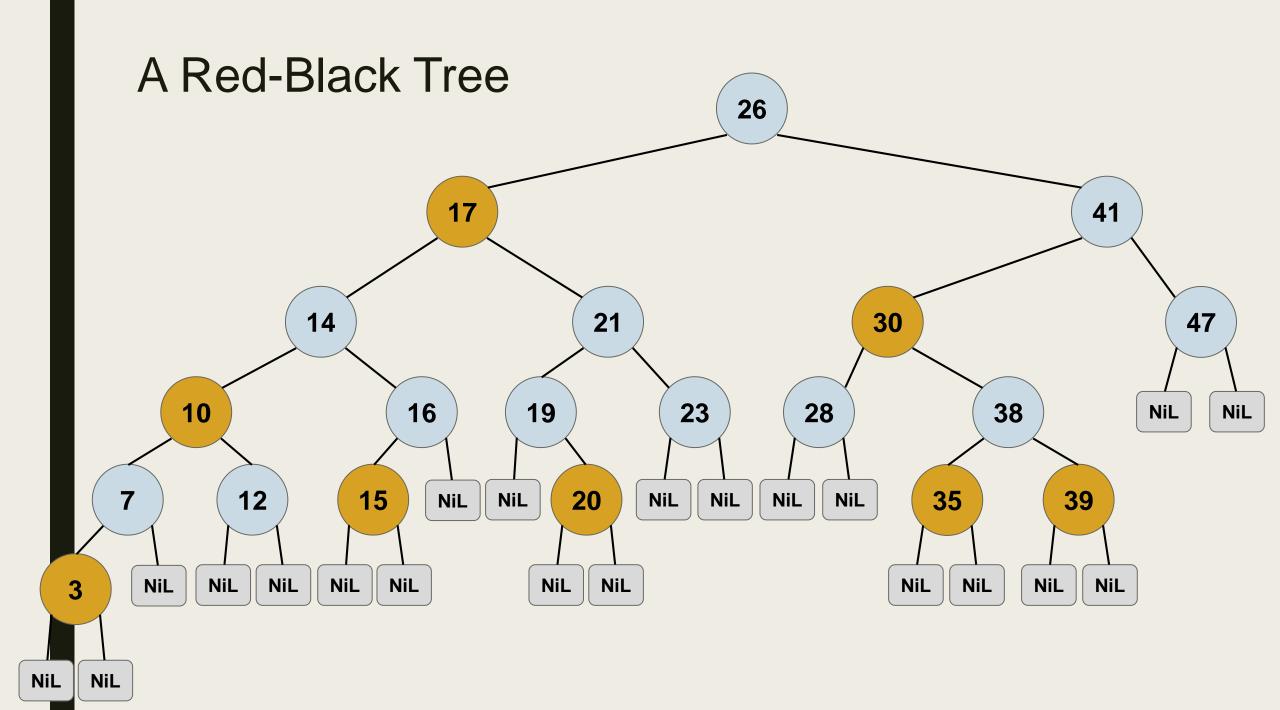
Red-Black Tree

A self-balancing BST with a worst-case $O(\log n)$ height guarantee.

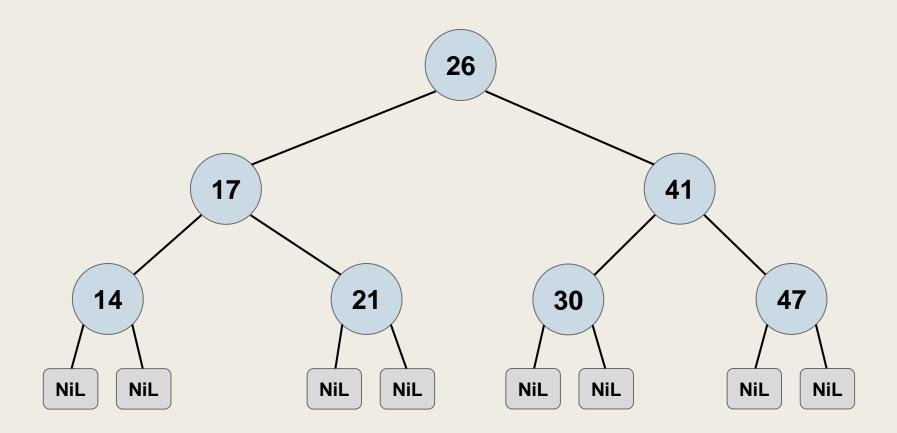
Red-Black Tree (RB-Tree)

- Red-Black Tree is a *binary search tree* imposed with extra constraints on its structure to achieve a worst-case $O(\log n)$ height guarantee.
 - 1. Each node in the RB-tree is either **red** or **black**.
 - 2. The *NiL pointer* is *considered as a <u>black node</u> (with no children).*
 - 3. **Every red node** has exactly two black children nodes.
 - 4. For each node, <u>any simple path</u> from that node <u>to descendent</u> leaves contains the same number of black nodes.

The key constraint to guarantee.



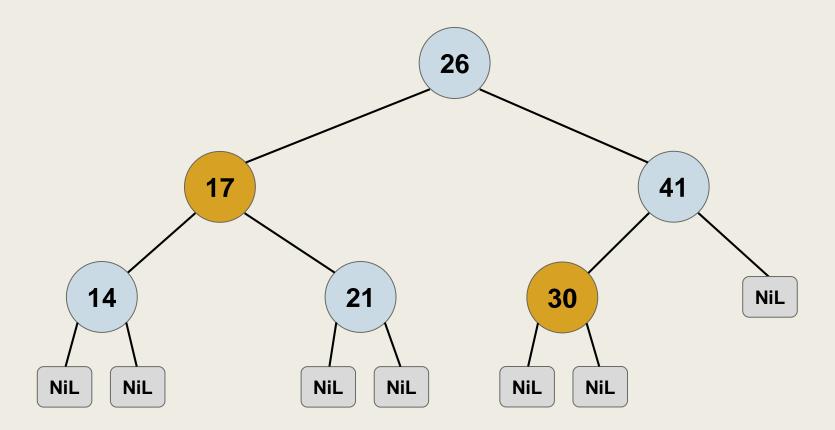
- Why Red & Black?
- Can't we simply color all the nodes black?
 - Yes, but only when the tree is *complete*.



- Can't we simply color all the not
 - Yes, but only when the tree

Some nodes have to turn *Red* in order to maintain the *RB-tree property*.

■ When a node is missing...

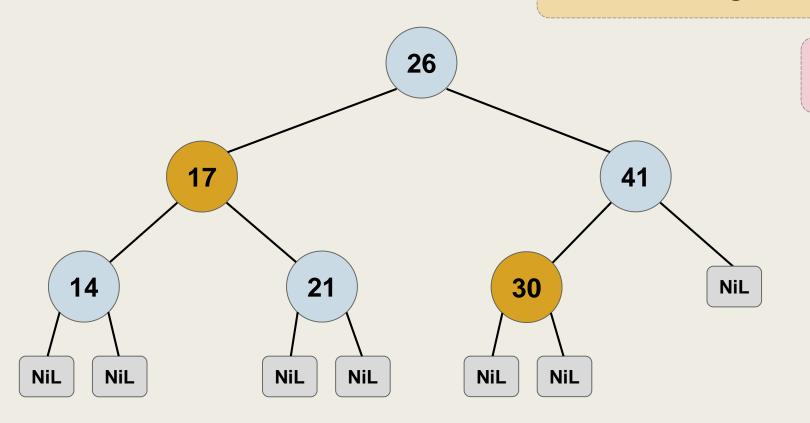


- Can't we simply color all the not
 - Yes, but only when the tree

Some nodes have to turn *Red* in order to maintain the *RB-tree property*.

■ When a node is missing...

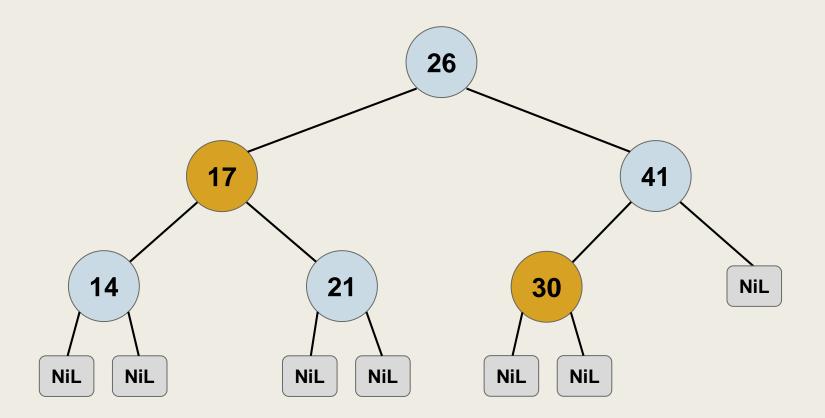
At most $O(\log n)$ nodes **need to turn red**.



Have you seen why?

Exercise

■ Try to compose an efficient procedure that fixes the RB-tree property when a new node (assumed black) needs to be inserted to the tree.



Notes

Red-Black Tree is a binary search tree imposed with extra constraints on its structure to achieve a worst-case $O(\log n)$ height guarantee.

In the textbook, the following constraint is listed.

- 5. The **root** is a **black node**.
- However, this constraint is <u>not necessary</u> in obtaining the $O(\log n)$ guarantee.

Justify this.

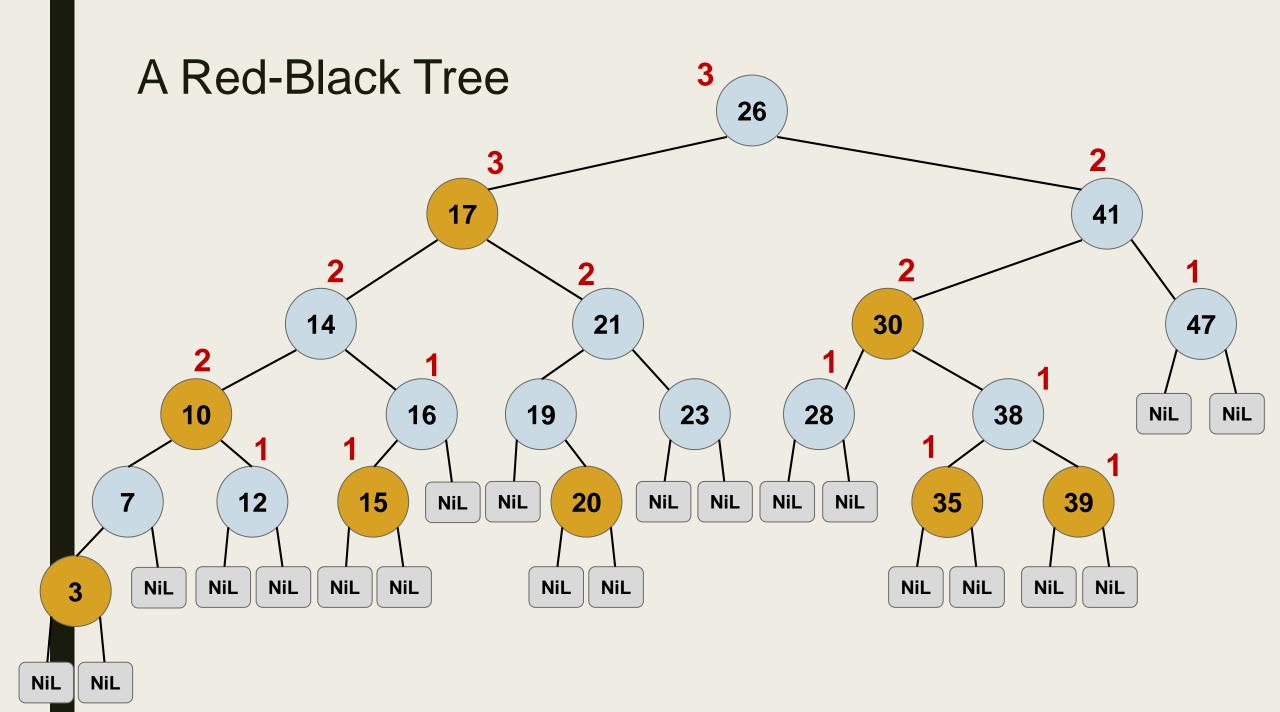
Worst-Case Guarantee of Red-Black Trees

The Black-Height of a Node

- Let *T* be a RB-tree.
- For any node $v \in T$, we define the "*black-height*" of the node v to be

The number of black nodes in any path from v (but not including) to any descending (NiL) leaf node.

The black-height of any node is <u>well-defined</u> by the RB-tree property.



Claim 1.

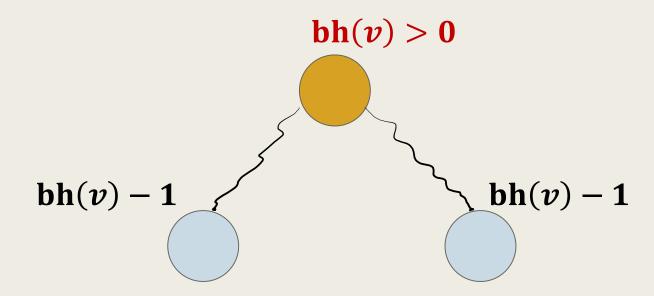
Let $v \in T$ be a node with black-height bh(v).

Then the subtree rooted at v has at least $2^{bh(v)} - 1$ internal nodes.

- We prove this claim by induction on bh(v).
 - If bh(v) = 0, then $2^{bh(v)} - 1 = 0$, and the statement holds trivially.
 - If bh(v) > 0, then v is an *internal node* of T with two children nodes.

v is a leaf (NiL) node.

- We prove this claim by induction on bh(v).
 - If bh(v) > 0, then v is an *internal node* of T with two children nodes.
 - We show that, there exists <u>at least one node</u> with <u>black-height</u> bh(v) - 1 both in the **left-** and the **right- subtrees** rooted at v.



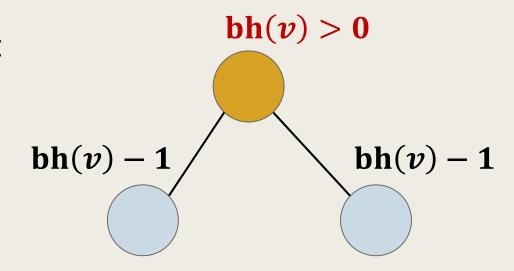
- We prove this claim by induction on bh(v).
 - If bh(v) > 0, then v is an <u>internal node</u> of T <u>with two children nodes</u>.
 - We claim that, there exists <u>at least one node</u> with <u>black-height</u> $\mathbf{bh}(v) - \mathbf{1}$ both in the **left-** and the **right- subtrees** rooted at v.
 - Then, by the induction hypothesis, the number of internal nodes at the subtree rooted at v is at least

$$2 \cdot (2^{bh(v)-1}-1)+1 = 2^{bh(v)}-1$$
.

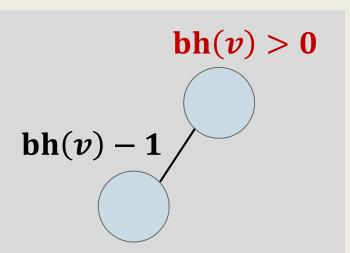
It suffices to prove the claim.

If bh(v) > 0, then there exists <u>at least one node</u> with <u>black-height</u> bh(v) - 1 both in the **left-** and the **right-subtrees** rooted at v.

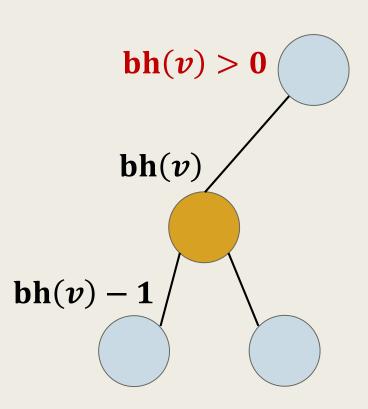
- \blacksquare Let us consider the color of v.
 - If v is <u>red</u>,
 then it has two black children.
 - Each of them has black-height bh(v) 1 *by definition*.



■ If bh(v) > 0, then there exists <u>at least one node</u> wit bh(v) - 1 both in the *left*- and the *right- subtrees*



- \blacksquare Let us consider the color of v.
 - If *v* is <u>black</u>, then further consider the color of each of its children nodes, say, *u*.
 - If u is black, then it has black-height bh(v) 1.
 - If u is red, then it has two black children, both has black-height bh(v) 1.



Claim 1.

Let $v \in T$ be a node with black-height bh(v).

Then the subtree rooted at v has at least $2^{bh(v)} - 1$ internal nodes.

- We prove this claim by induction on bh(v).
 - If bh(v) = 0, then $2^{bh(v)} 1 = 0$, and the statement is true.
 - If bh(v) > 0, then there exists <u>at least one node</u> with <u>black-height</u> bh(v) - 1 both in the **left-** and the **right- subtrees** rooted at v.

Hence, by the induction hypothesis, the number of internal nodes at v is at least $2 \cdot \left(2^{\operatorname{bh}(v)-1}-1\right)+1=2^{\operatorname{bh}(v)}-1$.

The Height Guarantee of an RB-Tree

Lemma. (Height of the RB-Tree)

An RB-tree with n internal nodes has height at most $2 \log(n+1)$.

- Let T be an RB-tree with n nodes, root r, and height h.
 - By the RB-tree property,
 the root node has black-height at least h/2.
 - At most h/2 red node can exist in any root-to-leaf path.

The Height Guarantee of an RB-Tree

Lemma. (Height of the RB-Tree)

An RB-tree with n internal nodes has height at most $2 \log(n+1)$.

- Let T be an RB-tree with n nodes, root r, and height h.
 - By the RB-tree property, $bh(r) \ge h/2$.
 - By Claim 1, $n \ge 2^{\mathrm{bh}(r)} 1 \ge 2^{h/2} 1$,

and hence $h \leq 2 \log(n+1)$.

Operations in Red-Black Trees

Insertion / Deletion

- It remains to show that, the insertion and deletion operations for the Red-Black Trees can also be done in $O(\log n)$ time.
 - After an insertion or a deletion,
 the RB-tree property will be violated (slightly).
 - We can use <u>rotations</u> and <u>recolor</u> some of the nodes properly to adjust black-heights and reestablish the RB-tree property.
- The details of the two operations, however, are less interesting under the aim of this course.

Refer to the textbook for the details.

Common Self-Balancing BSTs

-- A Note

Treap

- Treap is a BST the supports the common *insertion* / *deletion* / *look-up* (*search*) operations and also two unique *merge* / *split* operations with an average-case (expected) $O(\log n)$ -time guarantee.
 - Its performance guarantee is based on the assumption that each element is provided with a *unique randomly assigned* priority.
 - This data structure is <u>very easy to implement</u>.
- Nevertheless, it does not provide a worst-case guarantee and may not be preferred in performance-critical applications.

The Red-Black Tree

- We have seen that the RB-trees provides insertion / deletion / look-up (search) in worst-case $O(\log n)$ time.
 - For each node, one extra bit (color) is required for storage.
 - The balancing guarantee is not strict.
 - For a node, the heights of its left- and its right- subtrees can differ by a factor up to 2.
 - The insertion / deletion operations are <u>intuitive</u> and <u>relatively easy</u> to implement.

The AVL Tree

- AVL tree is another self-balancing BST that provides a worst-case $O(\log n)$ -time guarantee for insertion / deletion / look-up (search).
 - For each node, *one extra integer* (balance factor) is stored.
 - It has a **strict balancing guarantee**.
 - For each node, the heights of its left- and its right- subtrees must differ by at most 1.
 - Hence, the look-up / search operation in AVL trees is generally faster than RB-trees.
 - Preferred by look-up intensive applications such as <u>databases</u>.

The AVL Tree

- AVL tree is another self-balancing BST that provides a worst-case $O(\log n)$ -time guarantee for insertion / deletion / look-up (search).
 - For each node, *one extra integer* (balance factor) is stored.
 - It has a strict balancing guarantee.
 - For each node, the heights of its left- and its right- subtrees must differ by at most 1.
 - Due to the same reason, the insertion / deletion operations are
 more complicated and generally slower than the RB-trees.
 - For update-intensive applications, RB-trees are preferred.

Self-Balancing BSTs

	Treap	Red-Black Tree	AVL Tree
Guarantee	Average-case	Worst-case	Worst-case
Extra Storage	O(n)	n bits	O(n)
Advantage	Simple	Faster ins / del than AVL tree	Faster look-up than RB-tree
Disadvantage		Slower look-up than AVL tree	Slower ins / del than RB-tree
Preferred by	??	Update-intensive	Look-up intensive

B-Trees

- B-Tree is a self-balancing search tree that is designed to work well on disk drivers or other direct-access secondary storage devices.
 - Each leaf has the same height.
 - For each node v,
 - v may store multiple keys that are sorted in order.
 - v has k + 1 children nodes if k keys are stored.
 - The <u>stored keys</u> divides the range of values that can be stored in the subtrees.
 - The leaf nodes have no children nodes.

B-Trees

- B-Tree is a self-balancing search tree that is designed to **work well** on **disk drivers** or other **direct-access secondary storage devices**.
 - Each leaf has the same height.
 - For a given value $t \ge 2$,
 - Each node can store up to 2t 1 keys.
 - Each non-root node must store at least t-1 keys.

Refer to the textbook for the details.