
Introduction to Algorithms

Mong-Jen Kao (高孟駿)

Tuesday 10:10 – 12:00

Thursday 15:30 – 16:20



Data Structures

Particular ways of storing data to support special operations.



Search Trees 

with Self-Balancing Guarantees

BSTs that have an 𝑂 log 𝑛 height guarantee.



BSTs with Self-Balancing Mechanisms

■ In this lecture, we are going to see two types of BSTs with 

an 𝑂 log 𝑛 -height guarantee.

– Treap

– a data structure that has both the BST property and 

the heap property and has an expected 𝑶 𝐥𝐨𝐠𝒏 height.

– Red-Black Tree

– a data structure that has a counting-based

self-balancing mechanism and a worst-case 𝑶 𝐥𝐨𝐠𝒏 height.



Treap



Treap

■ A treap is a binary tree 𝑇 where

– Each node 𝑣 ∈ 𝑇 is associated 

with a key val 𝑣 and a randomly-assigned priority pri 𝑣 .

– For any 𝑢, 𝑣 ∈ 𝑇, 

the probability that pri 𝑢 = pri(𝑣) is small enough and negligible.

– It has the BST property with respect to 𝐯𝐚𝐥(.) and 

the max-heap property with respect to (random) 𝐩𝐫𝐢(.).



Treap

■ Let 𝐴 = 𝑎1, 𝑎2, … , 𝑎𝑛 be a set of numbers and 𝑝1, … 𝑝𝑛 be randomly

assigned priorities such that 𝒑𝒊 ≠ 𝒑𝒋 for 𝒊 ≠ 𝒋.

– Then, the treap 𝑇𝐴 for 𝐴 w.r.t. 𝑝1, … , 𝑝𝑛 is uniquely defined.

– Most importantly, 

we will (later) see that, the expected height of 𝑻𝑨 is 𝑶 𝐥𝐨𝐠𝒏 .



Operations Supported by Treaps

■ Treap supports all the standard operations for BSTs 

in expected 𝑶 𝐥𝐨𝐠𝒏 time.

– Search, Predecessor, Successor, 

Minimum, Maximum, Insert, and Delete.



Unique Operations Supported by Treaps

■ In addition, treap supports two unique operations in expected 𝑂 log 𝑛

time that other BSTs don’t.

– Merge 𝑻𝟏, 𝑻𝟐, 𝒙 –

Given 𝑇1, 𝑇2 with 𝑢 ≤ 𝑥 for all 𝑢 ∈ 𝑇1 and 𝑣 ≥ 𝑥 for all 𝑣 ∈ 𝑇2,

produce a treap 𝑇 = 𝑇1 ∪ 𝑇2. 

– Split 𝑻, 𝒙 –

to split 𝑇 into two treaps 𝑇1 and 𝑇2

such that 𝑢 ≤ 𝑥 for all 𝑢 ∈ 𝑇1 and 𝑣 ≥ 𝑥 for all 𝑣 ∈ 𝑇2.



Unique Operations Supported by Treaps

■ In addition, treap supports two unique operations in expected 𝑂 log 𝑛

time that other BSTs don’t.

– Merge 𝑻𝟏, 𝑻𝟐, 𝒙

– Split 𝑻, 𝒙

■ In other words, treaps allow us to 

– Concatenate two ordered sorted lists or

– Split a sorted list into two ordered sorted lists

while maintaining the searchable property in expected 𝑶 𝐥𝐨𝐠𝐧 time.



Treap Operations

We describe the operations for treaps based on the operations 

we have seen so far for Max-Heap and BSTs.

With existing operations for Max-Heap and BSTs, 

the operations for treap can be implemented easily.



Insertion

■ To insert a node 𝑣 into a treap 𝑇, 

we proceed as follows.

– Use Tree-Insert root 𝑇 , 𝑣 to insert 𝑣 as a leaf of 𝑻.

– Use Increase-Key root 𝑇 , 𝑣, pri 𝑣 to restore the max-heap 

property for 𝑇.

■ However, we use tree rotations instead of swap operation.

■ After this, both max-heap property and 

BST property are maintained.
This ensures the BST property.



Deletion

■ To delete a given node 𝑣 from a treap 𝑇, 

we proceed as follows.

– Change pri 𝑣 to be −∞ and perform Max-Heapify 𝑇, 𝑣 to sink the 

vertex 𝑣 to the bottom of the treap 𝑇 as a leaf.

■ However, we use tree rotations instead of swap operation.

– Use Tree-Delete root 𝑇 , 𝑣 to delete 𝑣 from 𝑇 or just delete 𝒗.

■ After this, both max-heap property and 

BST property are still maintained.

This ensures the heap property.

This does not alter 

the BST property.



Building a Treap Offline

■ When the elements 𝑎1, … , 𝑎𝑛 are given in sorted order, 

the treap can be built in 𝑂 𝑛 time.

– First, we build a balanced BST 𝑇 for 𝑎1, … , 𝑎𝑛 in 𝑂 𝑛 time.

– Then, we use Build-Max-Heap 𝑇 to establish the max-heap 

property in 𝑂 𝑛 time.

■ Similarly, we use tree rotations instead of swap operation.



Merging Two Ordered Treaps

■ Given two treaps 𝑇1 and 𝑇2 such that 𝑢 ≤ 𝑥 ≤ 𝑣 for all 𝑢 ∈ 𝑇1, 𝑣 ∈ 𝑇2 and 

some (unknown) 𝑥, we can merge 𝑇1 and 𝑇2 as follows.

– Let 𝑦 ←Tree-Max 𝑇1 and 𝑧 ←Tree-Min 𝑇2 .

Report fail if 𝑦 > 𝑧.

– Create a new tree 𝑇 with a new root node 𝑣, where

𝑇1 and 𝑇2 are the left- and the right- subtree of 𝑣.

– Call Treap-Delete 𝑇, 𝑣 .



Splitting a Treap w.r.t. a Given Value

■ Given a treap 𝑇 and an element 𝑥, 

we can split 𝑇 into 𝑇1 and 𝑇2 such that 𝑢 ≤ 𝑥 ≤ 𝑣 for all 𝑢 ∈ 𝑇1, 𝑣 ∈ 𝑇2.

– Create a new node 𝑥 with pri 𝑥 ≔ ∞.

– Call Treap-Insert 𝑇, 𝑥 .

– Let 𝑇1 and 𝑇2 be the left- and the right- subtrees of the node 𝑥.

– Delete 𝑥 and return 𝑇1 and 𝑇2.



Analysis of Treap Operations

All the nontrivial treap operations take time 𝑂 ℎ .

It suffices to analyze the expected height of the treaps.



Expected Height of a Treap

■ In the following we analyze the average-case performance / 

expected height of a treap.

■ Let 𝑎1 < 𝑎2 < ⋯ < 𝑎𝑛 be the elements in the treap.

– We also assume that the 𝐩𝐫𝐢 𝒂𝒊 ≠ 𝐩𝐫𝐢 𝒂𝒋 for all 𝒊 ≠ 𝒋.

■ We will show that 

the expected height of any 𝑎𝑖 in the treap 𝑇 is 𝑂 log 𝑛 .



Expected Height of a Treap

■ Let 𝑎1 < 𝑎2 < ⋯ < 𝑎𝑛 be the elements in the treap.

– We also assume that the pri 𝑎𝑖 ≠ pri 𝑎𝑗 for all 𝑖 ≠ 𝑗.

■ We will show that 

the expected height of any 𝑎𝑖 in the treap 𝑇 is 𝑂 log 𝑛 .

– The height of a node in the tree is equal to the number of 

ancestors of it.

– Hence, we count the expected number of ancestors of 𝑎𝑖.



When can 𝑎𝑗 become an ancestor of 𝑎𝑖 ?

■ Let 𝑋𝑖,𝑗 be the indicator variable for the event that 

“𝑎𝑗 is an ancestor of 𝑎𝑖”. 

■ 𝐸𝑖,𝑗 is determined completely by the element 𝑎𝑘 between 𝒂𝒊, … , 𝒂𝒋

with the highest priority.

– 𝑋𝑖,𝑗 = 1 if and only if 𝑎𝑘 is equal to 𝑎𝑗.

𝑎1 𝑎𝑛𝑎𝑖 𝑎𝑗



When can 𝑎𝑗 become an ancestor of 𝑎𝑖 ?

■ When the priorities of the elements are randomly drawn and 

distinct, we have

Pr 𝑋𝑖,𝑗 =
1

𝑗 − 𝑖 + 1
.

■ The expected number of ancestors of 𝑎𝑖 is

෍

𝑗≠𝑖

1

𝑗 − 𝑖 + 1
≤ 2 ⋅ 𝐻𝑛 = 𝑂 log 𝑛 .



Red-Black Tree

A self-balancing BST with a worst-case 𝑂 log 𝑛 height guarantee.



Red-Black Tree (RB-Tree)

■ Red-Black Tree is a binary search tree imposed with extra constraints

on its structure to achieve a worst-case 𝑂 log 𝑛 height guarantee.

1. Each node in the RB-tree is either red or black.

2. The NiL pointer is considered as a black node (with no children).

3. Every red node has exactly two black children nodes.

4. For each node, any simple path from that node to descendent 

leaves contains the same number of black nodes.

The key constraint to guarantee.



A Red-Black Tree
26

17 41

14 21 4730

3828

3935

NiLNiL

NiLNiLNiLNiL

NiLNiL

2319

20

1610

NiLNiL

NiLNiL

NiL15 NiL

NiLNiL

7 12

3 NiLNiLNiL

NiLNiL



26

17 41

14 21 4730

NiLNiLNiLNiLNiLNiLNiLNiL

■ Why Red & Black? 

■ Can’t we simply color all the nodes black?

– Yes, but only when the tree is complete.



26

17 41

14 21 30 NiL

NiLNiLNiLNiLNiLNiL

■ Can’t we simply color all the nodes black?

– Yes, but only when the tree is complete.

■ When a node is missing…

Some nodes have to turn Red in order to

maintain the RB-tree property.



26

17 41

14 21 30 NiL

NiLNiLNiLNiLNiLNiL

■ Can’t we simply color all the nodes black?

– Yes, but only when the tree is complete.

■ When a node is missing…

Some nodes have to turn Red in order to

maintain the RB-tree property.

At most 𝑂 log 𝑛 nodes need to turn red.

Have you seen why?



26

17 41

14 21 30 NiL

NiLNiLNiLNiLNiLNiL

■ Try to compose an efficient procedure that fixes the RB-tree property 

when a new node (assumed black) needs to be inserted to the tree.

Exercise 



Notes

■ Red-Black Tree is a binary search tree imposed with extra constraints 

on its structure to achieve a worst-case 𝑂 log 𝑛 height guarantee.

In the textbook, the following constraint is listed.

5. The root is a black node.

■ However, this constraint is not necessary in obtaining 

the 𝑂 log 𝑛 guarantee.

Justify this.



Worst-Case Guarantee of 

Red-Black Trees



The Black-Height of a Node

■ Let 𝑇 be a RB-tree.

■ For any node 𝑣 ∈ 𝑇, 

we define the “black-height” of the node 𝑣 to be 

The number of black nodes in any path from 𝑣 (but not including) 

to any descending (NiL) leaf node.

The black-height of any node is well-defined

by the RB-tree property.



A Red-Black Tree
26

17 41

14 21 4730

3828

3935

NiLNiL

NiLNiLNiLNiL

NiLNiL

2319

20

1610

NiLNiL

NiLNiL

NiL15 NiL

NiLNiL

7 12

3 NiLNiLNiL

NiLNiL

1

1
1

1

2

2

1

3

3

22

2 1

11



■ We prove this claim by induction on bh 𝑣 .

– If bh 𝑣 = 0, 

then 2𝑏ℎ 𝑣 − 1 = 0, and the statement holds trivially.

– If bh 𝑣 > 0, 

then 𝑣 is an internal node of 𝑇 with two children nodes.

Claim 1. 

Let 𝑣 ∈ 𝑇 be a node with black-height bh 𝑣 .

Then the subtree rooted at 𝑣 has at least 2𝑏ℎ 𝑣 − 1 internal nodes. 

𝑣 is a leaf (NiL) node.



■ We prove this claim by induction on bh 𝑣 .

– If bh 𝑣 > 0, 

then 𝑣 is an internal node of 𝑇 with two children nodes.

– We show that, there exists at least one node with black-height

𝐛𝐡 𝒗 − 𝟏 both in the left- and the right- subtrees rooted at 𝑣.

𝐛𝐡 𝒗 > 𝟎

𝐛𝐡 𝒗 − 𝟏𝐛𝐡 𝒗 − 𝟏



■ We prove this claim by induction on bh 𝑣 .

– If bh 𝑣 > 0, 

then 𝑣 is an internal node of 𝑇 with two children nodes.

– We claim that, there exists at least one node with black-height

𝐛𝐡 𝒗 − 𝟏 both in the left- and the right- subtrees rooted at 𝑣.

– Then, by the induction hypothesis, 

the number of internal nodes at the subtree rooted at 𝑣 is at least

2 ⋅ 2bh 𝑣 −1 − 1 + 1 = 2bh 𝑣 − 1 .

It suffices to prove the claim.



■ If bh 𝑣 > 0, then there exists at least one node with black-height

𝐛𝐡 𝒗 − 𝟏 both in the left- and the right- subtrees rooted at 𝑣.

■ Let us consider the color of 𝑣.

– If 𝒗 is red, 

then it has two black children.

– Each of them has black-height

bh 𝑣 − 1 by definition.

𝐛𝐡 𝒗 − 𝟏

𝐛𝐡 𝒗 > 𝟎

𝐛𝐡 𝒗 − 𝟏



■ If bh 𝑣 > 0, then there exists at least one node with black-height

𝐛𝐡 𝒗 − 𝟏 both in the left- and the right- subtrees rooted at 𝑣.

■ Let us consider the color of 𝑣.

– If 𝒗 is black, then further consider the color of 

each of its children nodes, say, 𝑢.

■ If 𝑢 is black, then it has black-height

bh 𝑣 − 1.

■ If 𝑢 is red, then it has two black children,

both has black-height bh 𝑣 − 1.

𝐛𝐡 𝒗 > 𝟎

𝐛𝐡 𝒗 − 𝟏

𝐛𝐡 𝒗 > 𝟎

𝐛𝐡 𝒗

𝐛𝐡 𝒗 − 𝟏



■ We prove this claim by induction on bh 𝑣 .

– If bh 𝑣 = 0, then 2𝑏ℎ 𝑣 − 1 = 0, and the statement is true.

– If bh 𝑣 > 0, then there exists at least one node with black-height

𝐛𝐡 𝒗 − 𝟏 both in the left- and the right- subtrees rooted at 𝑣.

Hence, by the induction hypothesis, the number of internal nodes 

at 𝑣 is at least 2 ⋅ 2bh 𝑣 −1 − 1 + 1 = 2bh 𝑣 − 1 .

Claim 1. 

Let 𝑣 ∈ 𝑇 be a node with black-height bh 𝑣 .

Then the subtree rooted at 𝑣 has at least 2𝑏ℎ 𝑣 − 1 internal nodes. 



The Height Guarantee of an RB-Tree

■ Let 𝑇 be an RB-tree with 𝑛 nodes, root 𝑟, and height ℎ. 

– By the RB-tree property, 

the root node has black-height at least ℎ/2. 

■ At most 𝒉/𝟐 red node can exist in any root-to-leaf path.

Lemma. (Height of the RB-Tree)

An RB-tree with 𝑛 internal nodes has height at most 2 log 𝑛 + 1 .



The Height Guarantee of an RB-Tree

■ Let 𝑇 be an RB-tree with 𝑛 nodes, root 𝑟, and height ℎ. 

– By the RB-tree property, bh 𝑟 ≥ ℎ/2. 

– By Claim 1, 
𝑛 ≥ 2bh 𝑟 − 1 ≥ 2ℎ/2 − 1,

and hence ℎ ≤ 2 log 𝑛 + 1 .

Lemma. (Height of the RB-Tree)

An RB-tree with 𝑛 internal nodes has height at most 2 log 𝑛 + 1 .



Operations in Red-Black Trees



Insertion / Deletion

■ It remains to show that, the insertion and deletion operations for the 

Red-Black Trees can also be done in 𝑂 log 𝑛 time.

– After an insertion or a deletion, 

the RB-tree property will be violated (slightly).

– We can use rotations and recolor some of the nodes properly 

to adjust black-heights and reestablish the RB-tree property.

■ The details of the two operations, however, are less interesting under 

the aim of this course.

Refer to the textbook for the details.



Common Self-Balancing BSTs

-- A Note



Treap

■ Treap is a BST the supports the common insertion / deletion / 

look-up (search) operations and also two unique merge / split

operations with an average-case (expected) 𝑂 log 𝑛 -time guarantee.

– Its performance guarantee is based on the assumption that each 

element is provided with a unique randomly assigned priority.

– This data structure is very easy to implement.

■ Nevertheless, it does not provide a worst-case guarantee and 

may not be preferred in performance-critical applications.



The Red-Black Tree

■ We have seen that the RB-trees provides insertion / deletion / 

look-up (search) in worst-case 𝑂 log 𝑛 time.

– For each node, one extra bit (color) is required for storage.

– The balancing guarantee is not strict.

■ For a node, the heights of its left- and its right- subtrees can 

differ by a factor up to 𝟐.

– The insertion / deletion operations are intuitive and 

relatively easy to implement.



The AVL Tree

■ AVL tree is another self-balancing BST that provides a worst-case 

𝑂 log 𝑛 -time guarantee for insertion / deletion / look-up (search).

– For each node, one extra integer (balance factor) is stored.

– It has a strict balancing guarantee.

■ For each node, the heights of its left- and its right- subtrees 

must differ by at most 1.

– Hence, the look-up / search operation in AVL trees is generally 

faster than RB-trees.

■ Preferred by look-up intensive applications such as databases.



The AVL Tree

■ AVL tree is another self-balancing BST that provides a worst-case 

𝑂 log 𝑛 -time guarantee for insertion / deletion / look-up (search).

– For each node, one extra integer (balance factor) is stored.

– It has a strict balancing guarantee.

■ For each node, the heights of its left- and its right- subtrees 

must differ by at most 1.

– Due to the same reason, the insertion / deletion operations are 

more complicated and generally slower than the RB-trees.

■ For update-intensive applications, RB-trees are preferred.



Self-Balancing BSTs

Treap Red-Black Tree AVL Tree

Guarantee Average-case Worst-case Worst-case

Extra Storage 𝑂 𝑛 𝑛 bits 𝑂 𝑛

Advantage Simple
Faster ins / del

than AVL tree

Faster look-up 

than RB-tree

Disadvantage
Slower look-up 

than AVL tree

Slower ins / del

than RB-tree

Preferred by ?? Update-intensive Look-up intensive



B-Trees

■ B-Tree is a self-balancing search tree that is designed to work well on 

disk drivers or other direct-access secondary storage devices.

– Each leaf has the same height.

– For each node 𝑣, 

■ 𝑣 may store multiple keys that are sorted in order.

■ 𝑣 has 𝑘 + 1 children nodes if 𝑘 keys are stored.

■ The stored keys divides the range of values that can be 

stored in the subtrees.

– The leaf nodes have no children nodes.



B-Trees

■ B-Tree is a self-balancing search tree that is designed to work well on 

disk drivers or other direct-access secondary storage devices.

– Each leaf has the same height.

– For a given value 𝑡 ≥ 2, 

■ Each node can store up to 2𝑡 − 1 keys.

■ Each non-root node must store at least 𝑡 − 1 keys.

Refer to the textbook for the details.


