
Introduction to Algorithms

Mong-Jen Kao (高孟駿)

Tuesday 10:10 – 12:00

Thursday 15:30 – 16:20

Data Structures

Particular ways of storing data to support special operations.

Binary Search Trees (BSTs)

Storing fully-dynamic data to be searched fast.

Search Trees

■ Search trees are data structures that support the following

dynamic-set operations for a set 𝐴.

– Search, Predecessor, Successor – to search for an element, or

to report the predecessor / successor of the element.

– Minimum, Maximum

– to report the minimum / maximum element in a set.

– Insert, and Delete – to insert or delete a given element.

A search tree can be used as a dictionary or a priority queue.

Binary Search Tree (BST)

■ A binary search tree (BST) is a binary tree with the following

property that

– The nodes in the tree are comparable to each other.

– (BST property)

For any node 𝑣 in the tree and any node 𝑦,

■ If 𝑦 is a node in the left-subtree of 𝒗, then 𝑦 ≤ 𝑣.

■ If 𝑧 is a node in the right-subtree of 𝒗, then 𝑣 ≤ 𝑧.

𝒗

≤ 𝒗 ≥ 𝒗

Binary Search Trees

5

3 7

2 5 8

2

5

3

5

8

7

Two different ways for constructing a BST for 2, 3, 5, 5, 7, 8 .

Storing the Structure of a BST

■ Recall that, to store the structure of a binary tree 𝑇,

we store the following information for each node 𝑣 in the tree.

1. The parent node of 𝑣, denoted 𝑝 𝑣 .

2. The left- and right- children nodes of 𝑣,

denoted ℓ 𝑣 and 𝑟 𝑣 , respectively.

3. The key value of 𝑣.

4. Other auxiliary information (if needed).

■ In addition, we need to record the root node root 𝑇 of 𝑇.

𝒑 𝒗

𝒗

ℓ 𝒗 𝒓 𝒗

Basic Operations for BSTs

Extracting the Sorted Order

■ Given a BST 𝑇, the sorted order of the elements can be

obtained via an in-order tree walk on 𝑇.

𝒗

≤ 𝒗 ≥ 𝒗

■ In-order-Tree-Walk 𝑣

-- to Print the sorted order of the elements in the BST rooted at 𝑣.

A. If 𝑣 = 𝑁𝐼𝐿, then return.

B. In-order-Tree-Walk(𝑣.left).

Print 𝑣.

In-order-Tree-Walk(𝑣.right).

This process takes Θ 𝑛 time.

Searching for an Element

■ As the name suggests,

BSTs are meant for searching.

– This process takes 𝑶 𝒉 time,

where 𝒉 is the height of the BST.

𝒗

≤ 𝒗 ≥ 𝒗

■ Tree-Search 𝑣, 𝑘 -- to research for an element 𝑘 in the BST rooted at 𝑣.

A. If 𝑣 = 𝑁𝐼𝐿 or 𝑣 = 𝑘, then return 𝑣.

B. If 𝑘 < 𝑣, then return Tree-Search(𝑣. left, 𝑘).

Otherwise, return Tree-Search 𝑣. right, 𝑘 . Can be unfolded

to a simple while loop.

Minimum / Maximum Element

■ Finding the extremum element is straightforward.

– This process takes 𝑶 𝒉 time,

where ℎ is the height of the BST.

𝒗

≤ 𝒗 ≥ 𝒗

■ Tree-Minimum 𝑣 - to return the minimum element in the BST rooted at 𝑣.

A. if 𝑣. left ≠ 𝑁𝐼𝐿, return Tree-Minimum(𝑣 ← 𝑣. left).

Otherwise, return 𝑣.

■ Tree-Maximum 𝑣 - to return the minimum element in the BST rooted at 𝑣.

A. if 𝑣. right ≠ 𝑁𝐼𝐿, return Tree-Maximum(𝑣 ← 𝑣. right).

Otherwise, return 𝑣.

Can be unfolded

to a simple while loop.

Finding the Successor of 𝑣

■ To find the successor of a node 𝑣 in the sorted order

given by the in-order tree walk.

■ If 𝑣 has a non-empty right-subtree,

then its successor is the minimum in the right-subtree.

𝒗

≥ 𝒗

■ To find the successor of a node 𝑣 in the sorted order

given by the in-order tree walk.

■ If 𝑣 has no right-subtree,

then its successor is “the first element to the right of 𝑣”.

– That is, the first ancestor that have 𝑣 in its left-subtree.

𝒚

𝒗

The first ancestor of 𝑣

that contains 𝒗 in its left subtree.

■ If 𝑣 has a non-empty right-subtree,

then its successor is the minimum in the right-subtree.

■ If 𝑣 has no right-subtree,

then its successor is the first ancestor that have 𝑣 in its left-subtree.

■ Tree-Successor 𝑣 -- to find the successor of 𝑣 in the in-order walk order.

A. If 𝑣. right ≠ 𝑁𝐼𝐿, then return Tree-Minimum(𝑣. right).

B. Otherwise, let 𝑦 ← 𝑣. parent.

C. While 𝑦 ≠ 𝑁𝐼𝐿 and 𝑣 ≠ 𝑦. left, do

set 𝑣 ← 𝑦 and 𝑦 ← 𝑣. parent.

D. Return 𝑦.
This procedure mimics

the in-order walk after 𝑣.

This process takes 𝑂 ℎ time.

Finding the Predecessor of a Node 𝑣

■ Finding the predecessor is symmetric to finding the successor.

– This process takes 𝑂 ℎ time.

■ Tree-Predecessor 𝑣 -- to find the predecessor of 𝑣.

A. If 𝑣. left ≠ 𝑁𝐼𝐿, then return Tree-Maximum(𝑣. left).

B. Otherwise, let 𝑦 ← 𝑣. parent.

C. While 𝑦 ≠ 𝑁𝐼𝐿 and 𝑣 ≠ 𝑦. right, do

set 𝑣 ← 𝑦 and 𝑦 ← 𝑣. parent.

D. Return 𝑦.
This procedure mimics

the in-order walk before 𝑣.

Insertion / Deletion for BSTs

Modifying a BST – Insertion & Deletion

Let 𝑇 be a BST with root node 𝑟.

■ In the following, we introduce procedures that can be used to

– Insert a new node 𝑣 into 𝑇.

– Remove an existing node 𝑣 from 𝑇.

■ Since root 𝑇 may change after these operations, the procedures

are designed so that they return the new root of the tree 𝑇.

Inserting a Node 𝑣

Let 𝑇 be a BST and 𝑣 be a new node we wish to insert into 𝑇.

■ Let 𝑟 be the root of 𝑇.

We search in 𝑇 for a (leaf) position for 𝑣 to reside.

– If 𝑣 < 𝑟, then inserting 𝑣 in the left-subtree of 𝑟

satisfies the BST-property.

If 𝑟. left = 𝑁𝐼𝐿, we can insert 𝑣 at 𝑟. left directly.

Otherwise, we have a recursive problem (to insert 𝑣 into 𝑟. left).

– The argument for the case with 𝑣 ≥ 𝑟 is similar.

■ Tree-Insert 𝑟, 𝑣

-- to insert 𝑣 into the BST rooted at 𝑟 and return the new root.

A. If 𝑟 = 𝑁𝐼𝐿, then return 𝑣. // 𝑇 was empty, so 𝑣 is the new root.

B. If 𝑣 < 𝑟 and 𝑟. left = 𝑁𝐼𝐿,

then set 𝑟. left ← 𝑣 and 𝑣. parent ← 𝑟, and return 𝑟.

C. If 𝑣 ≥ 𝑟 and 𝑟. right = 𝑁𝐼𝐿,

then set 𝑟. right ← 𝑣 and 𝑣. parent ← 𝑟, and return 𝑟.

D. If 𝑣 < 𝑟, then call Tree-Insert 𝑟. left, 𝑣 .

Otherwise, call Tree-Insert 𝑟. right, 𝑣 .

E. Return 𝑟. This process can be unfolded

to a simple while loop.

This process takes 𝑶 𝒉 time.

Deleting a Node 𝑣

■ Let 𝑇 be a BST and 𝑣 ∈ 𝑇 be a node we wish to remove.

■ For this, we consider two different cases.

– If 𝑣 has at most one child, then 𝑣 can be spliced out directly.

𝒗

𝒗

■ For this, we consider two different cases.

– If 𝑣 has two children, then we find the successor 𝑦 of 𝑣.

– We splice 𝒚 from the right-subtree of 𝑣 and replace 𝒗 with 𝒚.

𝒗

y

𝑦 has no left-subtree

and can be spliced out directly.

𝒚

■ Tree-Delete 𝑟, 𝑣

-- to delete 𝑣 from the BST 𝑇𝑟 rooted at 𝑟 and return the new root.

A. If 𝑣. left = 𝑁𝐼𝐿 and 𝑣. right = 𝑁𝐼𝐿, then

■ If 𝑣. parent = 𝑁𝐼𝐿, // 𝑣 is the only node in 𝑇𝑟

then return 𝑁𝐼𝐿.

■ If 𝑣 = 𝑣. parent. left, then set 𝑣. parent. left ← 𝑁𝐼𝐿.

Otherwise, set 𝑣. parent. right ← 𝑁𝐼𝐿.

■ If 𝑣 = 𝑟, then return 𝑁𝐼𝐿. // 𝑣 is the root of 𝑇𝑟

Otherwise, return 𝑟.

■ Tree-Delete 𝑟, 𝑣

-- to delete 𝑣 from the BST rooted at 𝑟 and return the new root.

A. Handle the case for 𝑣. left = 𝑁𝐼𝐿 and 𝑣. right = 𝑁𝐼𝐿.

B. If 𝑣. left = 𝑁𝐼𝐿 or 𝑣. right = 𝑁𝐼𝐿, then

■ Set 𝑦 ← 𝑣. left if 𝑣. left ≠ 𝑁𝐼𝐿. // 𝑦 is the child of 𝑣

Otherwise, set 𝑦 ← 𝑣. right.

■ Set 𝑦. parent ← 𝑣. parent.

■ If 𝑣. parent = 𝑁𝐼𝐿, then return 𝑦. // 𝑣 is the root of 𝑇𝑟

■ If 𝑣 = 𝑣. parent. left, then set 𝑣. parent. left ← 𝑦.

Otherwise, set 𝑣. parent. right ← 𝑦.

■ Return 𝑟.

■ Tree-Delete 𝑟, 𝑣

-- to delete 𝑣 from the BST rooted at 𝑟 and return the new root.

A. Handle the case for 𝑣. left = 𝑁𝐼𝐿 and 𝑣. right = 𝑁𝐼𝐿.

B. Handle the case for 𝑣. left = 𝑁𝐼𝐿 or 𝑣. right = 𝑁𝐼𝐿.

C. // 𝑣 has two children

Let 𝑦 ←Tree-Successor 𝑣 . // 𝑦 has no left-subtree

■ Tree-Delete 𝑟, 𝑦 .

■ Replace 𝑣 with 𝑦 by copying the key and auxiliary

information of 𝑦 to 𝑣.

■ Return 𝑟.

This process takes 𝑶 𝒉 time.

Binary Search Trees – Summary

■ Binary search trees support all of the following operations in 𝑶 𝒉 time,

where ℎ is the height of the tree.

– Search, Predecessor, Successor – to search for an element, or

to report the predecessor / successor of the element.

– Minimum, Maximum

– to report the minimum / maximum element in a set.

– Insert, and Delete – to insert or delete a given element.

Binary Search Trees – Summary

■ Binary search trees support all of the following operations in 𝑂 ℎ time,

where ℎ is the height of the tree.

■ As we have seen, the efficiency of BST operations is determined

by the height of the tree.

– Furthermore, the height of a BST for a set of 𝑛 elements can range

from Θ log 𝑛 to Θ 𝑛 , depending on the construction.

Binary Search Trees

5

3 7

2 5 8

2

5

3

5

8

7

Two different ways for constructing a BST for 2, 3, 5, 5, 7, 8 .

The Efficiency of BSTs

■ As we have seen, the efficiency of BST operations is determined

by the height of the tree.

– Furthermore, the height of a BST for a set of 𝑛 elements can range

from Θ log 𝑛 to Θ 𝑛 , depending on the construction.

■ Is it possible to guarantee an 𝑂 log 𝑛 -height of the resulting BST?

We will see two different approaches.

1. Treap - Expected 𝑂 log 𝑛 height in the average case.

2. Red-Black Tree - 𝑂 log 𝑛 height in the worst-case.

Balancing the Height of a BST

-- Tree Rotations

Fundamental Operations to Adjust the Height of a BST.

Tree Rotations

■ Tree rotation is a fundamental operation that can be used

to adjust the height of a BST while maintaining the BST property.

■ We have two types of tree rotations.

– Left rotation.

Works on a node 𝒙 and

its right-child 𝒚.

𝒙

𝒚𝛼

𝛽 𝛾

𝒚

𝒙

𝛼 𝛽

𝛾

𝑂 1 time

Change of height +1

−1

Tree Rotations

■ Tree rotation is a fundamental operation that can be used

to adjust the height of a BST while maintaining the BST property.

■ We have two types of tree rotations.

– Right rotation.

Works on a node 𝒚 and

its left-child 𝒙.

𝒙

𝒚𝛼

𝛽 𝛾

𝒚

𝒙

𝛼 𝛽

𝛾

𝑂 1 time

Change of height +1

−1

Binary Search Trees

5

3 7

2 5 8

2

5

3

5

8

7

Two different ways for constructing a BST for 2, 3, 5, 5, 7, 8 .

Rotating From One to Another

5

3 7

2 5 8

5

3

7

2

5

8

Rotating From One to Another

5

3

7

2

5

8

5

3

7

2

5

8

Rotating From One to Another

5

3

7

2

5

8

2

5

3

5

8

7

