Introduction to Algorithms

Mong-Jen Kao (高孟駿)

Tuesday 10:10 – 12:00

Thursday 15:30 – 16:20

Data Structures

Particular ways of storing data to support special operations.

Binary Search Trees (BSTs)

Storing fully-dynamic data to be searched fast.

Search Trees

- Search trees are data structures that support the following dynamic-set operations for a set *A*.
 - Search, Predecessor, Successor to search for an element, or to report the predecessor / successor of the element.
 - Minimum, Maximum
 - to report the minimum / maximum element in a set.
 - Insert, and Delete to insert or delete a given element.

A search tree can be used as a *dictionary* or a *priority queue*.

Binary Search Tree (BST)

 A binary search tree (BST) is a binary tree with the following property that

v

 $\leq v$

- The *nodes* in the tree *are comparable* to each other.
- (BST property)

For any node v in the tree and any node y,

- If y is a node in the *left-subtree of* v, then $y \le v$.
- If z is a node in the *right-subtree of* v, then $v \le z$.

Binary Search Trees

Two different ways for constructing a BST for {2, 3, 5, 5, 7, 8}.

Storing the Structure of a BST

- Recall that, to store the structure of a binary tree T, we store the following information for each node v in the tree.
 - 1. The *parent node* of v, denoted p(v).
 - 2. The <u>left-</u> and <u>right- children nodes</u> of v, denoted $\ell(v)$ and r(v), respectively.
 - 3. The **key value** of v.
 - 4. Other <u>auxiliary information</u> (if needed).
- In addition, we need to record the root node root[T] of T.

Basic Operations for BSTs

Extracting the Sorted Order

■ Given a BST T, the <u>sorted order</u> of the elements can be obtained via an <u>in-order tree walk</u> on T.

- In-order-Tree-Walk(v)
 - -- to Print the sorted order of the elements in the BST rooted at v.
 - A. If v = NIL, then return.
 - B. In-order-Tree-Walk(v.left).

Print v.

In-order-Tree-Walk(v.right).

This process takes $\Theta(n)$ time.

Searching for an Element

- As the name suggests,
 BSTs are <u>meant for searching</u>.
 - This process takes O(h) time,
 where h is the height of the BST.

- Tree-Search(v,k) -- to research for an element k in the BST rooted at v.
 - A. If v = NIL or v = k, then return v.
 - B. If k < v, then return Tree-Search(v. left, k). Otherwise, return Tree-Search(v. right, k).

Can be unfolded to a simple while loop.

Minimum / Maximum Element

- Finding the extremum element is straightforward.
 - This process takes *O*(*h*) time,
 where *h* is the height of the BST.

- Tree-Minimum(v) to return the minimum element in the BST rooted at v.
 - A. if v. left $\neq NIL$, return Tree-Minimum($v \leftarrow v$. left). Otherwise, return v.
- Tree-Maximum(v) to return the minimum element in the BST rooted at v.
 - A. if v. right $\neq NIL$, return Tree-Maximum($v \leftarrow v$. right). Otherwise, return v.

Can be unfolded to a simple while loop.

Finding the Successor of v

- To find <u>the successor</u> of a node v in the sorted order given by the <u>in-order tree walk</u>.
- If v has a non-empty right-subtree,
 then its successor is <u>the minimum</u> in the right-subtree.

- To find <u>the successor</u> of a node v in the sorted order given by the <u>in-order tree walk</u>.
- If v has no right-subtree, then its successor is "the first element to the right of v".
 - That is, the first ancestor that have v in its left-subtree.

- If v has a non-empty right-subtree,
 then its successor is the minimum in the right-subtree.
- If v has no right-subtree, then its successor is **the first ancestor** that have v in its left-subtree.

- Tree-Successor(v) -- to find the successor of v in the in-order walk order.
 - A. If v. right $\neq NIL$, then return Tree-Minimum(v. right).
 - B. Otherwise, let $y \leftarrow v$. parent.
 - C. While $y \neq NIL$ and $v \neq y$. left, do set $v \leftarrow y$ and $y \leftarrow v$. parent.
 - D. Return *y*.

This process takes O(h) time.

This procedure \underline{mimics} the in-order walk after v.

Finding the Predecessor of a Node *v*

- Finding the predecessor is symmetric to finding the successor.
 - This process takes O(h) time.

- Tree-Predecessor(v) -- to find the predecessor of v.
 - A. If v. left $\neq NIL$, then return Tree-Maximum(v. left).
 - B. Otherwise, let $y \leftarrow v$. parent.
 - C. While $y \neq NIL$ and $v \neq y$ right, do set $v \leftarrow y$ and $y \leftarrow v$ parent.
 - D. Return y.

This procedure mimics the in-order walk before v.

Insertion / Deletion for BSTs

Modifying a BST – Insertion & Deletion

Let T be a BST with root node r.

- In the following, we introduce procedures that can be used to
 - **Insert** a new node v into T.
 - Remove an existing node v from T.
- Since root[T] may change after these operations, <u>the procedures</u> are designed so that they **return the new root** of the tree T.

Inserting a Node v

Let T be a BST and v be a **new node** we wish to insert into T.

 \blacksquare Let r be the root of T.

We **search** in T for a (leaf) position for v to reside.

If v < r, then inserting v in the left-subtree of r satisfies the BST-property.

If r. left = NIL, we can insert v at r. left directly. Otherwise, we have a recursive problem (to insert v into r. left).

- The argument for the case with $v \ge r$ is similar.

This process takes O(h) time.

- \blacksquare Tree-Insert(r, v)
 - -- to insert v into the BST rooted at r and return the new root.
 - A. If r = NIL, then return v. // T was empty, so v is the new root.
 - B. If v < r and r. left = NIL, then set r. left $\leftarrow v$ and v. parent $\leftarrow r$, and return r.
 - C. If $v \ge r$ and r. right = NIL, then set r. right $\leftarrow v$ and v. parent $\leftarrow r$, and return r.
 - D. If v < r, then call Tree-Insert(r. left, v). Otherwise, call Tree-Insert(r. right, v).
 - E. Return r.

This process can be unfolded to a simple while loop.

Deleting a Node *v*

- Let T be a BST and $v \in T$ be a node we wish to remove.
- For this, we consider two different cases.
 - If v has <u>at most one child</u>, then v can be <u>spliced out directly</u>.

- For this, we consider two different cases.
 - If v has two children, then we find the successor y of v.
 - We splice y from the right-subtree of v and replace v with y.

- \blacksquare Tree-Delete(r, v)
 - -- to delete v from the BST T_r rooted at r and return the new root.
 - A. If v. left = NIL and v. right = NIL, then
 - If v. parent = NIL, // v is the only node in T_r then return NIL.
 - If v = v. parent. left, then set v. parent. left $\leftarrow NIL$. Otherwise, set v. parent. right $\leftarrow NIL$.
 - If v = r, then return NIL. // v is the root of T_r Otherwise, return r.

- \blacksquare Tree-Delete(r, v)
 - -- to delete v from the BST rooted at r and return the new root.
 - A. Handle the case for v. left = NIL and v. right = NIL.
 - B. If v. left = NIL or v. right = NIL, then
 - Set $y \leftarrow v$. left if v. left $\neq NIL$. // y is the child of v Otherwise, set $y \leftarrow v$. right.
 - Set y. parent $\leftarrow v$. parent.
 - If v. parent = NIL, then return y. // v is the root of T_r
 - If v = v. parent. left, then set v. parent. left $\leftarrow y$. Otherwise, set v. parent. right $\leftarrow y$.
 - \blacksquare Return r.

- \blacksquare Tree-Delete(r, v)
 - -- to delete v from the BST rooted at r and return the new root.
 - A. Handle the case for v. left = NIL and v. right = NIL.
 - B. Handle the case for v. left = NIL or v. right = NIL.
 - C. // v has two children

Let $y \leftarrow \text{Tree-Successor}(v)$. // y has no left-subtree

- Tree-Delete(r, y).
- Replace v with y by copying the key and auxiliary information of y to v.
- \blacksquare Return r.

This process takes O(h) time.

Binary Search Trees – Summary

- Binary search trees support all of the following operations in O(h) time, where h is the height of the tree.
 - Search, Predecessor, Successor to search for an element, or to report the predecessor / successor of the element.
 - Minimum, Maximum
 - to report the minimum / maximum element in a set.
 - Insert, and Delete to insert or delete a given element.

Binary Search Trees – Summary

- Binary search trees support all of the following operations in O(h) time, where h is the height of the tree.
- As we have seen, the efficiency of BST operations is determined by the height of the tree.
 - Furthermore, the height of a BST for a set of n elements can range from $\Theta(\log n)$ to $\Theta(n)$, depending on the construction.

Binary Search Trees

Two different ways for constructing a BST for {2, 3, 5, 5, 7, 8}.

The Efficiency of BSTs

- As we have seen, the efficiency of BST operations is determined by the height of the tree.
 - Furthermore, the height of a BST for a set of n elements can range from $\Theta(\log n)$ to $\Theta(n)$, depending on the construction.
- Is it possible to guarantee an $O(\log n)$ -height of the resulting BST? We will see two different approaches.
 - 1. <u>Treap</u> Expected $O(\log n)$ height *in the average case*.
 - 2. Red-Black Tree $O(\log n)$ height in the worst-case.

Balancing the Height of a BST

-- Tree Rotations

Tree Rotations

- Tree rotation is a fundamental operation that can be used to adjust the height of a BST while maintaining the BST property.
- We have two types of tree rotations.
 - Left rotation.

Works on *a node x* and *its right-child y*.

Change of height

Tree Rotations

- Tree rotation is a fundamental operation that can be used to adjust the height of a BST *while maintaining the BST property*.
- We have two types of tree rotations.
 - Right rotation.

Works on *a node y* and *its left-child x*.

Change of height

Binary Search Trees

Two different ways for constructing a BST for {2, 3, 5, 5, 7, 8}.

Rotating From One to Another

Rotating From One to Another

Rotating From One to Another

