Introduction to Algorithms

Mong-Jen Kao (5 £§8)

Tuesday 10:10 — 12:00
Thursday 15:30 — 16:20

Data Structures

Binary Search Trees (BSTs)

Search Trees

m Search trees are data structures that support the following
dynamic-set operations for a set A.

- Search, Predecessor, Successor — to search for an element, or
to report the predecessor / successor of the element.

- Minimum, Maximum
— to report the minimum / maximum element in a set.

- Insert, and Delete — to insert or delete a given element.

Binary Search Tree (BST)

m Abinary search tree (BST) is a binary tree with the following
property that

- The nodes in the tree are comparable to each other.

- (BST property)

For any node v in the tree and any node vy,

IA

vV

m If yis anode in the left-subtree of v, then y < v.

m If z s a node in the right-subtree of v, then v < z.

Binary Search Trees a

Storing the Structure of a BST

m Recall that, to store the structure of a binary tree T,
we store the following information for each node v in the tree.

1. The parent node of v, denoted p(v).

2. The left- and right- children nodes of v,
denoted ¢(v) and r(v), respectively. a

3. The key value of v.

4. Other auxiliary information (if needed). @ @

m |n addition, we need to record the root node root|T]| of T.

Basic Operations for BSTs

Extracting the Sorted Order

m Given a BST T, the sorted order of the elements can be

obtained via an in-order tree walk on T.

A
<
1V
<

m In-order-Tree-Walk(v)
-- to Print the sorted order of the elements in the BST rooted at v.

A. If v = NIL, then return.

B. In-order-Tree-Walk(v.left).
Print v.

In-order-Tree-Walk(v.right). ***
~ This process takes 0(n) time. |

Searching for an Element

m As the name suggests,
BSTs are meant for searching.

A\
<
1V
<

- This process takes 0(h) time,
where h is the height of the BST.

m Tree-Search(v, k) -- to research for an element k in the BST rooted at v.

A. Ifv=NIL orv =k, then return v.

B. If k <wv,thenreturn Tree-Search(v.left, k). L

Otherwise, return Tree-Search(v.right, k). Can be unfolded
~ to a simple while loop.

Minimum / Maximum Element

m Finding the extremum element is straightforward.

- This process takes 0(h) time,
where h is the height of the BST.

A\
<
1V
<

m Tree-Minimum(v) - to return the minimum element in the BST rooted at v.

A. Ifv.left += NIL, return Tree-Minimum(v « v. left).
Otherwise, return v.

m Tree-Maximum(v) - to return the minimum element in the BST rooted at v.

A. if v.right = NIL, return Tree-Maximum(v « v.right). ~ Can be unfolded
Otherwise, return v. - to a simple while loop.

Finding the Successor of v

m T0 find the successor of a node v Iin the sorted order
given by the in-order tree walk.

m If v has a non-empty right-subtree,

then its successor is the minimum in the right-subtree.

m [0 find the successor of a node v In the sorted order
given by the in-order tree walk.

m |f v has no right-subtree,

then its successor is “the first element to the right of v".

- That is, the first ancestor that have v in its left-subtree.

The first ancestor of v
that contains v in its left subtree.

m If v has a non-empty right-subtree,
then Its successor Is the minimum In the right-subtree.

m If v has no right-subtree,
then its successor is the first ancestor that have v In its left-subtree.

m Tree-Successor(v) -- to find the successor of v in the in-order walk order.

A. If v.right # NIL, then return Tree-Minimum(v. right).

B. Otherwise, let y « v. parent.

C. While y # NIL and v # y.left, do ~ This process takes 0(h) time.

This procedure mimics

the in-order walk after v.

D. Return y.

Finding the Predecessor of a Node v

m Finding the predecessor is symmetric to finding the successor.

- This process takes 0(h) time.

m Tree-Predecessor(v) -- to find the predecessor of v.

A. If v.left #+ NIL, then return Tree-Maximum(v. left).

B. Otherwise, let y « v. parent.

C. While y # NIL and v # y.right, do
set v « y and y « v.parent.

This procedure mimics |
the in-order walk before v.

D. Return y.

Insertion / Deletion for BSTs

Modifying a BST — Insertion & Deletion

Let T be a BST with root node r.

m In the following, we introduce procedures that can be used to

- Insert a new node v Into T.

- Remove an existing node v from T.

m Since root|T] may change after these operations, the procedures
are designed so that they return the new root of the tree T.

Inserting a Node v

Let T be a BST and v be a new node we wish to insert into T.

m Letr betherootofT.

We search in T for a (leaf) position for v to reside.

- If v < r, then inserting v in the left-subtree of r
satisfies the BST-property.

If r.left = NIL, we can insert v at r.left directly.
Otherwise, we have a recursive problem (to insert v into r. left).

- The argument for the case with v > r Is similar.

This process takes O(h) time.

m Tree-Insert(r,v)
-- to Insert v into the BST rooted at r and return the new root.

A. Ifr = NIL, then return v. /[T was empty, so v Is the new root.

B. Ifv<randr.left = NIL,
then set r.left « v and v.parent « r, and returnr.

C. If v = r and r.right = NIL,
then set r.right <« v and v.parent « r, and return r.

D. If v < r, then call Tree-Insert(r.left, v).

Otherwise, call Tree-Insert(r. right, v).

E. Returnr. This process can be unfolded
~ to a simple while loop.

Deleting a Node v

m LetT beaBST and v € T be a node we wish to remove.
m For this, we consider two different cases.

- If v has at most one child, then v can be spliced out directly.

=)

m For this, we consider two different cases.

- If v has two children, then we find the successor y of v.

- We splice y from the right-subtree of v and replace v with y.

=)

~ y has no left-subtree
v ~ andcan be spliced out directly.

m Tree-Delete(r,v)
-- to delete v from the BST T.. rooted at r and return the new root.

A. If v.left = NIL and v.right = NIL, then

m Ifv.parent = NIL, // visthe only node in T,
then return NIL.

m If v = v.parent. left, then set v. parent.left « NIL.

Otherwise, set v. parent. right « NIL.

m Ifv=rthenreturn NIL. // v isthe root of T,

Otherwise, return r.

m Tree-Delete(r, v)
-- to delete v from the BST rooted at » and return the new root.

A. Handle the case for v.left = NIL and v.right = NIL.
B. If v.left = NIL or v.right = NIL, then

m Sety < v.leftifv.left # NIL. [/l yisthe child of v
Otherwise, set y « v.right.

m Set y.parent « v.parent.
m If v.parent = NIL, thenreturny. // visthe root of T.

m If v = v.parent. left, then set v. parent. left « y.
Otherwise, set v. parent.right « y.

m Returnr.

m Tree-Delete(r, v)
-- to delete v from the BST rooted at » and return the new root.

A. Handle the case for v.left = NIL and v.right = NIL.

B. Handle the case for v.left = NIL or v.right = NIL.

C. /l v has two children
Let y «Tree-Successor(v). // y has no left-subtree
m Tree-Delete(r,y).

m Replace v with y by copying the key and auxiliary
Information of y to v.

m Returnr.

This process takes O(h) time.

Binary Search Trees — Summary

m Binary search trees support all of the following operations in 0(h) time,
where h is the height of the tree.

- Search, Predecessor, Successor — to search for an element, or
to report the predecessor / successor of the element.

- Minimum, Maximum
— to report the minimum / maximum element in a set.

- Insert, and Delete — to insert or delete a given element.

Binary Search Trees — Summary

m Binary search trees support all of the following operations in O(h) time,
where h Is the height of the tree.

m As we have seen, the efficiency of BST operations is determined

by the height of the tree.

- Furthermore, the height of a BST for a set of n elements can range
from @(logn) to O(n), depending on the construction.

Binary Search Trees a

The Efficiency of BSTs

m As we have seen, the efficiency of BST operations is determined
by the height of the tree.

- Furthermore, the height of a BST for a set of n elements can range
from O(logn) to ©(n), depending on the construction.

m Is it possible to guarantee an 0(log n)-height of the resulting BST?

We will see two different approaches.

1. Treap - Expected 0(logn) height in the average case.
2. Red-Black Tree - O(logn) heightin the worst-case.

Balancing the Height of a BST

-- Tree Rotations

Tree Rotations

m Tree rotation is a fundamental operation that can be used
to adjust the height of a BST while maintaining the BST property.

m We have two types of tree rotations.

- Left rotation. 0(1) time

Works on a node x and

Its right-child y.

Tree Rotations

m Tree rotation is a fundamental operation that can be used
to adjust the height of a BST while maintaining the BST property.

m We have two types of tree rotations.

- Right rotation.

Works on a node y and
Its left-child x.

Binary Search Trees a

Rotating From One to Another

Rotating From One to Another

Rotating From One to Another

