
Introduction to Algorithms

Mong-Jen Kao (高孟駿)

Tuesday 10:10 – 12:00

Thursday 15:30 – 16:20



Algorithms

Why do we need them?

What are algorithms?



Algorithm

■ An algorithm is a well-defined computational procedure that takes some 

input values and produces output values for a computation problem.

– An algorithm is a sequence of well-defined computational steps

that transform the input into the output.

■ Ex. Computing the area of a circle.

1. 𝑟 ← radius read the radius .

2. 𝑎𝑟𝑒𝑎 ← 𝜋 ∗ 𝑟2

3. Output 𝑎𝑟𝑒𝑎 as the answer.

We call this a “Pseudo-code”

of the algorithm. 

“Pseudo-code” 

– A complete description on the      

steps of the computation procedure.



Sorting

■ Given 𝑛 numbers 𝑎1, 𝑎2, … , 𝑎𝑛, 

sort and output the numbers in non-descending order.

■ Ex. 

For the input    3, 2, 8, 6, 10, 12, 2, 1, 

You should output    1, 2, 2, 3, 6, 8, 10, 12 in order.



Insertion Sort Algorithm - A Friendly Description

■ InsertionSort( 𝐴 1, 2, … , 𝑛 , 𝑛 )

A. For 𝑗 ← 2 to 𝑛, do the following.

a) Find the largest index 𝑖 ∈ 1,2, … , 𝑗 − 1 such that 𝐴 𝑖 < 𝐴[𝑗].

Set 𝑖 ← 0 if no such index exists.

b) Insert 𝐴 𝑗 at position 𝑖 + 1

by moving 𝐴 𝑖 + 1,… , 𝑗 − 1 to 𝐴 𝑖 + 2,… , 𝑗 .



A More Detailed Pseudo-Code

■ InsertionSort( 𝐴 1, 2, … , 𝑛 , 𝑛 )

A. For 𝑗 ← 2 to 𝑛, do the following.

a) 𝑘𝑒𝑦 ← 𝐴 𝑗 .

b) 𝑖 ← 𝑗 − 1.

c) While 𝑖 > 0 and 𝐴 𝑖 > 𝑘𝑒𝑦, do the following.

1) 𝐴 𝑖 + 1 ← 𝐴 𝑖 .

2) 𝑖 ← 𝑖 − 1.

d) 𝐴 𝑖 + 1 ← 𝑘𝑒𝑦. In this form, however,

they are hard to read & follow.



A (Perhaps) Even More Friendly Way

■ InsertionSort( 𝐴 1, 2, … , 𝑛 , 𝑛 )

A. For 𝑗 ← 2 to 𝑛, do the following.

// Consider 𝐴 1, 2, … , 𝑗 as the segment that is already sorted in order

a) Find the “correct” position for 𝐴[𝑗] in the sorted segment.

b) Insert 𝐴[𝑗] at the position it should be. 

This description is intuitive and easy to understand. 

However, some parts are not 100% precise as before.



Algorithm Description

■ An algorithm should be described in a way precise enough for a human 

being to verify & to understand.

– “When is it precise enough?” is a philosophical question 

whose answer depends on the actual scenario.

■ A detailed description is generally very precise, but…

– You don’t want to make it hard for others to follow.

Otherwise, he/she may not have the patience to read / to listen.

Please keep this in mind when preparing your answers for HW / Exams.



Algorithm Description

■ In general, a good algorithm description is one that describes 

the computational steps intuitively and precisely in a concise way.



Correctness & 

Time / Space Complexity of an Algorithm



Correctness of an Algorithm

■ An algorithm is a well-defined computational procedure that takes some 

input values and produces output values for a computation problem.

■ As a mean for solving a computation problem,

it is essential to ensure that the procedure always produces a correct 

answer for every possible set of inputs.

– A rigid proof is usually required to prove the correctness of an 

algorithm.



Correctness of Insertion Sort Algorithm

■ InsertionSort( 𝐴 1, 2, … , 𝑛 , 𝑛 )

A. For 𝑗 ← 2 to 𝑛, do the following.

a) Find the largest index 𝑖 ∈ 1,2, … , 𝑗 − 1 such that 𝐴 𝑖 < 𝐴[𝑗].

Set 𝑖 ← 0 if no such index exists.

b) Insert 𝐴 𝑗 at position 𝑖 + 1

by moving 𝐴 𝑖 + 1,… , 𝑗 − 1 to 𝐴 𝑖 + 2,… , 𝑗 .



■ InsertionSort( 𝐴 1, 2, … , 𝑛 , 𝑛 )

A. For 𝑗 ← 2 to 𝑛, do the following.

a) Find the largest index 𝑖 ∈ 1,2, … , 𝑗 − 1 such that 𝐴 𝑖 < 𝐴[𝑗].

Set 𝑖 ← 0 if no such index exists.

b) Insert 𝐴 𝑗 at position 𝑖 + 1

by moving 𝐴 𝑖 + 1,… , 𝑗 − 1 to 𝐴 𝑖 + 2,… , 𝑗 .

Lemma. (The Invariant condition of the algorithm)

At the end of each for-loop in step A., 

the numbers in 𝐴 1,2, … , 𝑗 are always sorted in order.

It suffices to prove the following lemma.



Time Complexity (Efficiency) of an Algorithm

■ The running time / time complexity / efficiency of an algorithm is 

the number of “logical atomic computation steps” it takes to compute 

the answer for the input instance.

– As the number of steps may vary with different input instances, 

one primary measure is to consider the 

“worst-case running time”

of the algorithm.

– This is usually measured in terms of the size of the input instance.



Running Time of Insertion Sort

■ InsertionSort( 𝐴 1, 2, … , 𝑛 , 𝑛 )

A. For 𝑗 ← 2 to 𝑛, do the following.

a) Find the largest index 𝑖 ∈ 1,2, … , 𝑗 − 1 such that 𝐴 𝑖 < 𝐴[𝑗].

Set 𝑖 ← 0 if no such index exists.

b) Insert 𝐴 𝑗 at position 𝑖 + 1

by moving 𝐴 𝑖 + 1,… , 𝑗 − 1 to 𝐴 𝑖 + 2,… , 𝑗 .



Running Time of Insertion Sort

■ The worst-case running time of insertion sort on 𝑛 input numbers is



2≤𝑗≤𝑛

2 ⋅ 𝑗 − 1 = 𝑛 𝑛 − 1 = 𝑂 𝑛2 .

– The original pseudo-code takes 𝑛 𝑛 − 1 /2. 

Here we use the version that is easier to understand.

– The analysis is tight, as there is indeed an instance that makes 

InsertionSort to take this number of steps.

This says, “roughly at most 𝑛2”.

We will define what this means next lecture.

Can you point out one of such instances?



Algorithms

What are algorithms?

Why do we need Algorithms?



Why do we need (Better) Algorithms?

■ As a mean of solving practical problems efficiently.

– Consider the following computation problem.

Sort the IDs of all Taiwanese citizens according to alphabetical order.

– The number of legal citizens in Taiwan is roughly 2.3 × 10^7.

– If we use the InsertionSort algorithm, 

it’d take more than a week to sort all the IDs.

– However, with a more cleaver algorithm, 

we can do this in less than 5 secs.



Why do we need (Better) Algorithms?

■ As a mean of solving practical problems efficiently.

– If we use the InsertionSort algorithm, 

it’d take more than a week to sort all the IDs.

– However, with a more cleaver algorithm, 

we can do this in less than 5 secs.

■ Good algorithms are indispensable in time-critical applications.

– Google maps, navigation systems, 

train scheduling systems, flight scheduling systems, etc.



The Merge-Sort Algorithm



The Merge-Sort Algorithm

■ Let 𝑎1, 𝑎2, … , 𝑎𝑛 be the input numbers.

■ The merge-sort algorithm works as follows.

1. Partition the input numbers into two subsets 

𝐿 = 𝑎1, … , 𝑎 𝑛/2 and 𝑅 = 𝑎 𝑛/2 +1, … , 𝑎𝑛

of roughly equal sizes.

2. Sort 𝐿 and 𝑅 (recursively) using Merge-Sort algorithm.

3. Merge 𝐿 and 𝑅 into a sorted list.



The Merge-Sort Algorithm

■ A more detailed pseudo-code for this algorithm.

Algorithm MergeSort( 𝐴 1,2,… , 𝑛 , left, right )

1. If left = right, then return.

2. Let mid ← ⌊(left + right)/2⌋.

3. Call MergeSort(A, left, mid) and MergeSort(A, mid+1, right).

4. Merge 𝐴 left, … ,mid and 𝐴 mid + 1,… , right

with the procedure Merge(𝐴, left,mid, right).



The Procedure Merge(𝐴, left,mid, right)

■ The procedure takes two sorted lists

𝐿 ≔ 𝐴 left, … ,mid and 𝑅 ≔ 𝐴 mid + 1,… , right

and merge them into one sorted list 𝐴 left, … , right .

𝐴

𝐴

left mid… …… mid + 1 right… ……

left right



■ The procedure uses two pointers 𝑝 and 𝑞 to iterate over 𝐿 and 𝑅.

– In each iteration, it picks the smaller between 𝑝 and 𝑞

to the new sequence and advances it.

– Repeats until 𝐿 and 𝑅 are scanned.

𝐴

left mid + 1

left right

Have to be careful 

about the boundary cases.

The idea is simple.

𝑝 𝑞



■ The procedure Merge(⋅) uses an extra array temp 1,… , 𝑛 .

Procedure Merge( 𝐴 1,2,… , 𝑛 , left,mid, right )

1. Copy 𝐴 left, … , right to temp left, … , right .

𝑝 ← left, 𝑞 ← mid + 1, pos ← left.

2. While 𝑝 ≤ mid and 𝑞 ≤ right, do the following.

■ If temp 𝑝 < temp 𝑞 , then set 𝐴 pos + + ← temp[𝑝 + +].

Otherwise, set 𝐴 pos + + ← temp[𝑞 + +].

3. While 𝑝 ≤ mid, set 𝐴 pos + + ← temp[𝑝 + +]. 

4. While 𝑞 ≤ right, set 𝐴 pos + + ← temp[𝑞 + +]. 



Analysis of the Procedure Merge(⋅)

■ Why is this procedure correct?

– Provided that 𝐿 and 𝑅 are already sorted,

the smaller of temp[𝑝] and temp[𝑞] must be the smallest element 

among temp 𝑝,… ,mid and temp 𝑞,… , right .

■ The time complexity of this procedure is 

2 ⋅ right − left + 1 = 𝑂 right − left + 1 ,

i.e., linear in the number of elements.



Analysis of the Algorithm MergeSort(⋅)

■ Why is this algorithm correct?

– Proved by induction on 𝑚 ≔ right − left + 1.

– When 𝑚 = 1, the procedure MergeSort(A, left, right) clearly 

sorts 𝐴[left] correctly.

– When 𝑚 > 1, 

by induction hypothesis, MergeSort sorts 𝐿 and 𝑅 correctly.

Then, we have shown that the procedure Merge(⋅) merges 𝐿 and 

𝑅 into a sorted list.



Analysis of the Algorithm MergeSort(⋅)

■ Time complexity of Merge-Sort.

– For any 𝑛 ≥ 1, 

let 𝑇 𝑛 be the number of steps required by MergeSort algorithm.

– Then, we have

𝑇 𝑛 =

𝑂 1 , if 𝑛 ≤ 1,

2 ⋅ 𝑇
𝑛

2
+ 𝑂 𝑛 , otherwise.



𝑂 𝑛

Total time 

taken by Merge(⋅)

𝑂 𝑛

𝑂 𝑛

⋮

⋮

𝑂(log 𝑛) levels 

in total

In total, it takes 𝑂 𝑛 log 𝑛 time.



Analysis of the Algorithm MergeSort(⋅)

■ Time complexity of Merge-Sort.

– For any 𝑛 ≥ 1, 

let 𝑇 𝑛 be the number of steps required by MergeSort algorithm.

– Then, we have

𝑇 𝑛 =

𝑂 1 , if 𝑛 ≤ 1,

2 ⋅ 𝑇
𝑛

2
+ 𝑂 𝑛 , otherwise.

And  𝑇 𝑛 = 𝑂(𝑛 log 𝑛).



The Divide-and-Conquer Paradigm



■ The merge-sort algorithm illustrates the usage of a classic 

algorithm design paradigm

Divide-and-Conquer.

■ The divide-and-conquer is a powerful technique commonly used 

for designing efficient algorithms. 

It consists of three steps.

– Divide –

to divide the problem instance into sub-instances of smaller sizes.

– Conquer – to conquer the sub-instances separately.

– Merge –

to merge the answer of the sub-instances for the original instance.



Divide-n-Conquer in Merge-Sort

■ A more detailed pseudo-code for this algorithm.

Algorithm MergeSort( 𝐴 1,2,… , 𝑛 , left, right )

1. If left = right, then return.

2. Let mid ← ⌊(left + right)/2⌋.

3. MergeSort(A, left, mid)   and   MergeSort(A, mid+1, right).

4. Merge 𝐴 left, … ,mid and 𝐴 mid + 1,… , right

with the procedure  Merge(𝐴, left,mid, right).

Dividing the instance 

into two halves.

Conquer them separately.Conquer them separately.

Merge the results.

We will see more examples 

in future lectures.


