Introduction to Algorithms

Mong-Jen Kao (5 &%§8)

Tuesday 10:10 — 12:00
Thursday 15:30 — 16:20




Algorithms

,,,,,,




Algorithm

m An algorithm is a well-defined computational procedure that takes some

Input values and produces output values for a computation problem.

- An algorithm is a sequence of well-defined computational steps

that transform the input into the output.

We call this a “Pseudo-code”
of the algorithm.

m Ex. Computing the area of a circle.
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1. 7 « radius (read the radius). D S

2 “Pseudo-code”

— A complete description on the
steps of the computation procedure.

2. area < mT* 71

3. Output area as the answer.
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Sorting

m Given n numbers a4, a,, ..., a,,
sort and output the numbers in non-descending order.
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Insertion Sort Algorithm - A Friendly Description

m InsertionSort(A[ 1,2,..,n],n)

A. Forj < 2 to n, do the following.

a) Find the largestindex i € [1,2, ...,j — 1] such that A[i] < A[j].
Set i « 0 if no such index exists.

b) Insert Alj] at positioni + 1
by moving Ali + 1, ...,j — 1] to A[i + 2, ..., j].




A More Detailed Pseudo-Code

m InsertionSort(A[ 1,2,..,n],n)

A. Forj < 2 to n, do the following.
a) key < Alj].
b) i«j—1.
c) Whilei > 0 and Ali] > key, do the following.
1) Ali + 1] « Ali].
2) 1<1—1. e —

d) Ali + 1] « key. In this form, however,
they are hard to read & follow.




A (Perhaps) Even More Friendly Way

m InsertionSort(A[1,2,..,n],n)

A. Forj « 2 to n, do the following.
// Consider A[1, 2, ..., j] as the segment that is already sorted in order

a) Find the “correct” position for A[j] in the sorted segment.

b) Insert A[j] at the position it should be.

This description is intuitive and easy to understand.
However, some parts are not 100% precise as before.




Algorithm Description

m An algorithm should be described in a way precise enough for a human

being to verify & to understand.

- "When is it precise enough?” is a philosophical question

whose answer depends on the actual scenario.

m A detailed description is generally very precise, but...

- You don’t want to make it hard for others to follow.

Otherwise, he/she may not have the patience to read / to listen.

7777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777




Algorithm Description

m In general, a good algorithm description is one that describes
the computational steps intuitively and precisely in a concise way.




Correctness &

Time / Space Complexity of an Algorithm




Correctness of an Algorithm

m An algorithm is a well-defined computational procedure that takes some

Input values and produces output values for a computation problem.

m As a mean for solving a computation problem,
It is essential to ensure that the procedure always produces a correct
answer for every possible set of inputs.

- Arigid proof is usually required to prove the correctness of an
algorithm.




Correctness of Insertion Sort Algorithm

A. Forj < 2 to n, do the following.

a)

b)

Find the largest index i € [1,2, ...,j — 1] such that Ali] < A[j].
Seti « 0 if no such index exists.

Insert A[j] at positioni + 1
by moving Ali + 1, ...,j — 1] to A[i + 2, ..., j].




m InsertionSort(A[1,2,...,n],n)

A. For j « 2 to n, do the following.

a) Find the largestindex i € [1,2, ...,j — 1] such that A[i] < A[j].
Set i « 0 if no such index exists.

b) Insert A[j] at positioni + 1

Lemma. (The Invariant condition of the algorithm)

At the end of each for-loop in step A.,
the numbers in A[1,2, ..., j] are always sorted in order.




Time Complexity (Efficiency) of an Algorithm

m The running time / time complexity / efficiency of an algorithm is

the number of “logical atomic computation steps” it takes to compute
the answer for the input instance.

- As the number of steps may vary with different input instances,
one primary measure is to consider the

“worst-case running time”

of the algorithm.

- This is usually measured in terms of the size of the input instance.




Running Time of Insertion Sort

m InsertionSort(A[ 1,2,..,n],n)

A. Forj < 2 to n, do the following.

a) Find the largestindex i € [1,2, ...,j — 1] such that A[i] < A[j].
Set i « 0 if no such index exists.

b) Insert Alj] at positioni + 1
by moving Ali + 1, ...,j — 1] to A[i + 2, ..., j].




Running Time of Insertion Sort

m The worst-case running time of insertion sort on n input numbers is
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This says, “roughly at most n?”.
We will define what this means next lecture.

- The original pseudo-code takes n(n — 1) /2.
Here we use the version that is easier to understand.

- The analysis is tight, as there is indeed an instance that makes
InsertionSort to take this number of steps.
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Algorithms




Why do we need (Better) Algorithms?

m As a mean of solving practical problems efficiently.

- Consider the following computation problem.

Sort the IDs of all Taiwanese citizens according to alphabetical order.

- The number of legal citizens in Taiwan is roughly 2.3 x 10"7.

- If we use the InsertionSort algorithm,
it'd take more than a week to sort all the IDs.

- However, with a more cleaver algorithm,
we can do this in less than 5 secs.




Why do we need (Better) Algorithms?

m As a mean of solving practical problems efficiently.

- If we use the InsertionSort algorithm,
it'd take more than a week to sort all the IDs.

- However, with a more cleaver algorithm,
we can do this in less than 5 secs.

m Good algorithms are indispensable in time-critical applications.

- Google maps, navigation systems,
train scheduling systems, flight scheduling systems, etc.




The Merge-Sort Algorithm




The Merge-Sort Algorithm

m Letay a,, .., a, bethe input numbers.

m The merge-sort algorithm works as follows.

1. Partition the input numbers into two subsets

L= {al, ---»a[n/zj} and R = {aln/zjﬂ, ...,an}
of roughly equal sizes.

2. Sort L and R (recursively) using Merge-Sort algorithm.

3. Merge L and R into a sorted list.




The Merge-Sort Algorithm

m A more detailed pseudo-code for this algorithm.

Algorithm MergeSort( A[1,2, ..., n], left, right )

1. If left = right, then return.
2. Let mid « |(left + right)/2].
3. Call MergeSort(A, left, mid) and MergeSort(A, mid+1, right).

4. Merge Alleft, ..., mid] and A[mid + 1, ..., right]
with the procedure Merge(A4, left, mid, right).




The Procedure Merge(4, left, mid, right)

m The procedure takes two sorted lists
L = Alleft,...,mid] and R := A|mid + 1, ...,right]

and merge them into one sorted list A[left, ..., right].
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left right




m The procedure uses two pointers p and g to iterate over L and R.

- In each iteration, it picks the smaller between p and g
to the new sequence and advances it. T

- Repeats until L and R are scanned. RS S

Have to be careful
about the boundary cases.

"y i  Zbout he poundary cases.
left & i

left right




m The procedure Merge(-) uses an extra array temp|1, ..., n].

Procedure Merge( A4[1,2, ..., n], left, mid, right )

1. Copy Alleft, ..., right] to temp/left, ..., right].
p < left, g < mid + 1, pos « left.

2. While p < mid and g < right, do the following.

m If temp[p] < temp|q], then set A[pos + +] < temp[p + +].
Otherwise, set A[pos + +] « temp[q + +].

3. While p < mid, set A[pos + +] « temp[p + +].

4. While g < right, set A[pos + +] « temp[q + +].




Analysis of the Procedure Merge(:)

m Why is this procedure correct?

- Provided that L and R are already sorted,
the smaller of temp[p] and temp[q] must be the smallest element
among temp|p, ..., mid| and temp|q, ..., right].

m The time complexity of this procedure is
2 - (right — left + 1) = O(right — left + 1),

l.e., linear in the number of elements.




Analysis of the Algorithm MergeSort(-)

m Why is this algorithm correct?

- Proved by induction on m := right — left + 1.

- When m = 1, the procedure MergeSort(A, left, right) clearly
sorts A[left] correctly.

- Whenm > 1,
by induction hypothesis, MergeSort sorts L and R correctly.
Then, we have shown that the procedure Merge(-) merges L and
R into a sorted list.




Analysis of the Algorithm MergeSort(-)

m Time complexity of Merge-Sort.

- Foranyn =1,
let T(n) be the number of steps required by MergeSort algorithm.

- Then, we have

t 0(1), ifn <1,
T(n) = | .
\ 2-T (7) + 0(n), otherwise.




Total time

O(logn) levels taken by Merge(-)

In total

]

O(n)

O(n)

O(n)

In total, it takes O(nlogn) time.



Analysis of the Algorithm MergeSort(-)

m Time complexity of Merge-Sort.

- Foranyn =1,
let T(n) be the number of steps required by MergeSort algorithm.

- Then, we have

t 0(1), ifn <1,
T(n) = A

n
\ 2-T (7) + 0(n), otherwise.

And T(n) = O(nlogn).




The Divide-and-Conquer Paradigm




m The merge-sort algorithm illustrates the usage of a classic
algorithm design paradigm

Divide-and-Conquer.

m The divide-and-conguer is a powerful technigue commonly used
for designing efficient algorithms.

It consists of three steps.

Divide —

to divide the problem instance into sub-instances of smaller sizes.

Conquer — to conquer the sub-instances separately.

Merge —
to merge the answer of the sub-instances for the original instance.




~ We will see more examples

DiVide-n-Conquer in Merg@-SOrt in future lectures.

m A more detailed pseudo-code for this algorithm.

Dividing the instance
Into two halves.

Algorithm MergeSort( A[1,2, ..., n], left, right )

1. If left = right, then return. ST s e

/////

2.| Let mid « |(left + right) /2]

mml

3.| MergeSort(A, left, mid) | and | MergeSort(A, mid+1, right).

4. Merge Alleft, ..., mid] and A[mid + 1, ..., right]
with the procedure| Merge(4, left, mid, right). |~




