
rI

Verification of Retiming Trans-
formations

Jan Vandenbergh, Luc Claesen, Hugo De Man

IMEC, Kapeldreef 75, B'3001 Leuven, Belgium
phone: +32-LG281220, email: vandenbj @imec.be

Abstract
In this paper we present an algorithm to verify the
correctuess of the resulte of retiming transforma-
tious. Starting from a high level data path de'

sciption, Chopin-2 [5], the retiming tool used in
IMEC, performs retiming, pipelining and hardware
eelection to construct an area-minimised data-path
meeting the timing constraints. Making use of the

formal definition of the retiming lemma [3] and

knowledge of the constraints imposed by Chopin-2,
a fast and efficient verification algorithm has been

developed that precisely can diagnose and pinpoint
problems in the circuii. The algorithms presented

here have been implemented in a prototype tool
called Sand.

1 Theoretical Background

1.1 Circuit representation

The circuits considered here are simple synchronous

circuits consisting of functional building blocks and

registers. The retiming algorithm is unconcerned

with the complexity of the building blocks which
can range from simple gates to an ALU, or still more

complex. Only globally clocked, unconditional reg-

isters with one input and one output are allowed.

We represent this physical circuit by a directed
gaph G(V,t,w). V is the set of vertices, and

consists of subsets of different kinds of vertices:

V = f UTUO. Bach / € f represents afunctional
element of the physical circuit, i € Z represeuts an

input ofthe circuit and o € O represents an output.

C is the set of directed edges. A directed edge

e; tt + u, with e e t Auru €V represents a con-

nection in the circuit, the direction of the edge fol-
lowing the data-flow. The graph is not a direct rep-

resentation of the circuit. The registers in the cir-
cuit are not represented by vertices. Instead, they
are bypassed and the resulting edges get a register

count value ur(e) equal to the number of registers

the edge bypasses.

A path p(u + o) is a sequence of vertices and

edges u = t6 9t 4 I t2... "5' ln = v connecting
vertex u to vertex u. A path p is a simple cycle
when its sta,rt and end point are the same vertex
and all vertices in between are visited exactly once.

This is written down as p@ + u). For a path p, the
path weight is then defined as:

-(p\ =D.t"l (l)
c=0

For a certain graph G to represent a physical
circuit the following reetrictions are necesaary:

Ye€E:ru(e)>0 (2)

Vu €V:Vp(t, + u):ur(p) >0 (3)

The first restriction reflects the fact that nega-
tive register counts are physically impoesible. The
second restriction states the fact that we only
consider synchronous systems so cycles with path
weight zero are dieallowed.

To be able to verify the hardware selection 88.

pects, the graph model has to be extended into
a hierarchical model. In that case a functional
building block modeled by a € f. is itself a graph
G'(V',t',u'). This graph represents the internals
of the functional building block. Here also, Vt =
Ft UIt U0'. When f' = 0, we have reached the
bottom level of the hierarchy. In that case we call
v a leaf vertex.

In this model, an edge c I u + u with, for in-
stance, v € f , can be written down more precisely

a^s e : u - u' with u' eXt rXt C V/ and V' e G' = v.

In a hierarchical graph G with u and/or u gub-

graphs, the following edges are possible:

. e i r! + t),tr e I Aa € 0: in this case we

have a through connection from an input ofthe
circuit to an output, without passing through
a functional block.

. e.u+ot,ueIAut eIt: this istheconnec-
tion of an input of the circuit to an input of a
functional block of the graPh.

o eiu'+t,rr' €0'Aa €O: thisisaconnection
of an output of a functional block to an output
of the circuit

o e i u' -+ 7)' ,7tt e7' Aa' e Ot' : this is a connec-

tion from an output of a functional block to an

input of another or the same functional block.

When dealing with algorithms considering only
the first level of the hierarchy, the simpler non hi-

erarchical graph model can be used and an edge

e; u -+ u' is considered as e i 1r + u.

L.2 Retiming
The retiming transformation optimises the clock pe-
riod of a circuit by adding and/or removing regis-
ters. It can be viewed as a vertex labeling r :V * Z
that assigns to each vertex an integer valued lag r.
A circuit G(V,t,ur) satisfying (2) and (3) is trans-
formed into a circuit Gr(V,t,wr). Of course, G,
also has to satisfy (2) and (3). The only change in
the graph G, is in the edge weights urr, since the
transformation works by only changing the number
and position of registers in the circuit. The edge
weights of the retimed graph are given by

w,(e) - u(e) * r(u) - r(u) (4)

It can be proven that this equation can be ex-
tended for a path p(u + u):

u,(p) = u(p) + r(u) - r(u) (5)

The retiming lemma proves that the circuit G,
obtained through retiming is functionally equiva-
Ient to the original circuit. This proof can be found
in [4], and is the foundation of our verification ap-
proach.

1.3 Hardware selection

Bardware selection consists of choosing an appro-
priate functional building block among a set of func-
tional equivalent ones. The elements of this set
have the same interface description; they only differ
in their internal implementation. Selection is done
following criteria of speed and area: we need an im-
plementation as small as possible and only as fast
as needed. Alternative implementations can be ob-
tained from a library, through logic synthesis, or by
applying redundancy removal. . .Au example would
be the selection ofthe type ofadder used in a design.
The library can contain a simple ripple adder and
a carry look-ahead adder. The carry look-ahead
adder can be selected when a faster cycle time is
needed.

2 Verification
Making abstraction of the hardware selection, the
verification problem is: given a circuit G'(V' ,t',u')
that is claimed to be a retiming of G(V,t, ur), prove
that this is indeed the case. The verification alge
rithm can be broken down in the following steps:

1. verify that G and G' are well-formed graphs
representing physically possible circuits.

2. verify that G and G' are structurally the eame,
i.e. G(V,t) = G'(Vt,t')

3. prove that there exists a retiming r euch that
equation () holds.

Hardware selection is a separate verification ie-
sue. For the retiming verification it becomes impor-
tant when determining the structural equivalence
between the two graphs. This will be discussed fur-
ther on in the eection on atructural equivalence.

2.1 G and G'are valid circuits
The first step in the verification algorithm coneists
of building the hierarchical graphs of the circuite
from their description in a hierarchical hardware de
ecription lauguage. Both circuits are then checked
for correct connectivity. While this ie not neceesary
for verification of the retiming transformation, this
step has proven itself useful as circuit problems of
this nature are quite common. Given a hierarchical
graph, the following connections are allowed:

o except for the top level graph, input vertices
should have only one arriving edge. The top
level input vertices have no arriving edges.

o except for the top level graph, output vertices
can have zero or more departing edges. The top
level output vertices have no departing edges.

e except for a leafvertex, input verticee have zero
or more departing edges. Input vertices of a
leaf vertex have no departing edges.

o except for a leaf vertex output vertices have
exactly one arriving edges. Output verticee of
a leaf vertex have no arriving edges.

The next step involves removing the registere
from the graphs and replacing them by weights on
the rmulting edges. This step is only performed at
the top level of the hierarchy. Once well-formed
graphs are constructed, we can verify that they
satisfy (2) and (3). Constraint (2) is met by con-
struction of the graph and assignment of the edge
weights.

Equation (3) is verified using a slightly modified
version of Johnson's algorithm [1] to generate all
simple cycles of a graph. The algorithm works it-
eratively on a vertex ordered subgraph that starts
out as the complete graph. Of this subgraph the
strongly connected components (SCC's) are con-
structed, and the cycles of the SCC containing the
first vertex of the subgraph are enumerated. For
the next iteration, a new subgraph is constructed

t

by removing the first vertex, until there are no ver-

tices left. Though this algorithm uses some clever

tricks to minimise the work to be done, the worst

case complexity is still very high due to the na-

ture of the problem. However, since we are only

interested in finding asynchronous loops, the edges

with a strictly positive weight can be made invisible

for the cycle'eearching algorithm. This meane that
each cycle we find will be an asynchronous one, and

in thai case the circuit will be incorrect. This trick
drastically improvee run times in case the circuit is

correct, since no cycles have to be enumerated' If
an asynchronous cycle is found we can stop with the

verification algorithm.

2.2 Structural equalitY

G' can only be a valid retiming of G if both graphs

are structurally the same. This means that V u €
V:31 vt €Vt :u <+ o'and Y e€.t:3, et et' :e:
e'. The sets of edges have to be the identical, the

vertices only have to be functionally equivalent be-

cause of the possible hardware selection. The equiv-

alence verification is done on the first level of hier-

archy only. Given only the structure of G and G'

and no additional information, in the general case

more than one mapping can be found. This hap-

pens if the retiming and hardware selection tools

are allowed to change names of the inputs, outputs

and functional building blocks of the circuits, so we

cannot rely on the name of a vertex u € V to find

the corresponding vertex in V'. We assume that the

names of the vertices are available and not changed

by the retiming tools. This is a reasonable assump-

tion, and makes the equivalence checking algorithm
very straightforward.

The hardware selection mechanism makes the

equivalence check more complicated. We still as-

sume that the name of the vertices have been kept,

or that at least the replaced vertices are identi-

fyable as such. We still have to verify then that the

vertices, which are not identical, are functionally
equivalent. This is the hardware verification prob-

lem in general: given two circuits o = Go(Vo,to)
and u' = Go(Vt,f,5), prove that they are perform-

ing the same function. Various approaches and so'

lulions to this problem exist. The candidates for

hardware selection can be selected from a set of
parametrised circuits which are formally proved to

te functionally the same [8]. It is of course also

possible to use the general Purpose verification tech-

niques already mentioned in the introduction'

2.3 Construction of retiming func-
tion r

The last step in the verification algorithm is to
prove that there exists a retiming r such that egua-

tion (4) is met. Chopin-2 assumes all inputs of the
circuit have a lag of zero, and all outputs have the
same lag. Given these constraints, it's easy to eee

that the only possible r can be calculated ueing (5).

For each v € f UO there exists an input u € Z such

that there is a path p(u + u). Using (5) and the
knowledge that r(u) = 0 we can calculate

r(u) = u,'(p) - rr(p). (6)

A depth first search spanning tree [fl etarting
from the inputs of the circuit ie constructed. Thie
gives us a path to an input for each of the vertices,

and (6) is easily evaluated. We can then verify that
all the outputs have the same lag. The last thing
to check is that () holds for all e e t. Note that
for the edges in the spanning tree, (4) is met by
construction.

If the constraints on lags of inputs and outputs
are more relaxed, the verification gets more compli-
cated. [2] shows a solution for that case.

3 Implementation and results

Chopin-2 uses the HILARICS [6] hardware descrip
tion language as input and output format. We deal

with the HILARICS descriptions through the proce
dural interface SPI [9], which gives us a language in-
dependent interface to structural hardware descrip
tions. Registers are recognised through a special

attribute. This attribute is also used by Chopin-2
to recognise the registers.

Chopin-2 can do both word-level and bit-level
retiming, which makes implementation of the algo-

rithms more complicated, since the connections be-

tween the functional blocks can be bus connections.

This results in multiple edges between verticea rep
resenting the same logical data flow. Coping with
this obfuscates the simplicity of the algorithms aud

makes implementation trickY'
The program, Sand, is implemented in C++.

Most attention has gone to a correct implementa-
tion with run time efficiency of only eecondary im-
portance, as no major efficiency problems were ex-

pected and experienced. General verification ofthe
hardware selection has not been implemented yet'

Chopin-2 chooses among a set of alternative imple-
menlations, coming from a library of parametrised

hardware modules. As mentioned earlier, this li-
brary can and has been formally verified'

{

circuit

exlflat
ex2
ex2flat
dirdet
section
eub-p-uv

fcells
before

74
74

294
294
502
924

fcells
after

$regs full

Table I shows some results. All examples were
run on a DECstatiou 5000/120 with l6Mb mem-
ory. The size of the examples is expressed in the
number of standard cells, before and after retiming
and pipelining. The number of one bit registers in
the original circuit is also indicated. The standard
cells, from the MIETEC standard cell library, range
in complexity from a simple AND cell to full-adder
cells. The last two columns indicate the run time
when full hierarchy is used, and when only the first
level is considered.

run times. The effect of the number of registera
inserted by Chopin-2 would be much smaller then,
and the verification offull hierarchical deacriptiona
would become much faster. The other circuits, i.e.
ilinlel, section and szD-p-uu are described on the bit
level and hierarchically flattened. The retiming of
sab-p-au was found to be faulty: on one ofthe ouh
puts a register was missing, causing the outputs to
have differential lags. This error has been corrected.

4 Conclusions
In this paper we ehowed how knowledge ofthe eyn-
thesis transformations, in this case retiming, GaIr

be used to develop efficient verification algorithme.
They allow for fast and precise diagnosis of circuit
problems, a feature most general purpose -verifica-
tion techniques lack. Possible improvemente are
extensions to allow for general verification of the
hardware selection actions, and the capability to
do buffering verification, as done in [2]. The way
hierarchy is handled now is also open for consider-
able improvement in run time and memory require-
ments.

References
[l] D. B. Johnson. "Finding all the elementary circuite of

a directed graph". SIAM J. Comprl.,4(l):7?-84, Mar.
1975.

[2] A. Koetelijk and A. van der Werf. {F\rnctional vcrifi-
cation for retiming and rebu.ffering optimization". In
Procecdinp of The Europcon ConJerence on Decign Av
lomalion, pagea 99-1O4. IEEE Computer Society Preae,
1993.

[3] C. E. L,eieeraon, F. M. Roee, and J. B. Saxe. "Optimizing
ayndrronour circuitry by retiming". In R. Bryant, editor,
9xl Collech Conlcrencc on Very Ldrgc Scele Inlegrdion,
pagea 87-116, 1983.

[4] C. E. [,eiserson and J. B. Saxe. "OptimizingSynchronoru
eysterns". Jovnol of VLSI ond Conpaler Sytlemt,
r(1):41-6?, Spring 1983.

[5] S. Note. uMopping high lhroqhprt tignol proccuing ol-
gorithmt inlo dcdicetetl dolo-qolh architecfurctn. PbD
thesis, K.U. f,euven - Imec, Mar. 1991.

[6] R. Severyne and E. Willemc. "HILARICS-2: The Lan-
gucge". IMEC Internal Report, Aug. 1990.

[{ R, Tarjan. "Depth-fint eearch and linear graph algo'
rithns". SIAM J. Compd,,l(2):f46-160, June 1972.

[8] D. Verkeat, L. Clacsen, and H. Dc Man. "On thc uac of
the Boyer-Moore theorem prover for corrcctncsr proofa of
parameterized hardware modulea". In L. Claceen, editor,
Formol VLSI Specifcolion And Synlhcaia, pagee 99-116.
North-Holland Elsevier Science PubLishera, 1990.

[9] P. D. Worrr. USPI version 2.51". IMEC Internal Rcport,
Mar. 1992.

lst
s

914

15r
157
428
524

t262
1104
1616

24
99

r16
318
369
521

I
t8
59

179
306
326

1l
64
64
48

224
288

Table 1: Sand Rcsults

ex| is a word-level description of a simple circuit
on which word-level retiming is used. The func-
tional elements in this circuit are high level func-
tional building blocks like 8-bit adders, multiplex-
ers and comparators. The figures show that quite
some time is spent in building the hierarchy and
verifying the connections. exlflal is the same cir-
cuit after flattening of the hierarchy and bus ex-
pansion. This circuit was retimed on the bit level,
with the same cycle time as result. In theory the
time needed for verifying the full hierarchy and only
the first level should the same for this case, since
w1flat is fully flattened and contains no hierarchi-
cal information. The registers inserted by Chopin-2
however, are hierarchically modeled. Depending on
how many registers are added by the retiming tool
the diflerence in the run time figures for full or first
level hierarchical verification will be more or less

important (remember that the hierarchical connec-

tivity checks are run before register removal). From
the figures for ex2, a circuit processing 32 bit words,
and erZfial, the flattened version of erL, similar con-
clusions can be drawn. The bit-level retiming of ee2

resulted in a circuit twice as fast as the word-level
retiming, but at the cost of more registers. The fig-
ures also show that the verification of a word-level
retiming of a hierarchical circuit is about as fast to
a bit slower than the verification of the bit level re.
timing of the flattened circuit. In Sand, the hierar-
chy is treated in a simple and straightforward way,
and a more sophisticated approach would improve

'
"

l''-l l

; .i'

lntermar Hotel Malente
Germany

.=c.-

(
t:
:.,

