Project Nr 3216

Turning the Formal Verification of VLSI Hardware into Reality’

L. Claesenz, D. BorrionelS, H. Eveking4, J.L Paillets, P. Prinetto®

Abstract.

This paper presents an overview of the different aspects in the area of the formal
verification of VLS| hardware. For particular aspects of the problem area the adequate
approaches are being addressed. In this respect an overview of major directions and
achievements in the area of formal hardware verification as under research in the
CHARME ESPRIT Basic Research Action are presented. All partners are convinced that
formal verification, given the appropriate methodologies, algorithms and formalisms, will
find its place in actual CAD systems for industrial hardware designs. Research results
include among others a link-up of formal verification tools to VHDL as well as the
demonstrated Mi formal verification of actual VLSI chips of over 32000 transistors from
the layout up to high level algorithmic specifications.

1. Goals of Formal Hardware Verification: Why is it needed?

The constant evolution in the microelectronics technology continuously allows to
integrate larger and larger systems in integrated circuits and systems. This has its
consequences in the fact that complicated chips of over 1 million transistors are
realizable and that semi-custom approaches of standard cells and gate arrays have
emerged to an enabling technology, not only for the classical electronics systems
industries but also for innovative SME’s. Electronics systems emerge in all aspects of
every day life such as consumer electronics, telecommunication, HDTV, speech and
image processing, computing systems, automotive applications etc... Instead of being
technology limited, complex electronic systems have become design limited. It is
indeed crucial that these complex systems, as required by industries incorporating
electronics in their products; are first time right. Design errors should be detected as
soon as possible in the design phase, because erroneous designs will introduce
considerable delays in the introduction of innovative products on the market. These on
their turn induce unacceptable losses in profit.

The classical way in which digital systems are being evaluated for design correctness
is by a huge amount of simulation experiments. It is however well known that, except
for trivial and obvious examples, exhaustive simulation covering all possible patterns is
impossible to perform due to the problem of combinatorial explosion.

Formal design and verification techniques [4] attempt to address the design problem
in an analytic way in order to obtain mathematical guaranteed correctness with respect
to the modeling method used. Automatic synthesis from high level specifications {1,21

1 Research sponsored by the EEC under the ESPRIT Basic Research Action 3216 CHARME
2 m“mdreef 75, B-3001 Leuven Belgium

3 Lab. IMAG-ARTEMIS, Inst. B.P. 53X, F-38402 Grenoble Cedex, France

4 EITS‘1_-FJE—D&WH_—Iecf'm.,Merckstrasse 25, Techn. Univ, Darmstadt, D-6100 Darsmtadt, F.R.G
§ Université de Provence, CASE Y, 3, Place Victor Hugo, 13331 Marseille Cedex 3, France

& Poiil i Torino, Dip. di Autom. e Inf., Corso Duca degii Abruzz, 24, 110129 Turin, Htaly

857

858

is an approach that can already provide some solutions for specific design aspects and
abstraction levels. However, due to the unbeatable human insight in the underlying
design problems, there will always be a large human and manual contribution in the
design of complex digital systems, which need to be verified. Even in the case of so
called "correctness-by-construction" methods, formal verification methods will enable
the discovery of software bugs in the synthesis systems at hand by cross checking the
results of the synthesis process.

Formal methods have already a long tradition and constitute a number of aspects
and different approaches in the area of software development. In fact a lot of European
research in this area is sponsored in ESPRIT projects [3]. The correctness of hardware
designs have much more impact on direct costs involved in iteration cycles (due to VLS|
processing etc.) and late introduction of products into the market. This motivates even
more the need for formal verification in hardware than it is already in software design.
The ongoing research in hardware verification, as is the goal in the CHARME project,
is driven by a need to verify complex digital systems in as automatic a way as possible.
This is required to foster acceptance in the electronic CAD cormmunity.

The goal of the ESPRIT CHARME Basic Research Action is to investigate, evaluate
and prototype promising approaches that can help guarantee digital hardware correct-
ness. For this purpose a grouping of researchers with backgrounds in electrical
engineering, computer science and mathematics has been formed. These different
backgrounds allow to put a number of different approaches and view points together
in order to develop appropriate techniques and methodologies in order to address the
problem of hardware correctness in the best way. All partners in the action are
convinced that formal hardware verification can be converted into actual CAD systems
and design practice. Therefore prototyping and application of the ideas to actual
electronic design problems is ultimately important. Only the head lines of the research
in CHARME are described in this paper. ‘

Formal methods address a large number of design areas and levels of abstractlon
and encompass several different approaches to tackle these problems. Therefore an
overview of the major design aspects and levels of abstraction is given in section 2..
Based on this design aspect and abstraction level classification a description of,
individual formal verification techniques addressing specific areas is given in section 3.,
In order to facilitate the use of specific verification techniques, methodologies and/or,
design rules could result in "Design for Verifiability" in similar lines as what has been-
achieved by "Design for Testability" [6] as described in section 4. In section 5 the major
ideas for the future direction of the research in formal hardware verification are indicated,,
followed by the conclusions in section 6. e

e R AT
2. Design Aspects, Levels of Abstraction A
2

Format Methods is a term that is used to cover several meanings, related to either;
different aspects, different Jevels of design abstraction as well as different underlying
formalisms and methodologies. In order to clarify this situation @ problem oriented,
overview of design aspects and abstraction levels is given in this section. This classifi-_
cation is important because the different aspects and levels of abstraction often h&VB
given rise to specific developments of methods and algorithms for formal verifi catlon
An overview according to formalisms is given in [4]

In VLSI hardware design, errors can be introduced at several places such as !z-:Yc"-'t
rule violations, circuitry etc... For synchronous digital VLSI designs the verification of!
the correct functionality can be subdivided in to the aspects of timing-, electrical- and

859

behavioral correctness verification. In this paper we mainly concentrate on the correct
implementation versus specification behavioral verification.

* Algorithm / Inslruction Set
ilicali nal Flow Graph /
'q Specificalions Sig pebic b
Functional
Specification
“asynchronous |, : = (SFG)
subsystem & - -
”éﬁ?‘g’ &
Behavioral
Hegistar
Transler
(bRT)
Structural
Ragister
Transfer
(sAT)
Transistor
Swilch
Controdlar Lyout Module layout Lot
1 (Switch)
Gate lavel onooboogpfo
N
1/.% a
® 22 lmmg
%
s |l
goooponoooo

Figure 1: Aspects (horizontal) and Levels of Abstraction (vertical) in Hardware Design.

Figure 1 provides an overview of current digital system design, including the specific
aspects when VLS! iniplementation is targeted. Itis assumed that digital system design
starts from a formal specification at the behavioral or signal flow graph level. Such
specifications usually take the form of software models in classical programming
anguages such as FORTRAN or C. For digital system specifications at these high levels,
ieveral dedicated designer oriented system and hardware description languages as
vell as more mathematical languages have emerged. VHDL [5] is a standard system
ind hardware description language (HDL) that is gaininng acceptance in industry and
5 supported by CAD vendors with compilers, simulators and logic synthesis systems.
'HDL is a language that can not be overlooked anymore. It allows to describe digital
ystems at several levels of abstraction, using several description styles, namely the
rehavioral, structural and dataflow styles. Thus, the behavioral specification as well as
1€ circuit implementation can be given in VHDL. For all these reasons, we believe that
'HDL is a good candidate as input language for a Formal Proof environment,

1 Synchronous - Asynchronous Subsystems

In digital hardware systems, a major subdivision of design aspects is the subdivision
t asynchronous and synchronous subsystems. To be able to manage the design
rocess and for increasing testability [6], the largest part of current digital designs are

ynchronous.
-1.1 Asynchronous Subsystems.

The interfaces to the externals of a system or other integrated circuits are most often
salized by asynchronous subsystems. The asynchronous interfaces have to imple-

860

ment communication protocols among digital systems. They form the bridge between
the asynchronous (interface) world and the synchronous regions on the chip. Such
asynchronous circuitry usually consists of small parts of the global circuitry, but
nevertheless have to implement the secure communication with the outside world.

2.1.2 Synchronous Subsystems.

For the synchronous subsystems a major subdivision of circuitry in control domi-
nated- and data path dominated subsystems is possible (see fig. 1). The data path
dominated subsystems usually implement the vector operations such as additions,
multiplications, etc.. These data path subsystems are characterized by the fact that the
circuitry is generated in relation to the chosen word lengths of the digital words being
processed. In integrated circuits these are usually implemented using structured layout
techniques. Typical applications of data path dominated circuits are for example ALU's,
ACU’s Multipliers etc... They are heavily employed in the data paths of computers as
well as in digital signal processing applications [2].

Control dominated subsystems implement the control over the data path dominated
subsystems as well as implement the digital control of an application at hand. Several
of the current ASIC applications fall in this category. Control dominated systems are
usually much more random in nature than data path dominated subsystems, and are
usually implemented using random logic (currently often done as standard cells or gate

arrays).

2.2 Levels of Design Abstraction.

An other classification of design aspects in fig. 1 is according to the levels of
abstraction (in space and in time): (1) signal flow graph / algorithmic / instruction set
level: SFG, (2) behavioral register transfer level: bRT, (3) structural register transfer
level: SRT, (4) MOS transistor switch level: Switch, as described further on.

2.2.1 Signal Flow Graph [Algorithmic / Instruction Set Level.

At the highest level of design abstraction, the signal flow graph defining the behavior
of the algorithm to be synthesized in hardware is considered. At the SFG level it is not
specified how the algorithm is implemented in hardware. This could in fact be done in
numerous ways (e.g. bit-serial, micro-code processor type of architecture (with several
variants), bit-parallel or any combination of these). It is independent of how operations
are performed, either on dedicated hardware blocks or on general purpose ALU’s. It
should be noticed, that very often the topology of the SFG will not directly correspond
to the topology of the synthesized architectures.

In the case of processor design, the highest level of design abstraction is the
specification of the instruction set (reference manual). This defines the processor-mem-
ory system as it is seen by the software programmer. The memory is seen as an array
of adressable words of a given length, and only the internal registers of the processor
which are made visible to the machine language are represented at this level. The
internal structure of the processor, the processormemory detailed exchanges, are not,
part of this level of specification. On the contrary, the emphasis is on the definition of
the operation codes, addressing modes, and on the result of the execution of each
individual instruction, all in symbolic form.

861

2.2.2 The Behavioral Register Transfer Levels (bRT-level).
In high level synthesis [1.2] the first steps consist of transforming the SFG level

specification into a data-path and a schedule. In the behavioral register transfer level,
the specific data path Operators, such as the amount of ALU's, multipliers etc. and the

2.4 The MOS Transistor Switch Level (Switch-level).

When targeting towards MOS VLS| implementation of the system at hand, all digital
ircuitry has to be implemented in terms of MOS transistors. Transistors can be

. The Formal Verification Map.

Given the outline of design aspects and levels of abstraction of fig. 1 as described
section 2, itis now better possible to describe the Formal Verification Map as indicated

)straction. This description starts from the lowest levels of abstraction as it is there
atthe most progress towards automated formal verification has been made.

1 Transistor Switch Level Analysis. (1)

After the generation of the mask layouts it is possible to extract the transistor
tworks as they are actually implemented on an integrated circuit. This is a good
Presentation for the actual circuits and their behavior as they will ultimately be realized

862

on in order to check the circuit functionality. Symbolic analysis techniques of switch
level circuits [9,13] based on the solution of a number of systems of Boolean equations
{8] have been developed. Inthe CHARME project similar techniques have been realized
[11,12] in the BOTRYS program. An alternative approach based on the formulation of
the transistor switch level model in predicate logic has also been worked outin CHARME
[14] in the SWAN program.

These approaches have been used for the verification between the sRT and the
switch level.

Algorithm / Insrruchon Set
Speciicalions Signal Flow Graph /
orithm /

\ Functional
Spedilication
asynchronous \ synchronous subsyslem (SFG)
subayslam Conlrol dom:nalocl Ealapalh domma!ed

%omdural

gister

Transler
(sRT)

: 7
Transistor
Switch
@ Level

{switch)

uun uunnnn
o
a
[+]
o

“EE

opopoooooon

Figure 2: The Format Verification Map. The numbers in circles refer to descriptions of for-
mal verification techniques in the text.

3.2 Combinatorial Logic Blocks. (2

For the verification of different design representations at the sRT level, it is possible,
due to the knowledge and use of the same state encoding of registers in specification
and implementation to reduce the problem of formal verification to the comparison of
the Boolean functions of the combinatorial logic blocks. For the comparison of Boolean
functions, tautology checkers can be used. A comparison on the same benchmark set
[17] of over 10 tautology checking algorithms, from all over the world including
algorithms as developed by CHARME partners has been made. From this it has become
clear that the methods based on the concept of OBDD’s (Ordered Binary Decision
Diagrams) [19] and their improved derivatives [20,21,22] are clearly superior to the
other existing methods in their performance. The methods of OBDD'’s are currently
recognized as the most efficient approaches for Boolean function comparison. OBDD's
are used as the basic representation formalism of Boolean formulas within most of the
research in the CHARME project [10,57,18]. The comparison of representations at the
sRT levels ((structural) register transfer level & gate level) [20] has been used for

863

checking the correctness of the individual combinatorial building ol{ocgz r|1n| shéﬁi of up
to 300,000 transistors [23] and have currently found industrial 80P IG:: e tion of

For the verification of different representations at the sRT level mft eed o cF:)upIed
the same state encoding, the LOVERT [57] program has been de\'{B op ocsssors has
to VHDL. Implementation verifications of a 32-bit ALU and small microp

been done in cpu seconds.

3.3 Finite State Machine Applications. (3)

The comparison of the Boolean functions of combingtornal blocl;iebianr:]%afzag
tautology checkers (e.g. OBDD’s) is only directly possible whan correspondance
encoding is used in the two representations. Inseveral applications tde atly known. E.g
in the encoding of the two representations of digital circuits is not airectly ermented gt
a controller can be defined at the bRT level with symbolic states &nd IS;:T;FIJ rthms for
alower sRT level with specific states. To cope with this problem generco dir? and their
the comparison of two finite state machines, for WT:jICh the state en g
correspondances is not known have been developed. :

A mpajor breakthrough in the complexities of comparisons ef Fg:i;tig:}s 0??]2
achieved with the symbolic representations (instead of specific st veriications
visited states [27]. The achievements in these comparisons have lea me 60 state
of FSM’s with more than 1020 states, which correspon_ds roughlybtovif;iﬁed by this
variables [29,30]. This means that small controler like circuits can fer el v
Based on these symbolic techniques, a program called EPOS [65]. éi}'t'on presasd
of FSM’s as black boxes has been developed in CHARME. In ad Ib !een (?eveIOped
algorithms [25,261 for FSM verification on the product machine have e v ims
in CHARME. The two algorithms differ in the following points: 1=.1|gc:r|thn(;lt m‘achine‘ i
processing and explicit enumeration to dynamically bwl_d the produ e extr;a i
rithm #2: reverse time processing, function represen;ahon as cubes,
by means of a Podem-like implicit enumeration procedure.

The verification of completg hardware designs, which most often ha‘:’?i ergugh trgggg
than B0 state variables, can due to complexity probrer_ns not yet be }{e Itions yfurlher
techniques. As no single technique is clearly superior for all a_'?ﬁ.'gﬁ of the ircuit
research for the appropriate combination of algorithms and exploitati

structure is required here.

3.4 Parameterized Hardware Modules. (4)

In contrast to control dominated circuits, data path dominated C|f(f:;l:1$ir?1re|§:12rr?tg;
terized by much more regularity in their implementations. They are Ofl forps Lok doia
in an iterative or recursive way as e.g. 32-bit ALU. VLSI module libraries T
path elements are usually realized as parameterized modulo gener?zed b .oten-
hardware modules generated by such module generators aré chare.im?r = blszs as
tial complexity and by parameterizability: The size of the ComblTa orm lexities for
generated by such module generators can give rise to unmanagabg Céf)fn l;ubsectic}n
checking their correctness by tautology checking methods as describe d are defined
3.2. Several data path dominated design problems expose regulan}ydaﬂl o me—
in a parameterized way. Starting from a generic description severa ?Sfé; e
can be generated. This makes them very suitable for the formal proofs by ’
for which general purpose theorem provers can be used very woll.

864

Within CHARME, formal correctness proofs of parameterized module generators
[31] as well as regular hardware structures [32,33] based on the Boyer-Moore [60]
theorem prover, have been worked out successfully.

The formal proof by means of the Boyer-Moore theorem prover [60] has been
successfully integrated with a module generation environment as used by the CATHE-
DRAL sificon compiler [31]. This has up to now allowed the discovery of more than 25
design and specification bugs that were previously uncovered by traditional simulations
on the designs.

Other theorem provers and proof assistants have been investigated for hardware
verification and compared: OTTER [34,35], HOL’ [569,36,37] and OBJ3 [38,62].

From the experience of the CHARME partners in the usage of general purpose
theorem provers it has become clear that such tools have their specific strengths and
weaknesses in comparison to more dedicated approaches such as those based on
OBDD's and FSM verification as explained in subsections 3.2 and 3.3. General purpose
provers have the advantage of a uniform formalism, the concept of abstraction and
proofs by induction. The uniform formalism has the advantage that it allows reasoning
in the formalism itself. But it has the disadvantage of being too general because they
usually support the reasoning in some branch of mathematics instead of with the
concepts and objects under design. To be useful in design this requires a policy for
use of such provers. Even for theorem provers that have some automatic decision
procedures, it has been experienced that a /ot of user interaction and system expertise
is required in the use of theorem provers. This means that in the application of theorem
provers in hardware design, these tools should only be used where this investment can
pay off. The aspect of proofs by induction is best exploited in parameterized hardware
modules as well as in the correct definition of synthesis primitives. The aspect of
abstraction can best be used at the higher level of design abstraction. Methodologies
for design which rely on theorem provers should include the usage of theorem provers
only at places where they do not require intervention of the day to day hardware
designers.

3.5 Instruction Sets. (5)

As far as special purpose devices are concerned, between the SFG/Algorithmic level
and the bRT level, control dominated subsystems require scheduling of the tasks to be
executed in the hardware (data paths, 1/0 units, memories, etc.). This task is called
scheduling [1,2].

On the other hand, with respect to microprocessors, the “instruction set" level is the
highest level of abstraction and therefore an ‘instruction set" description can be
considered as the microprocessor specification. The microprocessor implementation,
that has to be checked versus this specification, can be described at various less
abstract levels, from the "micro-sequence" level to the “data path" level [39,40]. Starting
from the "instruction set" level, the proof consists in verifying, among two descriptions
given at two adjacent levels, that the more detailed one is a correct implementation for
the more abstract one. The lowest levels of description are written in VHDL, but for the
highest ones, no appropriate single HDL exists. Therefore, in the CHARME project, a
functional semantics [40] based on the P-calculus (64] has been defined for each of
these highest levels [39,40]; these definitions have been made in accordance with the
formalisms and the principles of the tools that are used to achieve the proofs. Because

7 cooperation with the CHEOPS ESPRIT-BRA 3215

865

of the complexity of this semantics, the realization of an associated hardware descrip-
tion language is not desirable; rather, a user-friendly interactive editor can help the
designer in describing his/her microprocessor.

Such a special purpose interactive tool (with windows and menus), called uSPEED,
has been developed for the specification and symbolic verification of (instruction sets
of) microprocessors {41]. This tool constructs automatically the appropriate functional
models of the microprocessors. This methodology has been used to successfully
formulate the instruction sets of commercial microprocessors.

3.6 System Level! Verification. (6)

In cooperation with research efforts in the CHEOPS project, a new system verification
methodology called SFG-Tracing has been defined [42]. This verification methodology
aims at the formal verification of designs across levels of abstraction. It is based on the
observation that higher levels of abstraction are less detailed in their specifications (in
terms of hardware and in terms of time instances). Therefore SFG-Tracing uses the
higher level specification as a starting point and relies on the partitioning of this high
level specification. In case of an SFG representation (but others are possible as well),
the partitioning results in a number of boundary signal values, which are called reference
signals. In the SFG-Tracing methodology it is required that the mapping functions in
space and in time of these reference signals with respect to the iower level implemen-
tation are known. This methodology has resulted in the full verification of the transistor
circuits as extracted from the layout with respect to the high level specification of a
32.000 transistor modem chip [68] as synthesized by CATHEDRAL-2 (see fig. 3).

Figure 3: Chip layout of a 32000
transistor modem receiver pulse
shaper and equalizer chip as syn-
thesized by CATHEDRAL-2. This
chip has 3 ALU's of 14 bits, regis-
ter files, a multi-branch controller,
micro sequencer, and testability
11 5 circuitry. This chip has been fully

ot verified w.r.t. high level specifica-
i tion using the SFG- Tracing meth-
' odology.

The complete interaction of sequential systems is captured in the SFG-Tracing
verification methodology in contrast to only the individua! combinatorial blocks at the
sRT level as the methods explained in subsection 3.2. Due to the systematic partitioning
of the specifications, SFG-Tracirng does also not suffer from the complexity limits
(around 60 state variables or 10° states) as is the case in black box FSM verification

866

methods as explained in subsection 3.3. The chip in fig.3 contains 852 latches
corresponding to 10°°° states.

3.7 Asynchronous Subsystems. (7)

As explained under 2.1.1 almost all integrated circuits conumunicate with one
another via asynchronous interfaces. The valid communication among such subsys-
tems therefore needs verification. Whereas synchronous subsystems are more natu-
rally described in value-based formalisms, asynchronous subsystems lend themselves
more naturally to event-based formalisms. This is motivated by the asynchronous
communication protocols.

in CHARME the event-based formalism CIRCAL [44] is being implemented for the
formal verification of asynchronous subsystems [45] as well as its use for the integration
in the synchronous circuits. CIRCAL is based on the concept of process algebras as it
has been developed in the area of software engineering. Abstraction mechanisms for
such an event based formalism have been worked out in CHARME [46]. Formal
verification results are presented in [47].

3.8 Interface to VHDL as a Hardware Description Language. (8)

As the methodologies for formal verification are still under development, investiga-
tion, prototyping and comparison, currently all of the research efforts in CHARME as
depicted in the Formal Verification Map of figure 2 are based on in-house hardware
description languages and specific formalisms. This is motivated by the availability of
previous research results and tools, the concentration on finding appropriate solutions
of the design verification problem and by the available benchmarks.

However, to guarantee that what is being verified is indeed what has been designed,
and gain acceptance in the community of hardware designers, formal verification should
take as input the same user interface descriptions which are used for the other design
tasks. VHDL [5] tends to become a 'lingua franca" for hardware description in a
significant part of the western world. Due to the considerable interest raised in the
community by VHDL-based software, it is clear that dedicated efforts to concentrate on
the formal verification of VHDL descriptions are required.

In CHARME, research work is being conducted to that goal. Unfortunately, VHDL is
both a complex language, and a language for which no formal semantic definition is
provided. Our pragmatic attitude has consisted in selecting a significant VHDL subset
for which we have defined the semantics in terms of a formally manipulable model, and
writing a translator from VHDL to the input format of provers for this model! (this work
has taken advantage of the translation principles presented in [61]). This work has led
to the implementation of a prototype of Formal Proof Environment for VHDL, which is
called PREVAIL [48,50], and which checks the functional equivalence between two
"architecture" bodies, describing alternative implementation hypotheses, or different
description levels, for the same design "entity”, where one is considered as the
specification, and the other one is the implementation. In order to keep the proof
problem within manageable size, we take the well known "divide and conquer" strategy,
and have identified modelling levels and circuit types, together with a preferred
description style in VHDL, for which particular proof tools appear to be efficient. More
specifically, this is done in the current status of our PREVAIL environment by defining:

867

Nevertheless, the current status of this prototype does not allow the processing of
the VHDL timing constructs such as "stable" (except for the master clock), "last-event”,
and thus avoids reasoning on asynchronous primitives. To that goal, recent work
concentrates on the formal definition of the semantics of the VHDL timing constructs,
and on the verification of associated properties (given in an informal way in the LRM)
by means of the Boyer-Moore Theorem Prover [49].

The preliminary conclusions of all that work are that some concepts (such as

4 Design for Verifiability.

Given the fact that formal verification still needed to go along way to become useful
in practice, the CHARME partners decided in 1988 to define guidelines under which
formal verification of hardware could become practical. In analogy with Design for
Testability (DfT) [6], this has been called Design for Verifiability by the partners.

DfV such as also DIT has to take into account the possibilities of the technology

concentrate on the verification methodology to be introduced in the design process
[52,54].

5 Directions for Future Research.

The Formal Verification Map represents an overall classification of aspects and levels
of abstraction on which formal verification tools are being worked out. As indicated in

industrial hardware design process.
In the future, further consideration is necessary in order to automate the formal
verification process. This requires further elaboration of the basic technology of Boolean

direction have been worked out in CHARME [57].

Because the generated mask layouts are one of the formal hardware representations
thatare the nearestas a model to the actual circuits being realized, the formal verification
starting from the layout extracted transistor circuits is extremely important. Therefore,

868

on the switch level of abstraction, future efforts have to concentrate on the efficient
symbolic analysis and evaluation of transistor circuits with over 1.000.000 transistors.

As stated previously, the validation of the usage of the switch-level model deserves
further attention in future research.

The validation of external properties of specifications, as also used in synthesis
should be worked out further. Current approaches in model checking only concentrate
on the verification of systems with around 60 state variables [29,30], which is still far
from actual circuits. To cope with realistic complexities, more of the structure at hand
in hardware specifications has to be exploited. In the industrial practice synthesis from
high level specifications is becoming more and more accepted. This allows designers
to make fast tradeoffs between different implementation alternatives. It should however
be made sure that these specifications still meet the original requirements and specifi-
cations.

As general purpose theorem provers require a large amount of human expertise and
interaction their usage should be restricted to those places where their use can really
enlarge the quality of designs at hand as well as where “the regular designer" can be
hidden from their intervention. This can be mainly exploited in the formal design of
parameterized library entries as well as alternative synthesis primitives in libraries [56].
The aspect of abstraction is being exploited in transformational design systems.

Formal languages as used in theorem provers {59,60] can be used for the consistent
formal definition of operator primitives that are used in CAD environments for purposes
of simulation, verification and synthesis.

System level verification methodologies such as SFG-Tracing are as a methodology
not restricted to the levels of abstraction to which they are currently used inthe CHARME
and CHEOPS projects. Indeed alternative representations such as VHDL and even
'C-code’ models require future investigation.

In the implementation of cormplex systems, trade-ofls have to be made on which
parts to be made in hard- and which parts to be made in software. Future research has
to concentrate on making this migration possible in an efficient and correct way.

VHDL is the HDL for the years to come. Even though reservations could be made
with respect to certain aspects of the language, formal verification tools will have to
adopt tanguages such as VHDL in order to be able to introduce formal verification
methodologies in the actual hardware design trajectory.

In comparison to the synchronous subsystems, the aspect of the correct synthesis
and verification of asynchronous subsystems needs further elaboration, because the
correctness of large systems interconnected via asynchronous interfaces are critically
dependent on the correctness of these interfaces for the correctness of the global
systems. h

Several of these future aspects will the be target of the CHARME-I| project.

6. Conclusions.

In this paper an overview has been given of the broad field of formal verification in
relation to design aspects and abstraction levels. This is necessary in order t0
understand and to be able to compare the specific approaches to address specific
problem areas. A large progress has been made in the whole formal verification field.
Having a mixed background cooperation in CHARME of electrical engineers, computer
scientists and mathematicians has enabled to put together the appropriate ingredients
to migrate formal verification from theory in industrial practice. This is already ilustrated
by the practical results of the full verification of actual VLSI chips from the transistor

869

level as extracted from the layout with respect to the high level specifications. This is
the largest full verification of a complete integrated circuit done thus far. Previous
approaches in the formal verification of e.g. microprocessors have all skipped important
levels in the design abstractions. Also the adoption of designer oriented description
languages such as VHDL are a key to introducing formal verification methods in the
industrial practice.

In a fast growing field as formal design verification, the CHARME partners are
stimulating the communication of researchers in the field by organizing state-of-the-art
public workshops. These have already been organized in Darmstadt, Glasgow,
Grenoble, Leuven and Turin. These meetings assist in the further comparison and
synergy of promising approaches in the area of formal verification.

7. Acknowledgements.

The authors hereby thank the EEC for sponsoring this focused research project,
which has enabled further progress and superior results, that would not have been
possible in individual efforts only. They also would like to acknowledge the direct or
indirect contributions of the following researchers to the implementatious and elabora-
tions of the ideas and results being developed inside the CHARME project: M.Allemand,
C.Angelo, A.Bailey, C.Bayol, P.Camurati, P.Cockshott, H.Collavizza, D. Deharbe, P. De
Vijt, M.Genoe, M. Gilli, S.Hoereth, B.Huber, C. Le Faou, W.Lempens, W.Mao, T.Mar-
garia, G.McCaskil, G.Milne, L.Pierre, W.Ploegaerts, F.Proesmans, A.Salem, H. Sam-
som, M. Sonza Reorda, U.Schellin, J.Vandenbergh, D.Verkest, E.Verlind. The authors
thank the reviewers for their constructive comments.

References

[1]M.C. McFarland, A.C. Parker, R. Camposano, “The High-Level Synthesis of Digital Systems”,
Proceedings of the IEEE, Vol. 78, No. 2, February 1990, pp.301-318.

[21 H. De Man, J. Rabaey, P. Six, L. Claesen, "Cathedral-ll: A silicon compiler for digital signal
processing", IEEE Design & Test of Computers, December 1986, Vol. 3, No. 6, pp.73-85.

[3] J.N. Reed, AW. Roscoe, ‘Technology Study: Formal Methods for the Development of
Computer Systems", EuroTechnology, lssue No.9, April 1991, Blackwell Professional Informa-
tion Services, ISSN 0959-7735, pp. 12-14.

[4] P. Camurati, P. Prinetto, "Formal verification of hardware correctness: introduction and
survey of current research", IEEE Computer, July 1989, pp. 8-19.

{5] -, "IEEE Standard VHDL Language Reference Manual’, IEEE Standard 1076-1987.

[6] H. Fuijiwara, "Logic Testing and Design for Testability", Computer Systemn Series, The MIT
Press, ISBN 0-262-06096-5, 1985.

{7] R.E. Bryant, "A Switch-Level Model and Simulator for MOS Digital Systems", IEEE Transac-
tions on Computers, Vol. C-33, No.2, February 1984, pp. 160-177.

[8] R.E. Bryant, "Algorithmic aspects of symbolic switch network analysis", [EEE Transactions
on Computer-Aided Design, Vol. CAD-6, No. 4, July 1987, pp. 618-633.

[9] R.E. Bryant, "Boolean Analysis of MOS Circuits", /EEE Transactions on Computer-Aided
Design, Vol. CAD-6, No. 4, July 1987, pp. 634-649.

[10] S. Hoereth, "Improving the performance of a BDD-based tautology checker”, Proc.
Advanced Research Workshop on Correct Hardware Design Methodologies, ed. P.Prinetto, P.
Camurati, Turin, June 12-14, 1991.

870

[11] P. Herrebout, "BOTRYS: A program for the symbolic analysis of MOS circuits at the switch
level", Thesis IMEC - Katholieke Universiteit Leuven Belgium, July 1988.

[12] W. Lempens, "Symbolic analysis of digital MOS circuits at the switch level", Thesis IMEC
Katholieke Universiteit Leuven Belgium, July 1989.

[13] R.E. Bryant, D. Beatty, K. Brace, K. Cho, T. Sheffer, "COSMOS: A Compiled Simulator for
MOS Circuits", 24th Design Automation Conference, pp. 9-16, 1987.

[14] H. Eveking, "Behavioral consistency between register-transfer and switch-level descrip-
tions", Proc. IFIP TC-10 Working Conf. on Design Methodologies for VLSI and Computer
Architecture, pages 183-202, North-Holland, 1988.

[15] H. Eveking, “Behavioral verification of synchronous systems" in G. Milne and P.A.
Subrahmanyam editors, Formal Aspects of VLSI Design, pages 137-152, North-Holland, 1985.

[16] H. Eveking, “Axiomatizing hardware description languages", International Journal of VLS/
Design, Vol. 2, Nr. 3, 1990.

[17] D. Verkest, L. Claesen, "Special Benchmark Session on Tautology Checking", Format VLS/
Correctness Verification, ISBN 0 444 88688 5, North-Holland Elsevier Science Publishers, 1990,
p.81-82.

(18] C. Bayol, J.-L. Paillet, "Using TACHE for proving circuits", Formal VLSI Correctness
Verification, ed. L.Claesen, ISBN 0 444 88688 5, North-Holland Elsevier Science Publishers,
1990, p.83-87.

[19] R.E. Bryant, "Graph Based Algorithms for Boolean Function Manipulation®, /EEE Transac-
tions on Computers, Vol. C-35 No. 8, August 1986, pp. 667-691.

[20] J.C. Madre, J.P. Billon, "Proving Circuit Correctness using Formal Comparison Between
Expccted and Extracted Behavior", Proc. of the 25th Design Automation Conference, 1988.

[21] M. Fujita, H. Fujisawa, N. Kawato, "Evaluation and Improvements of Boolean Comparison
Method Based on Binary Decision Diagrams", Proc. IEEE ICCAD-88 Conference, 1988, pp. 2-5.

[22] S. Malik, A.R. Wang, R.K.Brayton, A. Sangiovanni-Vincentelli, "Logic Verification using
Binary Decision Diagrams in a Logic Synthesis Environment", Proc. IEEE ICCAD-88 Con-
ference, 1988, pp. 6-9.

[23] F. Anceau, in panel session: Formal Hardware Verification: Myth or Reality, EDAC-91,
Amsterdam, February 25-28, 1991.

[24] R.E. Bryant, “On the Complexity of VLS| implementations and Graph Representations of
Boolean Functions with Application to Integer Multiplication”, report Carnegie Mellon Univer-
sity, September 27, 1988. .

[25] P. Camurati, M. Gilli, P. Prinetto, M. Sonza Reodra, "Model Checking and Graph Theory
in sequential ATPG", Workshop on Computer-Aided Verification, June 1990, Rutgers, NJ (USA).

[26] P. Camurati, e.a., "The Product Machine and Implicit Enumeration to prove FSMs Correct”,
Proc. Advanced Research Workshop on Correct Hardware Design Methodologies, June 12-14,
1991, Turin, {taly, pp. 305-319.

[27] O. Coudert, C. Berthet, J-C. Madre, "Verification of Sequential Machines Using Functional
Vectors", Formal VLSI Correctness Verification, ISBN 0 444 88688 5, North-Holland Elsevier
Science Publishers, 1990, p.179-196.

[28] H. Eveking, "Experience in Designing Formally Verifiable HDL's", Proc. Computer Hard-
ware Description Languages and their Applications CHDL-91, ed. D. Borrione, R. Waxman,
Marseille, April 22-24, 1991, pp. 301.

[29] S. Bose, A. Fisher, "Automatic Verification of Synchronous Circuits using Symbolic Logic
Simulation and Temporal Logic", Formal VLSI Correctness Verification, ISBN 0 444 88688 5,
NorthHolland Elsevier Science Publishers, 1990, p.151-158.

871

[30] J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, “Sequential Circuit Verification Using
Symbolic Model Checking", Proc. Design Automation Conference, DAC-90, June 24-28, 1990,
pp. 46-51.

[31] D. Verkest, L. Claesen, H. De Man, "Correctness proofs of parameterized hardware
modules in the Cathedral-ll synthesis environment", Proc. European Design Automation
Conference EDAC-90, Glasgow 12-15 March 1990.

[32] L. Pierre, "The Formal Proof of Sequential Circuits described in CASCADE using the
Boyer-Moore Theorem Prover", and "The Formal Proof of the "Min-max" sequential benchmark
described in CASCADE using the Boyer-Moore Theorem Prover', Formal VLSI Correctness
Verification, ISBN 0 444 88688 5, North-Holland Elsevier Science Publishers, 1990, p.309-348.

[33] L. Pierre, "One Aspect of Mechanizing Formal Proof of Hardware: The Generalization of
Partial Specifications", Proc. 1991 International Workshop on Format Methods in VLSI Design,
ed. P.A. Subrahmanyam, ACM/SIGDA, Miami Florida, January 9-11, 1991.

[34] P. Camurati, T. Margaria, P. Prinetto "Use of the OTTER theorem prover for the formal
verification of hardware", Euromicro’90, August 1990, Amsterdam, (The Netherlands).

[35] P. Camurati, T. Margaria, P. Prinetto, "Resolution-based correctness proofs of synchron-
ous circuits", Proc. European Design Automation Conference EDAC-91, |EEE Computer
Science Press, Amsterdam, 25-28 February 1991, pp. 11-15.

[36] C.Angelo, L.Claesen, H.De Man, "A Methodology for Proving Correctness of Parame-
terized Hardware Modules in HOL", proc. Tenth International Symposium on Computer Hard-
ware Description Languages and their Applications, CHDL-91, Marseille, April 22-24.

[37] C. Angelo, D. Verkest, L. Claesen, H. De Man, "On the comparison of HOL and
Boyer-Moore for formal hardware verification", proc. Advanced Workshop on Correct Hardware
Design Methodologies, ed. P.Camurati, P.Prinetto, Turin, June 12-14.

[38] H. Collavizza, L. Pierre, "Basic Verification Techniques - Evaluation of General Provers",
ESPRIT CHARME Report: UP-2.A.2.-Ol, 30 June 1990.

|39] H. Collavizza, "Functional Semantics of Microprocessors at the Micro-Program level and
Correspondance with the Machine Instruction Level", proc. of the EDAC Conf., Scotland, 12-15
March 1980, pp. 52-56.

[40] J.L. Paillet, "Functional Semantics of Microprocessors at the Machine Instruction Level",
Proc. 9th IFIP Int. Conf. CHDL, North-Holland, Washington D.C., June 1889,

[41] D. Borrione, H. Collavizza, C. Le Faou, "wSPEED: a Framework for Specifying and Verifying
Microprocessors", Proc. 1991 International Workshop on Formal Methods in VLSI Design,
ACM/SIGDA, Miami, January 9-11, 1991.

[42] L.Claesen, F.Proesmans, E.Verlind, H.De Man, "SFG-Tracing: a Methodology for the
Automatic Verification of MOS Transistor Level Implementations from High Level Behavioral
Specifications", Proceedings A CM-SIGDA International Workshop on Formal Methods in VLSI
Design, ed. P.A. Subrahmanyam, January 9-11, 1991.

[43] M. Genoe, L. Claesen, E. Proesmans, E. Verlind, H. De Man, "lllustration of the SFG-Tracing
Multi-Level Behavioral Verification Methodology, by the Correctness Proof of a High to Low
Level Synthesis Application in CATHEDRAL-11", Proc. IEEE ICCD-91, Conference, Cambridge
MA, October 14-16, 1991,

[44] G.J. Milne, “Circal and the representation of communication, concurrency and time", ACM
Trans. on Programming Languages and Systems, 7(2), 1985.

[45] A. Bailey, G. Milne, "Using CIRCAL to Analyse Sutherland's Asynchronous Micropipeline
Design Style", Dept. of Computer Science Research Report, HDV-13-91, University of Strath-
clyde, UK, May 1991.

[46] A. Bailey, "Abstraction Mechanisms for Hardware Verification: Formalisation in a Process
Algebra", Proc. CHDL-91, editors: D. Borrione, R. Waxman, Marseille France, April 22-24,1991.

872

[47] A. Bailey, G.A. McCaskill, J. Mcintosh, G.J. Milne, "The description and automated
verification of digital circuits in Circal', Proc. Advanced Research Workshop on Correct
Hardware Design Methodologies, ed. P.Prinetto, P.Camurati, Turin, June 12-14, 1991.

[48] D. Borrionc, A. Salem, "Design For Verifiability - Automatic Formal Verification of VHDL
descriptions", ESPRIT CHARME report UP-1.C-01, 30 June 1990.

[49] A. Salem, D. Borrione, "Formal Semantics of VHDL Timing Constructs*, Proc. EURO-
VHDL'91, Stockholm, 8-11 September 1991.

[50] D. Borrione, L. Pierre, A. Salem, "PREVAIL: A Proof Environment for VHDL Descriptions",
Proc. Advanced Research Workshop on Correct Hardware Design Methodologies, ed. P.
Prinetto, P. Camurati, Turin, June 12-14, 1991.

[51] G. Milne, "Design for Verifiability", In Proc. Workshop on Hardware Specification, Verifica-
tion and Synthesis: Mathematical Aspects, Cornell Univ. 1989,

[52] H. Eveking, "Priliminary Concepts of Design for Verifiability", ESPRIT CHARME Report
THDI.C-01, July 20, 1990.

[58] P. Camurati, P. Prinetto, "Design for Verifiability and Design for Testability: limiting
designers' freedom to achieve what?", Proc. Advanced Research Workshop on Correct
Hardware Design Methodologies, ed. P. Prinetto, P. Camurati, Turin, June 12-1 4, 1991,

[54] L. Claesen, M. Genoe, E. Verlind, F. Proesmans, H. De Man, "SFG-Tracing: a methodology
of Design for Verifiability", Proc. Advanced Research Workshop on Correct Hardware Design
Methodologies, ed. P. Prinetto, P. Camurati, Turin, June 12-14, 1991,

[55] H. Simonis, “Formal Verification of Multipliers”, Formal VLSI Correctness Verification, ISBN
0 444 88688 5, North-Holland Elsevier Science Publishers, 1990, p.267-286.

[56] D. Verkest, J. Vandenbergh, L. Claesen, H. De Man, "Formal Design and Verification
Strategy of Parameterized Hardware Modules", Proc. Advanced Research Workshop on
Correct Hardware Design Methodologies, ed. P. Prinetto, P. Camurati, Turin, June 12-14, 1991,

[67] A. Bratch, H. Eveking, H.-J. Maerber, J. Pinder, U. Schellin, "LOVERT - A Logic Verifier of
Register Transfer Level Descriptions", Formal VLSI Correctness Verification, ISBN 0 444 88688
5, North-Holland Elsevier Science Publishers, 1990, p.247-256.

[58] J.Vanhoo!, |.Bolsens, S.De Troch, E.Blokken, H.De Man, "Evaluation of high-level design
decisions using the Cathedral-11 silicon compiler to prototype a DSP ASIC", Proceedings, IFIP
Workshop on High Level and Logic Synthesis, ed. G. Saucier, Paris, 30 May-1 June 1990.

[58] M.J.C. Gordon, "HOL: A Proof Generating System for Higer-Order Logic", in “VLS!
Specification, Verification and Synthesis" * editors: G. Birtwistle and P.A. Subrahmanyam,
Kluwer 1987,

[60] R.S. Boyer, J.S. Moore, "A Computational Logic Handbook", Academic Press, Boston,
1988.

[61] L. Pierre, "From a HDL Description to Formal Proof Systems : Principles and Mechaniza-
tion", Proc. 10th IFIP Int. Conf. CHDL'91, Ed. D.Borrione & R.Waxman, Marseilic, 22-24 April
1991.

[62] J. Goguen, "OBJ as a Theorem Prover with Applications to Hardware Verification",
Technical report SRI-CSL-88-4R2, Computer Science Laboratory, SRI International, Menlo Park,
August 1988,

[63] J. Burch, "Using BDDs to Verify Multipliers", Proc. 28th ACMIIEEE Design Automation
Conference, San Francisco (CA), 17-21 June 1991.

[64] J.L. Paillet, "A Functional Model for Descriptions and Specifications of Digital Devices",
Proc. IFIP Int. Working Conf. “From HDL Descriptions to Guaranteed Correct Circuit Designs",
Grenoble, September 1986.

873

[65] D. Borrione, D. Deharbe, H. Eveking, St. Horeth, “Application of a BDD-package to the
verification of HDL-descriptions", Proc. Advanced Research Workshop on Correct Hardware
Design Methodology, Turin, 12-14 June 1991.

