International Journal of Computer Aided VLSI Design 3, 9-41 (1991)

Transformational Design Methodology for
Parameterized VLSI Modules

D. VERKEST, L. CLAESEN, AND H. DE MaN
Interuniversity Micro Electronics Center (IMEC)—VSDM
Belgium

A new method is presented to be used for either guided synthesis or formal correctness
verification of paramelerized digital hardware modules. The method is based on the congept
of correciness preserving transformations, formalized by means of transfarmation deserip-
ticns. A parameterized description of the module is used as the specification. This specifi-
cetion can then be manipulated by the designer by using transformation descriptions. After
a number of transformation steps, the designer has a parameterized description of the
implementation of the module. In this method, manipulations are done directly on an existing
hardware description language, instead of using derived formalisms, as is done in other
approaches. Starting from the original structure description and a transformation description,
th2 structure description corresponding with the transformed design can be generated au-
tomatically using the techniques described in this paper. The algorithms to support this
design methodology are presented and examples are elaborated to illustrate the important
cencepts. This design method has been applied to actual VLSI designs, such as a pipelined
and parameterized multiplier-accumulator module and a systolic implementation of a finite
impulse response filter.

design of VLSI modules, transformational design, guided synthesis,
formal verification, correctness preserving transformations,
hardware description languages

1 GUARANTEED CORRECT VLSI DESIGNS

Current capabilities of VLSI technology allow that larger systems are being inte-
grated on one chip. Therefore, the design of these systems has become very com-
plex. Formerly used design methodologies, such as top-down or bottom-up, no
longer are affordable, because of the large design iteration cycles and the fact that
only a limited number of people in the world are still able to manage the complete
design trajectory from high-level specifications down to MOS transistor techniques.
The currently emerging methodology of custom VLSI design is more like a meet-
in-the-middle [1] approach, as shown in Figure 1, where two different design teams
meet each other at the level of functional modules, such as arithmetic and logic
units (ALUs), multipliers, and so forth. To be reused frequently by system de-
signers, these modules must be flexible. This is achieved by the ability to generate
modules in a parameterized way (2].

During this design activity, there is the problem of guaranteeing or verifying
the correctness of the design. The CAD support for this aspect is currently very

Correspondence and requests for reprints should be sent to D. Verkest, IMEC—VSDM, Kapeldreef
75, B-3001 Leuven, Belgium.

10 D. Verkest, L. Claesen, and H. De Man

sYs O

SYS
System Design Chip

O

System &
Software

People

SYS
Chip

3
2
N
==
-/

Chip Assembly

2
4
8
~
%
(M
N
d
@

Module Design
Layout &
Circuit

Software

[

>

m
O
(&
M
(&

Stand
Cell

Module Assembly

TRAN RECT

Layout Technical
Rules

Figure 1. Meet-in-the-middle strategy.

poor. Only for specific classes of applications, automatic synthesis (silicon com-
pilation) from high-level behavioral specification to chip layout can be done, re-
sulting in correctness by construction. For the class of digital filters and general
digital signal processing (DSP) systems, the feasibility of such an approach has
been demonstrated [3, 4].

The Cathedral II silicon compiler [4] is organized according to this meet-in-
the-middle strategy. An automatic synthesis is done from the high-level specifi-
cation language Silage [5] into a number of controllers and execution units that
are predesigned as parameterized modules. Examples of parameters are the word-
length of the inputs, the number of input buses, and Booleans to indicate the
presence or absence of an accumulator section or a pipeline. The set of required
parameterized module generators is designed by circuit designers as a set of Lisp
procedures [2] automatically generating the circuit layout for the module. While
the high-level synthesis is correct by construction, the correctness of the module
generators is still being verified by classical verification techniques such as logic
and circuit simulation.

For several other design classes, automatic synthesis is not yet feasible, and
“manual” system design is still used for most applications. This is the case for full
custom design as well as for highly optimized circuits, e.g., video or radar appli-
cations. The only tools available for correctness verification are simulators. How-
ever, simulation suffers from a number of well-known drawbacks: covering all input
combinations is not feasible for realistic VLSI designs, and detection of design
errors depends on the choice of appropriate input signals and the correct inter-
pretation of output results. Another complication in the case of modules is that
correctness must be guaranteed not only for one instance, but for the whole al-

Transformational Design 11

lowable parameter domain of the generator procedures. Because of the multiplicity
of possible instances that can be generated, verification methods that act on in-
stances no longer are appropriate. Methods to formally prove the correctness would
be very useful here.

This paper describes a new technique that can be used to guarantee the cor-
rectness of such parameterized hardware modules. In Section 2, a short overview
will be given of different approaches taken to tackle the verification problem and
how they relate to the problem of verifying parameterized modules. The transfor-
mational design methodology will be explained in Section 3. To make this meth-
odology accessible to VLSI designers, we have decided in favor of the use of an
existing hardware description language (HDL) for performing transformations. In
Section 4, this HDL and the language to describe the transformations are presented.
In Section 5, it is shown how such an existing HDL can be used for transformational
design. The algorithms underlying this methodology will be discussed in Section
6. Next, two actual VLSI design examples will be discussed in the light of this
methodology. In Section 7, the design of the multiplier-accumulator module from
the mcdule library of the Cathedral II silicon compiler [4] is discussed. Finally, in
Section 8, the design of a finite impulse response (FIR) filter, starting from a
straightforward implementation and resulting in a systolic implementation, is pre-
sented.

2 APPROACHES FOR FORMAL CORRECTNESS VERIFICATION

Severa! approaches have been developed to solve the problem of formal verifi-
cation. A good survey of the field can be found in [6]. Most of these formal
verificetion methods could also be used to verify the correctness of parameterized
modules. However, in general, verification after the design facts, i.c., comparing
a highly optimized implementation with a high-level specification, is not feasible
without a lot of assistance from the designer. From the experience of researchers
using general theorem provers to perform such proofs (e.g., [7, 8]), one can con-
clude that the construction of the proof takes a lot of effort. In addition, the proof
has to 2e well understood in advance.

As opposed to verification after the design facts, one can adopt a transfor-
mational design methodology: correctness preserving transformations are used to
refine designs toward efficient implementations. This approach has the advantage
that the “verification” can proceed in small steps—in fact, it is not really verifi-
cation, but a constructive proof or guided synthesis. Following this course, it is the
designer who, while designing his system, constructs the proof, i.e., the sequence
of transformation steps. A verification effort after the design facts is no longer
needed.

A CAD tool supporting this methodology first should check whether the trans-
formation is applicable in a specific situation by checking a number of constraints;
second. execute the transformation to produce the description of the transformed
design. Special formalisms to support such a design methodology have been de-
veloped by Sheeran [9, 10] and Subrahmanyam [11]. Milne [12] and Eveking [13]

12 D. Verkest, L. Claesen, and H. De Man

stressed the role of constraints in this context. In principle, also a general theorem
prover such as HOL [14] could be used as a transformational design system.

The key role of the designer in a transformational design methodology was
already mentioned, it is the designer who must decide what transformations to
apply. This implies that the formalism underlying the transformational design.must
be accessible to the designer by using his familiar design environment and hardware
description methods. The formalisms mentioned earlier are lacking on exactly that
point.

To make tranformational design accessible to VLSI designers, we have opted
for the use of an existing HDL. Instead of developing a separate formal system,
we develop a system to support transformational design using this existing HDL.

3 TRANSFORMATIONAL DESIGN METHODOLOGY

The transformational design methodology is illustrated in Figure 2. It consists of
a step-by-step transformation of the specification into an efficient implementation,
based on the concept of correctness preserving transformations. In the figure, two
alternative paths are shown: formal verification is the path going up from imple-
mentation to specification and synthesis is the path going down. Before going into
detail, we will define some terms (see Figure 2).

e transformation (the large arrow in the figure): the process of altering the spec-
ification to obtain the implementation. :

e transformation step: one step out of the transformation. A transformation step
consists of an intermediate design step and a transformation description.

e intermediate design description (the rectangular boxes): the structure descrip-
tion that describes the result of a transformation step and also serves as input
for the next transformation step. The structure descriptions can be parame-
terized.

e transformation description (the rounded boxes): describes which primitive
equivalence transformation is used in the transformation step and to which
part of the design it is applied. The transformation descriptions can be param-
eterized.

e primitive equivalence transformation: the correctness preserving transformation
used in the transformation description. Examples of these can be found in
Section 4.2.

During the synthesis path, the transformation steps are just formal descriptions of
the optimizations the designer has in mind, while in the verification process the
transformation descriptions would be exactly the inverse of these optimizations. It
is our experience that it is easier to describe these transformation steps during the
synthesis phase; therefore, we will concentrate on the guided synthesis. Note,
however, that this is not a restriction of the applicability of the techniques described
in this paper; they are just as well applicable to both alternatives. In the remainder
of this paper, transformational design will be regarded as a synonym for the guided
synthesis alternative of Figure 2.

Transformational Design 13

I High Level Specificationsl

¥;
e
3

o
o,

byl

¥,
s
Ft

5

&

)
bt

"
&

%
e

o
o,

o
hy!

e
255
!
<

A,
bttty
= K
o
= *,
focsis
a ’
=4
Fo
el
s
L)
b
ists!
o
Toteints

o
",
o,

%

e

e

2 i
L o
o] Lisuelowwsnou pezct |

y
¥

et
y:
!

b

et

ion Desc

X
s BT
s L peact
L R, LA R
e
Structure Descr SRR,
“ t.&."

3
AT AT
: BERSREERERERT

¢

428
‘)
}'4:.1 . :o.:
: ation Descr, }4
L " >}
2]
i

e o
SRR

I o
Eslslesleileylalel il

=
= o e 1 =
2 R A AR RN R AR @
%) 2]
w e Descr] PES
ac 3 =
% =
= g :
[peect
[:
LA
g s s Z
> PN Bttt ettt hotel
R 2
o T 2
@ 5 L

0,
LS

L ¥
2nnemn DeectL
— R RERE

TREF

&

G
ks

S

e,

ielalelvivieisls
Structure Descr
R AR

T
i

5

T,
L
5
2,
5
2

o

o
K5 R
[l 1isuzjolwsgou p
[o
W e
e
8 P

{55
atetel

62CL°

= £

oS

SRR

{0 3

e T
%, R R R
(s 0 S0
[s

o,

.
/2

Hardware Implementation |

Figure 2. Transformational design methodology.

A transformational design system takes as input a high-level specification of
the design. Starting from that initial specification, the designer manipulates the
hardwarz description using the transformation descriptions until he achieves the
desired implementation in terms of primitives that can be realized as circuits in
hardwarz. These primitives are usually small blocks of up to 20 transistors, such
as gates. or small functional blocks, such as full adders. The correctness of these
basic primitives with respect to their layout realization can be verified using circuit
extracticn from the (symbolic) layout. The logic equations can then be extracted
[15, 16] from the obtained transistor netlists and compared [17, 18] to the logic
equatiors that originate from the behavioral specification of the primitive cell.
Given the parameterized structure description of the implementation, the actual
module zenerator procedure can be created by the module designer [2].

The nigh-level specification consists of an interconnection of predefined cells

e e

LTI PR ST

14 D. Verkest, L. Claesen, and H. De Man

together with the don’t care behavior and corresponds to a naive implementation
of the required behavior. The HDL used for this description (and which is also
used for the c_jescription of the intermediate design steps) is defined in Section 4.1

An ex?mpie is the multiplication algorithm, which can be implemented naively by
the shift-add algorithm as learned in primary school. This naive description, al-
th_ough easy to understand, is never used as implementation because of consiéicr-
ations on gpeed, area, throughput, and so forth. Instead, a better suited imple-
mentation is used, e.g., an implementation of the Booth [19] algorithm. To obtain
th{s more efficient implementation starting from the implementation of the naive
f‘holﬂ-add algorithm, the designer must supply a number of transformation descrip-
10ns.

The frafrsformarfon descriptions are, as stated earlier. used to describe the
transfonnangn steps. The language used for these descriptions is defined in Section
4.2. The designer has a number of primitive equivalence transformations available
that couid_be used in the transition descriptions. These are transformations that
when‘ applied to an arbitrary design, yield a functional equivalent design if ceriajr;
conditions are met (see Section 4.2).

Thus t]ac method is a step-by-step correctness preserving transformation under
the full guidance of the designer, who makes all of the design decisions. This is in
contrast to automatic synthesis and verification techniques, where the equivalence
between implementation and specification is conserved, respectively proved, by
the system without any information from the designer. Automatic sg’stems suffer
frcurn the drawback that they must determine all of the design transformations on
their own. This is especially difficult for the general case of complex parameterized
hardware designs. By letting the designer formally express his elementary design
transformations, the synthesis or verification problem becomes more manageable.

By recording the transformation steps, the designer can maintain a history of
the e_volution of the design. Owing to this good documentation of the design, later
modifications can be easily achieved and proved correct, starting from an ,inter-
mediate design step.

4 LANGUAGES

Befm:e going_ into detail on the technique developed to calculate a new hardware
c!escnpuon given a transformation description and the original hardware descrip-
tion, we present the languages used herein. First, the HDL, called Hilarics, is
presented, and then the transformation description language is discussed, More
details on the transformational design strategy and on these languages and their
semantics can be found in [20, and 21).

4.1 HDL Hilarics

We h_av? chosen to use directly the existing Hilarics [22] parameterized structure
dcscnptl(?n language to perform the manipulations. This is in contrast to the meth-
ods mentioned in Section 2, that try to model hardware based on functional models,

Transformational Design 15

first-order or higher-order logic. This choice is motivated by the fact that hardware
designers are traditionally much more familiar with such a language than with the
functional or logical formalisms mentioned earlier.

Hilarics starts from the concept that the structure (composition) of a circuit
should be described completely independent from other design views. Hilarics is
a purely applicative language, in which designs can be described hierarchically and
in a parameterized way. As such, the language is currently in use for the description
of the structure part for register-transfer descriptions, for circuit-level simulation,
for timing verification, for switch- and logic-level simulation, and as a definition
input for the module generation environment. Hilarics has been used for the de-
scription of several hierarchical and parameterized VLSI designs and parts thereof.

In this paper, the main emphasis is on net-oriented descriptions in Hilarics.
The interconnection part of Hilarics consists of a number of connections or nets.
The nets are the sets of interconnected terminals of the components and of the
cell. A net is defined by the two terminals that are connected, separated by an
equal sign. All terminals defined in the definition and declaration part must be
connected, and no other terminals can be used. Input terminals can be connected
only once; output terminals can be connected to more than one other (input)
terminal.

To exploit repetitivity, iterativity, and to be able to deal with conditionality,
certain controlling constructs can be used: for-loops and if-then-else constructs.

For the specific domain of digital signal processing and for arithmetic appli-
cations, the following additional view information is required.

e The delay potential indicates for synchronous systems the relative shift in time
between nets (more precisely between the signals on the nets). This concept
allows one to perform delay management and retiming transformations [23].
It :s obvious that no time shift can occur between the two terminals of the
same net, so the delay potential is a property of the net and not of the terminals.

e The arithmetic weight factor indicates the place of a terminal in a bit vector.
‘Two consecutive bits in a binary number have a different weight factor (by a
factor 2). Weight factors are a property of the terminals and not of the nets.
For example, in a hardwired shifter, realizing a multiplication by 2, the two
terminals of a net will have different weight factors by a factor 2.

The Hilarics language is used to describe all the intermediate design descrip-
tions of the transformation. An example of a structure description with Hilarics is
given subsequently. It describes the interconnection pattern of the carry inputs and
outputs of the structure at the top in Figure 6, which is the adder matrix and the
accumulator section of the Booth multiplier module explained in more detail in
Sectior. 7. The figure has been made for an 8 x 8 instance of the module, but all
of the descriptions are parameterized. The C terminals in the structure description
are the carry inputs (the east terminals of the full adder cells). The K terminals
are the carry outputs (the west terminals of the full adders). The characters inside
brackets (i, j in C(i, j)) are indices, whereas the character after the bracket (j in
C(i, j)j) denotes the weight factor.

16 D. Verkest, L. Claesen, and H. De Man

fori =1tom + 1do

forj=0ton +2+*m — 1do

fi<m— lthenifj=2+(— 1) thenif j <2 «i — 1 then C(i D=0
) else C(i,) = K(i,j — 1)j
1

else nonet
fi

else ifi = mthenifj=2x(— 1) then C(i, j)j = 0
else nonet
fi
else if j > 0 then C(;, D =K@, j- 1)j
else C(i,j)j = 0
fi
fi
fi
rof
rof

4.2 Transformation Descriptions

’:{"h:s section contains several topics. First, the language used for the transformation
escriptions is defined. I_n the second paragraph, the different classes of primitive
equivalence transformations are explained.

4.2.1 Transformation Description Language

_A transformation description indicates which primitive
is used, and to _which part of the design this primitive transformation is applied
The transf(_)nnanon language is very similar to Hilarics. but instead of net d f'PP o
we find primitive equivalence transformations. T
Thc primitive equivalence transformations are correctness preserving tra
form_anons. If they are applied to a specific structure, a new structure is %) ined
that is functionally equivalent to the original one. ’ optined
Cim:t‘het]:ra?sfomasloq dcscppuon language (TI?L) is applicative in order to fa-
e the t:\rmal‘ manipulations. Only one primitive equivalence transformation
may be used in a single transformation description, but, of course, it can be applicd
to several components of the structure. This restriction stems f:"om the fac]:ptll'lixt
the transformation description is applicative. If more than one primitive transfo
mation were allowed, then the transformation description would become pr. .
dural, which would substantially complicate the proof techniques. prose

equivalence transformation

4.2.2 Classes of Primitive Equivalence Transformations

In t_he DSP-like applications considered so far, the following classes of primit

equivalence trans_formalions can be distinguished: arithmetic transformatiolzzs B:c;e
lean transformations, and flow-graph transformations. For each primitive ‘trans:
formation, there are a number of constraints that must be met by the structure

Transformational Design 17

description and its components before the primitive transformation may be validly
applied. Because of this constraint mechanism, the exact function of the basic cells
is of little importance. If the basic cells satisfy the constraints imposed by the
primitive transformation, then the transformation description is valid.

1. Primitive arithmetic equivalence transformations. These can be applied for arith-
metic building blocks, such as full adders. The comm transformation belongs
to this class. In Figure 3, the function of comm(a, b) is to make a new net
consisting of the terminal a and the terminal to which & is connected. Since
terminal b is no longer connected after the transformation, it must be recon-
nected by another comm transformation, such as comm(b, a). This means that
every terminal involved in a comm operation has to occur once as the left-
hand-side argument and once as the right-hand-side argument of comm. This
is a valid equivalence transformation if the components concerned allow com-
mutativity. In addition, the terminals concerned must have the same delay
potential and the same weight factor.

2. Primitive Boolean equivalence transformations. These properties act on Boo-
lean operators. The classical rules of Boolean algebra can be used here, and
the validity of these transformations can be checked by a tautology checker
[17, 18]. A good example of a transformation belonging to this class is given
in Figure 4. Here two full adder cells are replaced by one dedicated 2-bit adder
cell to optimize the critical path in the adder matrix of the Booth module. The
conditions for this operation are that the logic functionality and the intercon-
neczion with the surrounding cells must be the same for both substituents.

Notice that, for the equivalence proof of the logic function of these smaller

comm{a,b)

- a | i B'\?’ |
-7

b il b

1 / comm(b,a)

Figure 3. Primitive arithmetic transformation: switching terminals using comm.

o

|
TC
pre]| el —e——| W |

Figure 4. Two Boolean equivalent cells that can be checked by a tautology checker.

18 bp. Verkest, L. Claesen, and H. De Man

blocks, no parameterized descriptions are necessary and a tautology checker
can indeed be used,

3. Primitive flow-graph equivalence lransformations. Examples of these transfor-
mations are delay management and retiming operations [23], as shown in the
upper part of Figure 5. These properties are used, for example, in the reor-
ganization of the internal pipeline of the multiplier. -

A trivial operation eliminates superfluous components, as depicted in the
lower part of Figure 5. The obvious conditions are that the two components
must be instances of the same cell and that their inputs must be identical,

An example of a transformation description is given in Figure 6. In the figure,
a transformation step out of the transformation of the Booth module is shown. [t

A carry-save structure. All the full adder cells with terminals that are affected by
the transformation are “shadowed."

Figure 5. Retiming equivalence transformation and ““remove” equivalence transformation.

Transformational Design 19

FOR i=1 TO m DQ
FOR j=2%(i-1) TO n+2*m-(1:(l‘)f;c(‘ ™~
i COMMI(C(i,j),C(i-1,j .)
" I<>lgl_l:[S%NIF j>=2%*(m-1) THEN COMM(C(I,J),C(_m,:])))
ELSE COMM(C(i,j),C(j div 2 +1,j))

FI

rI"TI—rI—rll‘—rIITI l}. IJ% III .I]u
"rfi/—'lrawq-ll—'n W .1/‘.”/.1/.1/
' e /1.1/

il

Ty

Iﬂl

=

-

- cture.
Figure 6. Transformation step from carry-propagate to carry-save stru

: 2 z S
The primitive equivalence transformations defined in the_precgdmgiisec‘trl_;ns
can be viewed as language specific conversion rules, as de_fmed n;‘ 2 .ami C);
reserve meaning with respect to the behavioral model depending on the sem
P

of the constants in the language.

20 p. Verkest, L Claesen, and H. De Man
S TRANSFORMATIONAL DESIGN REVISITED

Tht? concrete problem
design methodology of

we m
Sect'USt 3solve whcn. We want to apply the transformatjonal
! 101 3 t0 the existing Hilarics HDL -
8lven a structure description in Hilarics
g:\;en!a transformation description
calculate a new structure descrinfion i 1r:
escription in i i
oo p Hilaries, which represents the trans-

In this section, we expl i
o plain how this can pe done and identify the subproblems

Merged Structure ang Transfor‘matlon descriptian

AF ?T}fggl

Transformational Design 21

Before starting with a concrete example, we will discuss a few procedures that
will be used frequently in the remainder of the paper.

5.1 Representation of the Hilarics Description and a Geometrical Interpretation

As a shorthand notation of the structure description, we use a binary tree. The
translation from a Hilarics description to its tree representation is fairly straight-
forward. Note that this translation is not a transformation in the sense described
in Section 4.2.2. The tree is just an alternative way—better suited for manipulation
by a computer program and more concise to reason with—of representing the
Hilarics description.

To obtain this tree representation, we first rewrite for_loops as a combination
of if_then else constructs. Once this is done, the tree can be constructed very
easily: the nodes of the tree are the tests of the if_then_else constructs, the left
branch of each node corresponds to the then case of the if_then_else expression
and the right branch corresponds to the else case. The leaves of the tree are the
net definitions. We call this tree the structure tree. The translation of the tree
representation back to a Hilarics description is also straightforward. (To get a
feeling of what such a tree looks like, the reader can compare the Hilarics structure
description of Section 4.1 with its equivalent tree representation depicted on the
left-hand side of Figure 12.)

Completely analogous, we translate the transformation descriptioninto a binary
tree. The nodes and branches of the tree have the same meaning as in the previous
case, only now the leaves represent the primitive transformations that must be
applied. This tree is called the transformation tree.

Such a tree has the following geometrical interpretation. By following a path
from the root to a leaf, the tests that are passed delimit a polytope, i.e., a region
in the n + m-dimensional space of the # indices and the m parameters. For all
points with integer coordinates inside this polytope, the net definition in the leaf
of the roct-leaf path defining the polytope is valid. Here valid means that the nets
obtained by instantiating the net definition with the integer coordinates are present
1n the structure. In the case of the transformation tree, the primitive transformation
of the leaf must be executed for all integer points in the polytope.

So, the tests in the root-leaf paths define polytopes in which there are items
(components, nets, primitive transformations, etc.) on all integer points inside the
polytope.

5.2 Merging of the Trees

f a particular primitive transformation applies to some of the nets defined by a
particular net definition, then the two polytopes mentioned earlier will have an
intersection.

To determine whether a particular net definition in the structure tree must be
transformed by a particular transformation in the transformation tree, we merge
the trees we take the complete transformation tree and place it in the structure

22 D. Verkest, L. Claesen, and H. De Man

tree just in front of each leaf, In that way, we obtain a new tree, which we call
the merged tree. This merging operation corresponds to the schematical merging
of the structure transformation description depicted in Figure 7.

Now, when following a path from the root to a leaf of the merged tree, the

countered. Finally, in the leaf itself, we now have the net definition and the primitive
equivalence transformation. If there exists an intersection between the polytopes
delimited by the tests on a root-leaf path of the merged tree, the nets in that
intersection must be transformed.

5.3 Solving the Graph

In fact, this merged tree already describes more or less the transformed structure,

be it in a rather complicated way. We now want to make this description more

need a decision procedure, which we call DECIDE, that can tell us whether the
polytopes, defined by the (in)equalities on the root-leaf path, have an intersection.
In other words, we need a procedure that can tell us whether a set of (in)equalities,
defining the two polytopes, has a feasible solution. To calculate the more concise
description of the transformed structure, we examine every root-leaf path of the
merged tree. We apply DECIDE to the tests in that root-leaf path. If they do not
have a feasible solution, then the net in the leaf is not transformed and it remains
as such in the description of the final structure. If the tests have a feasible solution

appears in the final description,

When the tests on a root-leaf path have an intersection, it is possible that this
intersection can be described with much fewer tests than actually present in the
path. A number of tests will be redundant, meaning that they are always true or
always false given the previous tests in the path. For example, in the sequence i
=Li=mi=m+ 1, the last equation is redundant because given the two
previous inequalities it can be decided to be always true. If we would replace the
last inequality by i = m + 1, then it would still be redundant (always false). If we
replace it by i = m — 1, we could not make a decision. The DECIDE procedure
should be able to detect redundant (in)equalities.

After complete traversal of the merged tree, we now have a tree that corre-
sponds to the Hilarics description of the transformed structure.

Two points still must be examined:

1. The execution of the specific primitive transformation and the checking of the
corresponding conditions. Since this is dependent on the specific primitive
transformation applied, we postpone the discussion of this point until we treat
the example.

2. The decision procedure DECIDE. which will be discussed in the next section.

Transformational Design 23

6 ALGORITHMS FOR DECIDE

In this section, we discuss the decision procedure. First, we 'analyze t'he require-
ments for the DECIDE procedure, and then examine a possible solution.

6.1 Requirements for DECIDE

From the previous sections, the following requirements for DECIDE can be de-

nved:

1. DECIDE should be able to decide whether a set of equalities ‘and inequalities
has an integer feasible solution. The feasible solution sh?uld_be integer, because
the variables denote indices and parameters (see Section 5.1),

2. DECIDE should be able to detect if an (in)equality is rcdundang.)

To be able to describe arbitrary VLSI designs in a concise way, Hilarics all'ows

nonlinear expressions, such as i X j, div(i, j), mod(i ..j)_, ete. These functions

are used, for example, in describing systo]ic‘arrays. This implies that DECIDE

should be able to handle nonlinear constraints.) _

4. DECIDE is at the heart of the calculation technique. It will be used intensively
and, thus, should be as fast as reasonably possible.

Lad

A possibe algorithm satisfying these requirements is discussed in the next section.

6.2 Possible Algorithm for DECIDE

The inequalities we want to decide can be put in tl'!e form of ._Presburger _fof‘mu’!as

26]. These are built up from integers, integer vanab[ef, addition, lrnulupucauon
by constants, arithmetical relations, and first-order logical connectives. Suppose
we want to decide whether two polytopes defined by the following sequence of
conditionals have an intersection,

IFi=2 + 3THENIF{ = 3j + 1 THEN NET)
IFj=2 — 1THENIF 2/ + 3j — 1 = 0 THEN TRANSFORM

then the validity of the following Presburger formula must be examined:

(i52j+3)/\(i=3j+1)/\022i—1)/\(2i+3j—120).

The elimination of redundant (in)equalities can also be formulated as a Presburger
formula. If we want to know whether the last inequality of the previous formula
is redundant and always true, we must check whether the following Presburger
fermula is true:

=G +HNGE=3+DAG=2 - 1)) > Qi + 3 — 1=0).

24 D. Verkest, L. Claesen, and H. De Man

If we want to know whether the last inequality of the previous formula is redundant
and always false, we must check whether the following Presburger formula is true:

((i52j+3)/\(i=3j+1)/\(]‘221'—1))=>-|(2i+3j—120).

If both of the preceding Presburger formulas are false, then the last inequality is
not redundant.

Presburger formulas have been shown to be decidable by Presburger [26]. A
decision procedure that can decide about validity as well as invalidity of Presburger
formulas has been proposed by Shostak [27]. This procedure consists of two stages.
First, the formula to be proven is reduced to 2 set of integer linear programming
problems (ILP), with the property that the formula is valid if and only if none of
the ILPs has a solution. In the second stage, each of the ILPs is tested for solvability.
In his paper, Shostak describes a method that is an extension of the Sup-Inf method
[28] for dealing with this second stage. An alternative would be to use a more
classical ILP algorithm, such as Gomory’s [29].

From the description of Presburger formulas, it is clear that requirement 3 has
not been met as yet. However, Shostak also proposed a decision procedure to deal
with an extension of Presburger arithmetic in which function symbols [30] occur.
This method consists of reducing a formula in which function symbols occur, to a
genuine Presburger formula. This genuine Presburger formula ¢an then be decided
by using the preceding two-stage approach.

6.3 Complexity Issues

In general, the decision algorithm for Presburger arithmetic extended with function
symbols is NP-complete. Each Presburger formula leads to several ILPs, and the
ILP is known to be an NP-complete problem [31, p. 350]. This would imply that
the technique proposed herein is not applicable to hardware descriptions with a
lot of nested IF THEN ELSE constructs and many indices and parameters. How-
ever, when we use Gomory's cutting plane algorithm [29] to solve the ILPs, this
technique is feasible. The reason for that is twofold:

e Gomory’s algorithm is based on first solving a relaxed linear programming
problem (LP). The relaxed, LP is identical to the ILP but without the constraint
for an integer solution. If there is a (noninteger) solution for the relaxed LP,
then Gomory’s algorithm starts iterating to an integer solution, if such a solution
exists. To solve the relaxed LP, the classical Simplex algorithm is used, which
behaves well in all practical cases.

Presburger formulas with function symbols give rise to several ILPs, but
thse ILPs are related to each other. If the algorithm that solves the ILP can
work incrementally, several of these new ILPs can be solved without much
additional effort. We decided in favor of the Simplex-based Gomory algorithm
because it can work incrementally.

e Experience has shown that the edge points of the intersection of the polytope
of the structure root-leaf path and the polytope of the transformation root-leaf
path are mostly integer. This gives rise to [LP problems in which all edge points

Transformational Design 25

are integer. The constraint matrix of such an ILP with integer edge points is
called totally unimodular (TUM). It is a property of ILPs with a TUM matrix,
that the optimal solution obtained after solving the relaxed LP problem will
be integer. This is fairly logical, knowing that Simplex finds an optimal solution
by izerating from edge point to edge point. Thus, with a TUM matrix, there
is no need for the cutting plane iteration step of Gomory’s algorithm, and we
will be able to make a decision after only the first step of the algorithm.

The algorithm described here is thus feasible because:

1. Presburger formulas generate ILPs that can be solved incrementally using Go-
mory’s algorithm.

2. Because the ILPs originate from hardware descriptions, they often describe
polytopes with integer edge points. These result in ILPs with TUM matrices,
which can be solved by applying Simplex only once without the need to iterate
on the Gomory algorithm.

3. One of the phases in solving the graph (see Section 5.3) consists of simplifying
the resulting structure description by eliminating redundant (in)equalities. To
do this, we generate a number of Presburger formulas, where every consecutive
Presturger formula has one more (in)equality until a redundant one is detected.
All of these consecutive Presburger formulas can also be solved incrementally.

4. Finally, even the real ILPs, which need to be solved by repeatedly iterating
on the Gomory algorithm, are still easy to solve because of the small size of
the problems [only a small number of (in)equalities and variables].

7 BOOTH MULTIPLIER-ACCUMULATOR MODULE

The Bocth multiplier module is one of the executional units used in the silicon
compilation system Cathedral IT [4]. It is defined in a parameterized way in order
to be reusable for a large number of applications.

In the first part of this section, an overview will be given of the Booth module
end of the global tranformation of its naive implementation into its final efficient
implementation. In the second part, one particular transformation step will be
investigated more profoundly.

7.1 Transformation of Booth Multiplier Module

The behavioral specification of the module is quite simple. The module has as
inputs the n-bit multiplicand X and the m-bit multiplier ¥. The (n + m)-bit product
is conditionally accumulated with the previous caleulated product, depending on
the CACC flag. The high-level specification, in the register-transfer language Log-
mos [32]. of the module is as follows:

26 D. Verkest, L. Claesen, and H. De Man

CELL Mult_acc
TERMINALS X[0..N—1] Y[0..M—1] EN CACC BUS[O. N+M-1]
END

CELL Mult_acc
IN=X[0..N—1] Y[0..M—1] EN CACC
REG=ACCREG[N+M—1..0]
SIGNAL=ACCOUT[N+M—1..0] MULT_ACCOUT[N+M—1._. 0]
TRI_OUT=BUS[N+M—-1..0]

BEGIN
IF CACC THEN ACCOUT = ACCREG
ELSE ACCOUT =#0_D[N+M] END
ACCREG<=MULT_-ACCOUT
MULT_ACCOUT =ADD(MPY (X, Y}, ACCOUT)
IF EN THEN BUS =ACCREG END
END

The operations ADD and MPY in the register-transfer-level (RTL) specifi-
cation are defined in terms of naive implementations, However, in view of speed,
area, and other trade-offs, these will not be used in the actual implementation.
For reasons of hardware efficiency, the Booth algorithm is chosen as the imple-
mentation of the MPY operation, and a straightforward implementation of this
algorithm results in the structure of Figure 8. The correctness of the Booth algorithm

Y[H CODING CELLS—’jA/ (m+1)div2
X X

1 2
[(met)dve mit)dvz po
(m+1)div2 MATRIX

n+2{m+1)div2

PACC '
P
n+2(m+1)div2

O0OP0

Figure 8. Booth multiplier module.

Transformational Design 27

n+2M-1

[l
J1514131211109676543210

components :

D Full Adder
= Register
O And Gate

terminals ;

5=M+1

6O o ®*»0

I
i

with respect to the straightforward shift-add implementation of MPY is given in
[19].

The naive implementation of the Booth algorithm, however, can still be op-
timized. The main improvements are situated in the organization of the adder
matrix and the accumulator structure, so this is what we will focus on. The naive
implementation of these two blocks is given in Figure 9 for an 8 X 8 instance. By

Figure 10. Final refined implementation of the structure.

28 D. Verkest, L. Claesen, and H. De Man

Figure 11. Automatically generated module layout of an 6 x 6 multiplier.

Transformational Design 29

using 15 transformation descriptions, the initial parameterized description is trans-
formed into the final parameterized structure description, which corresponds to
the actual implementation shown in Figure 10.

A pa-ameterized layout module generator for the multiplier accumnulator, cor-
responding to the final parameterized structure in Figure 10, has been designed in-
the Module Generation Environment (MGE) environment [2]. Figure 11 shows
the layout of a multiplier instance of 6 X 6 bits.

7.2 Elaboration of a Transformation Step

The transformation step we have chosen to work out in this section is the trans-
formation from a naive carry-propagate structure for the adder matrix into a more
efficient carry-save structure. The transformation step is illustrated in Figure 6.
The upper part of the figure shows the result of the previous transformation step.
The components with shadows are affected by the transformation description in
the middlz of the figure. The lower part of the figure shows the result of the
transformation step.

As far as the structure description is concerned, we are interested only in the
part that describes the carry inputs and outputs. This part has already been de-
scribed in Section 4.1. After translating this description into its equivalent tree
representztion, we get the structure tree of Figure 12. The transformation tree,
corresponding to the transformation description of Figure 6, is also given in Figure
12.

The first operation is the merging of the two trees. We start with the leftmost
root-leaf path of the structure tree and insert the transformation graph before the
net definition in the leaf. Then we take the next path, and so on until the structure
tree has been traversed completely (see Figure 13).

The second operation is the solving of the graph. This operation can be per-
formed during the construction of the merged graph. For each root-leaf path, we
apply the DECIDE procedure. If DECIDE finds that there is an intersection, we
eliminate as many redundant tests as possible. After this operation has been com-
pleted for all the paths of the merged tree, we obtain the tree in Figure 14.

From here on the operations are specific for the comm transformation. To
start, the conditions for the validity of the comm operation must be checked.

1. The components must allow commutativity. This is obvious here: all compo-
nents mentioned in the transformation description are full adders.

2. The terminals that are exchanged must have the same weight factor and delay
potential. As can be seen from the merged tree in Figure 14, the weight factors
of the exchanged terminals are indeed all the same (i-e, j). Also all the delay
potentials are equal (i.e., to 0).

3. Finally, all terminals that are exchanged must occur once as the left-hand-side
argument and once as the right-hand-side argument of comm. If this is not the
case, there will be unconnected terminals after execution of the transformation.
This can be checked in the following way:

30 D. Verkest, L. Claesen, and H. De Man Transformational Design 31

il SN

nonet

im+1 ./v N

_ Cldva+1j))
@ Cli=0

Figure 13. Resuiting tree after merging the structure and transformation tree.

W >0 nonet
il -8 g f
g ¢ 8 & £ @ss ©
@ & &) A R) jen+2'm-1 nonet
£ £
) S £ @
(7]
= & : nonet
s .m _M:i
= £ o
an g = - - T H P2 i
= & E - @Ox £ =
PAS = g j<2*1 >
Y & o E ol p2°(1-1) >0
I =
@: :)w
o o g
2 £ ' >1 W..
= £
=) ®©
-_mu_ @ i m tm nonet
5] ® B = e nop
of of of of ® 3 B > e eee
@5 £ .) Clfie0 nonet ; Cljje0
A 8 en2'm-1 nop
@@L s CLij=KGi-1)j
5 g i1 © rop @
g £ ¥ @®: = d i22°(m-1)
s 9 c = e ciijl @AI) >
S P = i}, CG-1]
[} v/ X 2
£ - Ox 2 2 Sy o2
£ = Clij) , Tmj) C(ij) ,
% O
= o

=
—_
&
al
RAN

@ = net definition
= test
®= primitive comm

ClL.pi

e For each path to a leaf of the merged tree.

e Take the left-hand-side argument of comm and determine the region in
which it is defined. This results in a tree that corresponds to the region
wihere the left-hand-side arguments of comm are transformed.

32

D. Verkest, L. Claesen, and H. De Man

>0

=0

=
-
=
o

C(ij) , C(idiva+1,j)

(5%

C(i.j) , C(m.j)

K(ij-1)i

@cliikii @ ciiy

Figure 14. Solved tree.

Transformational Design 33

¢ Do the same for the right-hand-side argument of comm.
e [f the two regions defined by the resulting trees are the same, then the
condition is fulfilled,

This last condition could also be tested after completion of the transformation
step, because then all terminals should be connected if the transformation was
valid.

The next step is execution of the primitive transformation. Let us take the
leftmost path in the merged tree in Figure 14. We have to make a new net, of
which one terminal is C(i, j) and the other terminal is the terminal that is connected
to C(i - 1, j) in the original structure description. Hereby i and j are determined
by the tests along the path:

izloi=m+l-jz0>j<sn+2*m—1—|
Em-1—=jz=z2*((-1)—>j<2+i—-1->i+1.

Now we have to look for the new right-hand side of €(i, J), which is the right-
hand side of C(i — 1, j) in the original structure description. To find this terminal,
we merge the original structure description with the tree formed by the tests men-
tioned earlier, but with i substituted by i + 1 to take into account the i — 1 index
of C(i — 1, j). This gives the tree in Figure 15. After solving this merged graph,
we obtain the new right-hand-side terminal of C(i, j).

i T &
= | 1 .\.

i<m
nonet
= T i<m+1
0 >
- @
j<ne2rm1 T 0
~

.\ nonet
i«m-2
3 ®

P2 T jne2'm-1 .\nonei
js2i+

7

® @
Clli=0 [CDi=KG1)i)CGi)-0 nonet CGpi=K(ij1)i Cijj=0

Figure 15. Tree describing the C(i — 1, j) terminals.

34 D. Verkest, L. Claesen, and H. De Man

This procedure is repeated for every leaf of the merged tree of Figure 14, in

which the primitive equivalence transformation is mentioned. After traversal of
the complete tree, we get the structu

ture indicated in Figure 16.

After retranslating this tree jnto Hilarics, the structure description for the
transformed carry inputs is obtained.

fori=1tom + 1do
forj=0ton+2+m— 1do
ifi=<m — 1 then ifj=2+(G - 1) then if ; + 1thenC(i,j)j=K(i— L,j— 1)
else C(i, j)ji = 0
fi
else nonet
fi
else if / = mthen ifj=2%(i — 1) then Ci, j)j = K@i - 1,j~1)
else nonet
fi

else if j > 0 then C(j, j)j = K@i, j— 1y
else C(i,j)i =0
fi

fi
rof
rof

This is the Hilarics description of the carry inputs and outputs of the structure
in the bottom part of F igure 6. This structure description can then be used as the
input for the next transformation step, until finally the desired structure is obtained.

8 SYSTOLIC FINITE IMPULSE RESPONSE FILTER

In this last section, we take the opportunity to show a few steps of the transfor-
mational design of an FIR filter. We would like to derive a systolic implementation
of this filter, starting from a straightforward implementation of its function.

An FIR filter has an output ¥ that is on each time point 1 equal to the sum of
the N previous input signals x; it implements the following function (N is a param-
eter):

N
y = 2 ax‘-i

i=1
A straightforward implementation of this function is given in Figure 17 for a pa-
rameter value of N = 9. A systolic implementation of this FIR filter consists of N
processing elements in a matrix structure. In between each processing element
there is a register. To derive this systolic implementation from the straightforward
implementation, a number of retiming transformations must be done. These trans-
formations are shown in Figures 18-21. This last implementation is, in fact, the

Transformational Design 35

jen+2'm-1

jp2*(i-1) i=m

>0

i1

nonet

@ e ®@ ®& ©®© ©

i-j)j= i i.ji= Cli.)j= nonet
C(i.j)j= Clijji=0 Cliji= nonet C(ij)
K(i-1,j-1)j (K(i-1,j-1)j K(ij-1)j
Figure 16. Tree corresponding to the transformed structure description.

systolic implementation we are looking for: after rearranging the blocks (without
changing the structure), we get Figure 22.) o

Based on the technique described in Sectlo.n 5, the structure descrlptlop cor-
responding to Figure 22 can be calculated starung.from the structure descnpqon
of Figure 17, which was, in turn, a straightforward 1mPlc_111entatton of the fupctlon
of the fiiter. The registers that must be moved are mdlca'ted by the.test.s in the
transformation descriptions. The net definitions that descrlbe.: nets going into and
out of these registers can be identified in the structugi de‘scnpgon by looking for
the intersections of the polytope in which the net definition is val.mjl and the polytope
in which the transformation definition is valid. The net deﬁmt{ons that must be
changec, because the registers are being moved into the nets defined by them, can
be identified in the same way.

9 CONCLUSIONS

In this paper, we have presented a synthesis and/or verification method thaf is built
on the concept of correctness preserving transformations. The transformations are

36 b. Verkest, L. Claesen, and H, De Man

X(t)

y(1)

SR

NN

SN
SOOI

ESE
SR
NN
LA

+

Figure 17. Straightforward implementation of the function of an FIR filter.

Figure 18.

Shifting some registers over the coeffi

cient blocks.

Transformational Design 37

X(t) X(t-2) X(t-4)

Figure 19. Shifting the input signals in time.

X

—

Figure 20. Shifting some registers over the adder blocks.

38 D Verkest, L. Claesen, and H. De Man

Figure 21.

Figure 22,

Systolic implementation of the FIR filter.

Transformational Design 39

performed on parameterized structure descriptions in order to come from a spec-
ification up to an actual implementation. The transformations are formalized usin g
transformation descriptions, which, in turn, make use of primitive equivalence
transformations. Algorithms have been presented that implement this method using
an exist:ng hardware description language (HDL), Hilarics. Note, however, that
the method could be applied to other HDLs as well, as long as the HDL is applic-
ative and allows IF THEN ELSE and FOR loop statements in the structure de-
scription.

The method has been applied for the design of a parameterized Booth mul-
tiplication module and a parameterized systolic implementation of a finite impulse
response filter.

As proposed herein, the synthesis technique cannot be used for behavior syn-
thesis. Further research will concentrate on applying the same principles as outlined
herein “o include manipulations on register-transfer-level constructs and on high-
level system specifications in the Silage language. In the latter case, it will be very
useful for the guided synthesis of high-speed video-type signal processors. In ad-
dition, the formal proof of the correctness of the transformation descriptions will
be investigated.

REFERENCES

[1} H. De Man, “Evolution of CAD Tools Towards Third Generation Custom VLSI
Design,” Revue Phys. Appl., Vol. 22, pp. 31-45, January 1988.

[2] P.Six, L. Claesen, J. Rabaey, and H. De Man, “An Intelligent Module Generation
Environment,” Proc. of 23rd Design Automation Conf., Las Vegas, NV, 1986, pp.
730-735.

{3] R. Jain et al., “Custom Design of a VLSI PCM-FDM Transmultiplexer from System
Specifications to Circuit Layout Using a Computer Aided Design System,” [EEE
Journal of Solid-State Circuits, Vol. SC-21, No. 1, pp. 73-85, February 1986.

[4] H.De Man, J. Rabaey, P. Six, and L. Claesen, “Cathedral II: A Silicon Compiler
ior Digital Signal Processing,” IEEE Design & Test of Computers, Vol. 3, No. 6,
Jp. 73-85, December 1986.

[5] P.N. Hilfinger, “A High Level Language and Silicon Compiler for Digital Signal
Processing,” Proc. IEEE 1985 Custom Integrated Circuits Conf., 1985, pp. 213-
216.

[6] P. Camurati, and P. Prinetto, “Formal Verification of Hardware Correctness: An
Introduction,” Proc. of IFIP 8th International Symposium on Computer Hardware
Description Languages and their Applications, April 1987, pp. 225~247.

[7] W.A. Hunt, “FM8501: A Verified Microprocessor,” IFIP WG 10.2 Workshop: from
HDL Descriptions to Guaranteed Correct Circuit Designs, Grenoble, France, Sep-
tember 1986, pp. 85-114.

[8] 1.J. Joyce, “Formal Verification and Implementation of a Microprocessor,” VLS/
Specification, Verification and Synthesis, edited by G. Birtwistle and P. Subrah-
manyam, Kluwer Academic, Norwell, MA, 1988, pp. 129-157.

[9] M.Sheeran, “pFP, an Algebraic VLSI Design Language,” Ph.D. thesis, Programming
Research Group, Oxford University, 1983.

[10] M. Sheeran, “Describing and Reasoning about Circuits Using Relations,” Proc. of
Leeds Workshop on Theoretical Aspects of VLSI Design, 1986.

40 D. Verkest, L. Claesen, and H. De Man

[11] P‘?. Suhirahmanyam. “The Allgebraic Basis of an Expert System for VLSI Design,”

arma Aspects of VLSI Design, edited by G. L. Milne and P. A, Subrahmanyam

2] & ?Is:iwer, New York, 1986, pp. 59-81. ,
-J. Milne, “Contextual Constraints for Desi ification,”

>~ Col onstra gnand Verification," VLSI Speci ication,

Vertf:car_mn and Synthesis, edited by G. Birtwistle and P. Subrahmanyam J1rl~(Iuw¢:r

A Acadc-n'uc. Norwell, MA, 1988, pp. 257-265. .
[13] H. Eveking, “Verification, Synthesis and Correctness Preserving Transformations—

September 1986, Pp- 229-239.
[14] M. Go'rdon: "HOL; A Proof Generating System for Higher-Order Logic,” vLS/
Specification, Verification and Synthesis, edited by G. Birtwistle and P. ’Subrah—
s rEnarEl‘yan. Kluwer Academic, Norwell, MA, 1988, pp. 73-128
-E. Bryant, “Boolean Analysis of MOS Circuits,” IEEE Transacti
Alded Design, Vol. CAD-6, No. 4, pp. 634-649, July l9??ilmmom S
[16] H.!g; g{;n et al.,‘ “DIALOG: an Expert Debugging System for MOS VLS| Design,”
ransacty -Ail i ’
o 1935715“ tons on Computer-Aided Design, Vol. CAD-4, No. 3, pp- 301-311,
[17] G.D. Hachtel, and R.M Jacoby, “Verification Algori
" M. i gorithms for VLS Synthesis,” NATO
Advanced Study Institute on Logic Synthesis and Sili¢ itati b
! on Compil, -
15 B si:gn. SSGRR, I'Aquila, Italy, J uly 1986. AR for R N
- Lammens, L. Claesen, and H. De Man “Correctness Verification of
s and . VLSI Modul
Supported by a Very Efficient Boolean Prover,” Proc. of IEEE lnternationa(l)CE:)res
ference on Computer Design, 1989, pp. 266-269,
[19] L.P. Rubinfield, A Proof of the Modified Booth Algorithm for Multiplication,”
IEEE Transactions on Computers, Vol. C-24, pp. 1014-1015, October 1975 '
[20] L. \S‘!a;iscn. P. Johz;:mes, D. Verkest, and H. De Man, “Guided Synthesis and Formal
erification Techniques for Parameterized Hard 5
PEURG 58, 1968 ety ardware Modules,” Proc. of COM-
[21] D. Verkest et ai “Formal Techniques for Proving Correctness of Parameterized
g;;:w;;e gsn:lg C-’o(xr;m;ess Preserving Transformations,” IFIP WGi0.2 Work-
- Lhe Fusion of Hardware Desi ificati
[1968, g Thae are Design and Verification, Glasgow, Scotland, July
22] E. Vanden Meersch, and R Severyns, “HILARICS: User" iti
s . i : User’s M. 1, 2, .
sy emal Report IMEC MRO3-KUL7-B3-2, January 1986, < o™
[23] C.;:. Lmsgrsun, and .I.JB._ Saxe, “Optimizing Synchronous Systems,” 22nd Annual
o Vmp i on Fo ons of Computer Science, TEEE, October 1981, pp. 23-36.
[24] R.T. B9u1§, System Semantics and Formal Circuit Description,” IEEE Transactions
s on Clrcml.:.c and Systems, .Vol. CAS-33, No. 12, pp. 1219-1231, December 1986,
[25] 1. {?:::{ug;ﬂ&ndl’ll?sgr:rn;mg i:eP Liberated from the von Neumann Style? A Fune-
¢ an £ebra of Programs,” Communications of the 2
o G- 8. PP 613-641, August 1978, FACK Vol 2,
- Presburger, “Uber die Vollstindigkeit eines i i i
] . 4 gewissen Systems der Arithmetik
ganzer Zahlen in Welchem die Addition als einzig Operation hervortritt," Spnl;r-

[27] R.E. Shostak, “On the Sup-Inf Method for Provi
> roving Presburger Formulas,”
of the ACM, Vol. 24, No. 4, pp- 529-534, October 1977, . e Jourmal
[28] W;;:&Blid!so;. “A New !fwethod for Proving Certain Presburger Formulas,” Advance
7S g International Joint Conference on Artificial Intelligenc lisi i
USSR, September 1975, pp. 15-21. peress TR, Gndems.

Transformational Design 41

[29] R.E. Gomory, “An Algorithm for Integer Solutions to Linear Problems,” Recent
Advances in Mathematical Programming, edited by R. L. Graves and P. Wolfe.
New York: McGraw-Hill, 1963, pp. 269—302.

[30] R.E. Shostak, “A Practical Decision Procedure for Arithmetic with Function Sym-
bols,” Journal of the ACM, Vol. 26, No. 2, pp. 351-360, April 1979, .

[31] C.H. Papadimitriou, and K. Steiglitz, Combinatorial Optimization: Algorithms and
Complexity. Englewood Cliffs, NJI. Prentice-Hall, 1982.

[32] R. Severyns, and E. Marien, “LOGMOS User’s Guide,” Internal Report IMEC,
1986,

Diederik T. M. Verkest received his Electrical Engineering degree from the
Katholieke Universiteit Leuven, Belgium in 1987. He joined the IMEC labo-
ratory in 1987 in Heverlee (Belgium) as a research assistant, where he is cur-
rently working toward his Ph.D. in the ficld of computer aided design of in-
tegrated systems for digital signal processing. His rescarch interests are in computer
aided design, formal design and verification methods and theorem proving
systems. He is a student member of [EEE.

. Luc J. M. Claesen (S'77-M'85) received his Electrical Engineering degree and
his Ph.D. degree from the Katholicke Universiteit Leuven, Belgium in 1979
and 1984, respectively. After graduation in 1979 he joined the ESAT-laboratory,
Katholiecke Universiteit Leuven, as a research assistant. There he has been
working in the field of computer aided design of integrated systems for digital
and analog signal processing. Since July 1984 he is with the IMEC laboratory
in Heverlee (Belgium), where he is heading research in the design management
and verification group within the VLSI systems design methodologies division.
Since 1989 he became an associate professor at Katholieke Universiteit Leuven.
He received a Best Paper Award at the ICCD’86 conference for work on an
analysis and verification system for digital signal processing systems. His research interests are in
computer aided design, formal design and verification methods, integrated digital signal processing and
image synthesis systems. He is a member of IFIP working group 10.2 “System Description and Design
Tools.”

Hugo J. De Man received his electrical engineering degree and his Ph.D. degree
in Applied Sciences from the Katholicke Universiteit Leuven, Heverlee, Bel-
gium, in 1964 and 1968, respectively. In 1968 he became a member of the staff
of the Laboratory for Physics and Electronics of Semiconductors-at the Uni-
versity of Leuven, working on device physics and integrated circuit technology.
From 1969 1o 1971 he was at the Elcetronic Research Laboratory, University
of California, Berkeley, as an ESRO-NASA postdoctoral research fellow, work-
ing on computer-aided device and circuit design. In 1971 he returned to the
University of Leuven as a research associate of the NFWO (Belgian National
Science Foundation). In 1974 he became a professor at the University of Leuven.
During the winter quarter of 19741975 he was a visiting associate professor at the University of
California, Berkeley. He was an associate editor for the IEEE Journal of Solid-State Circuits from
1975-1980 and was european associate editor for the IEEE Transactions on CAD from 1982 to 1985.
He received z Best Paper Award at the ISSCC of 1973 on bipolar device simulation and at the 1981
ESSCIRC cocference for work on an integrated CAD system. In 1986 he became a fellow of the IEEE.
His actual field of research is the design of integrated circuits and computer-aided design. Since 1984
he is vice president of the VLSI systems design group of IMEC (Leuven, Belgium).

