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Transformational Design Methodology for
Parameterized VLSI Modules
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A new method is presented to be used for either guided synthesis or formal correctness
verification otparameteized digilal hardware modules. The method is based on the concept
of correctness preserving transiormations, formalized by means of transformation descrip-
ticrs. A parameterized description of the module is used as the specitication. This specifi-
cation can then be manipulated by the designer by using transformation descriptions. Atter
a number of transformation steps, the designer has a parameterized description of the
implementation of the module. ln this method, manipulations are done direcdy on an existing
hardware description language, insiead of using derived formalisms, as is done in othei
approaches. Starting lrom the original structure description and a transformation description,
the structure description corresponding with the transformed design can be generated au-
tonatically using the techniques described in this paper. The algorithms to support this
design methodology are presented and examples are elaborated to illustrate the important
cc'ncepts. This design method has been applied to actual VLSI designs, such as a pipelined
and parameterized multiplier-accumulator module and a systolic implementation ol a finite
irnpulse response filter.

design of VLSI modules, transformational design, guided synthesis,
formal verification, correctness preserving transformations,

hardware description languages

r GUARANTEED CORRECT VLSI DESIGNS

Current capabilities of VLSI technology allow that larger systems are being inte-
grated on one chip. Therefore, the design of these systems has become very com-
plex. Formerly used design methodologies, such as top-down or bottom-up, no
longer are affordable, because of the large design iteration cycles and, the fact that
only a limited number of people in the world are still able to manage the complete
design trajectory from high-level specifications down to MOS transistor techniques.
The currently emerging methodology of custom VLSI design is more llke a meet-
in+he-middle [1] approach, as shown in Figure 1, where two different design teams
meet each other at the level of functional modules, such as arithmetic and logic
units (ALUs), multipliers, and so forth. To be reused frequently by system de-
signers, these modules must be flexible. This is achieved by the ability to generate
modules in a parameterized way l2l.

During this design activity, there is the problem of guaranteeing or verifying
the correctness of the design- The CAD support for this aspect is currently very
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lowable parameter domain of the generator procedures. Because of the multiplicity
of poss:ble instances that can be generated, verification methods that act on in-
stances no longer are appropriate. Methods to formally prove the correctness would
be very useful here.

This paper describes a new technique that can be used to guarantee the cor-
rectness of such parameterized hardware modules. In Section 2, a short overview
will be given of different approaches taken to tackle the verification problem and
how they relate to the problem of verifying parameterized modules. The transfor-
mational design methodology will be explained in Section 3. To make this meth-
odology accessible to VLSI designers, we have decided in favor of the use of an
existing hardware description language (HDL) for performing transformations. In
Section 4, this HDL and the language to describe the transformations are presented.
In Section 5, it is shown how such an existing HDL can be used for transformational
design. The algorithms underlying this methodology will be discussed in Section
6. Next, two actual VLSI design examples will be discussed in the light of this
methodology. In Section 7, the design of the multiplier-accumulator module from
the mc,dule library of the Cathedral II silicon compiler [4] is discussed. Finally, in
Section 8, the design of a finite impulse response (FIR) filter, starting from a
straightforward implementation and resulting in a systolic implementation, is pre-
sented.

2 APPROACHES FOR FORMAL CORRECTNESS VERIFICATION

Severa: approaches have been developed to solve the problem of formal verifi-
cation. A good survey of the field can be found in [6]. Most of these formal
verification methods could also be used to verify the correctness of parameterized
modules. However, in general, verification after the design facts, i.e., comparing
a highly optimized implementation with a high{evel specification, is not feasible
without a lot of assistance from the designer. From the experience of researchers
using general theorem provers to perform such proofs (e.g., [7 ,8]), one can con-
clude that the construction of the proof takes a lot of effort. In addition, the proof
has to :e well understood in advance.

As opposed to verification after the design facts, one can adopt a transfor-
mational design methodology: correctness preserving transformations are used to
refine designs toward efficient implementations. This approach has the advantage
that the "verification" can proceed in small steps-in fact, it is not really verifi-
cation, but a constructive proof or guided synthesis. Following this course, it is the
designer who, while designing his system, constructs the proof, i.e., the sequence
of transformation steps. A verification effort after the design facts is no ionger
needed.

A CAD tool supporting this methodology first should check whether the trans-
formation is applicable in a specific situation by checking a number of constraints;
second. execute the transformation to produce the description of the transformed
design. Special formalisms to support such a design methodology have been de-
veloped by Sheeran [9, 10] and Subrahmanyam [11]. Milne [12] and Eveking [13]

Figure l. Meet-in-the_middle strategy.

poor- only for specific classes of applications, automatic synthesis (silicon com-
pilation) from high-level behavioral specification to chip layout .un i" oon",-r"-
sulting in correctness by construction For the class of iigiiut fitt".. unJ !"-#urdigital signal processing.(DSp) systems, the feasibility oisuch un upp-u-J hu,
been demonstrated [3, 4].

The cathedral II silicon compiler [4] is organized according to this meet-in-
the-middle strategy. An automaric synrhesis is done from the [igr,-r"*i,p""iri_
cation language Silage [5] into a number of controllers and execition ,rrriis tt"t
are predesigned as parameterized modules. Examples of parameters are the word-
length of the inputs, the number of input buses, and Booreans to indicate the
presence or absence of an accumulator section or a pipeline. The set of required
parameterized module generators is designed uy circuit designers as a set oi u.p
procedures [2] automatically generating the ciriuit layout for the module. while
the high{evel synthesis is correct by construction, the conectness of the module
generators is still being verified by classical verification techniques such as logic
and circuit simulation.

For several other design classes, automatic synthesis is not yet feasibre, and
"manual" system design is still used for most appiications. This is the 

"ur" 
f- futt

custom design as well as for highly optimized ciicuits, e.g., video or radar appri-
cations. The only tools available for correctness verification are simulators. Fi;w_
ever, simulation suffers from a number of well-known drawbacks: covering alr input
combinations is not feasible for realistic vLSI designs, and detection "or 

a"rigr,
errors depends on the choice of appropriate input Jignals and the correct int;r-
pretation of output results. Another complication in the case of modules is that
correctness must be guaranteed not only for one instance, but for the whole al_
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stressed the role ofconstraints in this context. In principle, also a general theorem
prover such as HOL [14] could be used as a transformational design system.

The key role of the designer in a transformational design methodology was
already mentioned; it is the designer who must decide what transformaticns to
apply. This implies that the formalism underlying the transformational design.must
be accessible to the designer by using his familiar design environment and hirdware
description methods. The formalisms mentioned earlier are lacking on exactly that
point.

To make tranformational design accessible to VLSI designers, we have opted
for the use of an existing IlDl. Instead of developing a separate formal sysiem,
we develop a system to support transformational design using this existing HDL.

3 TRANSFORMATIONAL DESIGN METHODOLOGY

The transformational design methodology is illustrated in Figure 2. It consists of
a step-by-step transformation of the specification into an efficient implementation,
based on the concept of correctness preserving transformations. In the figure, two
alternative paths are shown: formal verification is the path going up from imple-
mentation to specification and synthesis is the path going down. Before going into
detail, we will define some tenns (see Figure 2).

c transformation (the large arrow in the figure): the process of altering the spec-
ification to obtain the implementation.

t transformation stept one step out of the transformation. A transformation step
consists of an intermediate design step and a transformation description.

o intermediate design description (the rectangular boxes): the structure descrip-
tion that describes the result of a transformation step and also serves as input
for the next transformation step. The structure descriptions can be parame-
terized.

. transformation description (the rounded boxes): describes which primitive
equivalence transformation is used in the transformation step and to which
part of the design it is applied. The transformation descriptions can be param-
eterized.

c primitive equivalence transformation'. the correctness preserving transformation
used in the transformation description. Examples of these can be found in
Section 4.2.

During the synthesis path, the transformation steps are just formal descriptions of
the optimizations the designer has in mind, while in the verification process the
transformation descriptions would be exactly the inverse of these optimizations. It
is our experience that it is easier to describe these transformation steps during the
synthesis phase; therefore, we will concentrate on the guided synthesis. Note,
however, that this is not a restriction of the applicability of the techniques described
in this paper; they are just as well applicable to both alternatives. In ihe remainder
of this paper, transformational design will be regarded as a synonym for the guided
synthesis alternative of Figure 2.

TransformationalDesign 13

Figure 2. Transformational design methodology.

A transformational design system takes as input a highJevel specification of
the design. Starting from that initial specification, the designer manipulates the
hardwar: description using the transformation descriptions until he achieves the
desired :mplementation in terms of primitives that can be realized as circuits in
hardware. These primitives are usually small blocks of up to 20 transistors, such
as gates- or small functional blocks, such as full adders- The correctness of these
basic prinitives with respect to their layout realization can be verified using circuit
extracticn from the (symbolic) layout. The logic equations can then be extracted
[15, 16] from the obtained transistor netlists and compared [17, 18] ro the logic
equatior-s that originate from the behavioral specification of the primitive cell.
Given the parameterized structure description of the implementation, the actual
module senerator procedure can be created by the module designer [2].'[he high-level specification consists of an interconnection of predefined cells

ma
3o

@
4

@
-@
@
Eg
la.-r

c.-

@

I(SU?{OruSIrOU D€?Cr.

?Irnc{nr6 D6?cr

2IiflC{n16 D6zcr

lrsu?{oruJslrou D6act

2JrncIn16 Deec(

lrsuelou.!sIrou D€2cr.

High Level Specifications

Hardware lmplementation

Transformation Descr

Structure Descr

Transformalion Descr

Structure Descr

Structure Descr

Transformation Descr



14 D. Verkest, L. Claesen, and H. De Man

together with the don't care behavior and corresponds to a naive implementationof the required behavior.-The HDL used ro, it'Jo"r.ription (and which is arsoused for the description of the intermeaiut" a"rign ,i"ps) is defined in section 4.1.An example is the multiplication algorithm, ;i:;;"" be imptemenrei n"-iGv uvthe shift-add algorithm as.learnedln p.imary idJ. ilJT;'Jli;il#],though easy to understand, is lever ,,i"a 
", 

irrpr"*entation because of consider_ations on speed, area, throughput, and so forti. tnrt.uA, a beuer suited imDle_mentation is used, e.g., an implementation of the B.;ih f I'9i""Ig""ffi. ;; #L,"
'lir" 

r9r." efficient implementation starting fr;;; implementation of the naive

;T|t..a* 
atgorithm, the designer -ur, ,upfity u nuJ., bf transformation O.r..ip_

The transformation descriptioz.r are, as stated earlier, used to describe thetransformation steps. The language used ior these descriptions is defined in Section4;2' 'fhe designer has a numbir. oif primitive ;q;;;.n"" transformations availabrethat could be used in the transition descriptrons. it"r" 
"r" transformations that,when applied to an arbitrary design, yierd ^" i"".,i"r} equivarent design if certainconditions are met (see Section 4.2).-

Thus the method is a step-by-step correctness presewing transformation underthe full guidance of the designer, who makes ail of trre design decisions. This is incontrast to automatic svnthesis and verification techniques, ivrr"." ,r* 
"qri""i"r*between implementation and specification is 

"onr..ued, 
respectively proved, bythe system without anv informition from the aesig.re.. Automatic systems sufterfrom the drawback that ttrey must determine alr oi the design transformations ontheir own. This is especialry difficult for the generaicase of comprex parameterizedhardware designs' By letting the designer t6.rr"rrv *p."ss his erementary aesigntransformations, the synthesis or verification p.obi;;;;;;;; ;;;;;;r;1.".By recording the transformation steps, ttre aesigner can maintain a history ofthe evolution of the design. owing to this good docrimentation of the design, latermodifications can be easily achieved andiroved correct, starting from an inter-mediate design step.
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first-order or higher-order logic. This choice is motivated by the fact that hardware
designers are traditionally much more familiar with such a language than with the
functi,:nal or logical formalisms mentioned earlier.

Elarics starts from the concept that the structure (composition) of a circuit
should be described completely independent from other design views. Hilarics is
a purely applicative language, in which designs can be described hierarchically and
in a parameterized way. As such, the language is currently in use for the description
of the structure part for register-transfer descriptions, for circuit-level simulation,
for timing verification, for switch- and logic-level simulation, and as a definition
input for the module generation environment. Hilarics has been used for the de-
scripti,on of several hierarchical and parameterized VLSI designs and parts thereof.

In this paper, the main emphasis is on net-oriented descriptions in Hilarics.
The interconnection part of Hilarics consists of a number of connections or nets.
The rrts are the sets of interconnected terminals of the components and of the
cell. A net is defined by the two terminals that are connected, separated by an
equal sign. All terminals defined in the definition and declaration part must be
connected, and no other terminals can be used. Input terminals can be connected
only once; output terminals can be connected to more than one other (input)
terminal.

To exploit repetitivity, iterativity, and to be able to deal with conditionality,
certain controlling constructs can be used: forJoops and tf+hen-else constructs.

For the specific domain of digital signal processing and for arithmetic appli-
cations, the following additional view information is required-

T\e delay potential indicates for synchronous systems the relative shift in time
between nets (more precisely between the signals on the nets). This concept
allows one to perform delay management and retiming transformations [23].It is obvious that no time shift can occur between the two terminals of the
same net, so the delay potential is a property of the net and not of the terminals.
The arithmetic weight factor indicates the place of a terminal in a bit vector.
Two consecutive bits in a binary number have a different weight factor (by a
falor 2). Weight factors are a property of the terminals and not of the nets.
For example, in a hardwired shifter, realizing a multiplication by 2, the two
terminals of a net will have different weight factors by a factor 2-

The Hilarics language is used to describe all the intermediate design descrip-
tions of the transformation. An example of a structure description with Hilarics is
given subsequently. It describes the interconnection pattern of the carry inputs and
outpuis of the structure at the top in Figure 6, which is the adder matrix and the
accumulator section of the Booth multiplier module explained in more detail in
Section 7. The figure has been made for an 8 x 8 instance of the module, but all
of the descriptions are parameterized. The C terminals in the structure description
are the carry inputs (the east terminals of the full adder cells). The K terminals
are the carry outputs (the west terminals of the full adders). The characters inside
brackets (i, j in C(i,i)) are indices, whereas the character after the bracket (7 in
C(i, j)il denotes the weight factor.

a

a

4 LANGUAGES

Before going into detail on the technique developed to calculate a new hardwaredescription given a transformation description,n'a it. originar hardware a"s".ip_tion, we 
.prese_nt- 

the language-s used herein. First, the rrbr-, ."'"J rr'"ri*,' i,presented, and then the transformation description language-is oi.",r*a-- rutl."details on the transformatio^n^al design strategy'anJ on these languages and theirsemantics can be found in [20, and i1].

4.1 HDL Hitarics

we have chosen to use directry the existing Hilarics [22] parameterized structuredescription language to perform the manipu"lationr. iti, irln 
"ont."sito 

d;;;_ods mentioned in section 2, that try to moiel hardware based on functional models,



16 D. Verkest, L. Claesen, and H. De Man

fori = 1 tom * ldo
forT:6ton+2*m-ldo
ifi< m - lthen ifj>2* (i - 1)then ifj<Z*i _ lthen C(i,j)j:0

etse C(i, j)j : K(i, j - L)j
fi

else nonet

els€ if i : m thenif j > 2 * (i - t) then C(;,il; : O

else nonet
fi

else ifj > 0 then C(i, /) = K(i, j - t)i
etse C(t, J) : 0

fi
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Cescript',on and its components before the primitive transformation may be validly
applied. Because of this constraint mechanism, the exact function of the basic cells
is of little importance. If the basic cells satisfy the constraints imposed by the
primitive transformation, then the transformation description is valid.

1. Pirnitive arithmetic equivalence transformations. These can be applied for arith-
metic building blocks, such as full adders. '[.he comm transformation belongs
to this class. In Figure 3, the function of comm(a, b) is to make a new net
consisting of the terminal a and the terminal to which b is connected. Since

terminal b is no longer connected after the transformation, it must be recon-
nected by another comm transformation, such as comm(b, c). This means that
every terminal involved in a comm operation has to occur once as the left-
hanC-side argument and once as the right-hand-side argument of comm.Ihis
is a valid equivalence transformation if the components concerned allow com-
mutativity. In addition, the terminals concerned must have the same delay
potential and the same weight factor.

2. Primitive Boolean equivalence transformations. These properties act on Boo-
lean operators. The classical rules of Boolean algebra can be used here, and
the validity of these transformations can be checked by a tautology checker

[17, 18]. A good example of a transformation belonging to this class is given

in Figure 4. Here two full adder cells are replaced by one dedicated 2-bit adder
cell to optimize the critical path in the adder matrix of the Booth module. The
conCitions for this operation are that the logic functionality and the intercon-
nec:ion with the surrounding cells must be the same for both substituents.

Notice that, for the equivalence proof of the logic function of these smaller

comm(a,b)

comm(b,a)

Figure 3. Primitive arithmetic transformation: switching terminals tsing comm.

fi
fi

rof
rof

4.2 Transformation Descriptions

This section contains severar topics. First, the language used for the transformationdescriptions is defined. In the iecond prrugrupt ittJ different .rrrr", oiiririii""equivalence transformations are explainedl

4.2. 1 Transfurmation Description Language

A transformation descriptionindicates which primitive equivalence transformationrs used, and to which oart of the de.sign this pri_itiu. trunrforrnation is applied.rnlra.nsrglngtion ranluage is uery simlar to lil;r, bur instead of net definitionswe find primitive equivalence transformations.

" 
Tl: prim^itive equivalence transformations are correctness preserving trans-tormations. If they are appried to a specific structure, a new structure is obtainedthat is functionaily equiviient to tfre originai;;;.*-
The transformation description- rang"uage (TtL) is appricative in order to fa-cilitate the formar manipulations. onry"onJ pii-itirle equivalence transformationmay be used in a singre transformation o"scriition, but, oi 

"ou.r", 
rt 

""" u" 
"ppii"ato several components of the structure. This restrictron stems from the fact thatthe. transformation description is appricative. rr *o."'trrun one primitive transfor_mation were allowed, then the transformation J".".ip,ion *.JI;;;;";;;;;;"dural, which would substantially complicar" ,h.;;;;; rechniques.

4.2.2 Classes of pimitive Equivalence Transformations
In the.DSP-like applications considered so far, the foilowing crasses of primitiveequivalence transformations can be distinguist.o, a.itt metic transformations, Boo-lean transformations, and flow-graph oi"rror-uiions- Fo. each primitive trans-formation, there are a number or 

"onrtruintr 
,rr* r"ur, be met by the structure

TO

a
b

Figure 4. Two Boolean equivalent cells that can be checked by a tautologt checker.
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blocks, no parameterized descriptions are ne<
^ 9"n indeed be used. :essary and a tautology checker

":#i'!{i:i,'i7l:::*3:;:i'^XtT{::#{:?:Examp,es.orthesetransror-
upper part of Filure s. ir,... ploi;#;;?"o"tations [23f , as shown in rhe
ganization ot the"intern,i";".:""i:i:1'l:',1t:..u::d, for example, in rhe reor-

A triviar .;;.;;i:"":lg,*::,:fo:Hil:'.,'p,*,
!.y:.,o"lt or Figure s. rh. ;;;;;;;;;,::"'.oonents, as depicted in the
must be insrancei of th. ru,n"..ti;;ffi;*a*:111 the two.clmponents

",.,tl;fill]; li.l':1,1'l:'lation 
descriptio" 

" ;'i:il:':,r".j :"'i;:::".",
"... tr,.-p.i*ii,,,',i,)i'"'J.j}ij:"ffi4fl:: 

:j.:l:,g"om'*"i"1"^i.',r,.,.,i". ,,
to transform the adder matrix of ,fre_"a"j,.,ii.ror! ulputS and outputs in order
a carry-save structure. All the full 

"0J., ..jf, #frd 
carry-proPagate structure into

the transformation are l,st"do*.d.., terminals that are affected by

4.3 Formal Manipulations on Hilarics and on the TDL
As. will be explained in Section 5, a lot of calculati,scriptions. As a resurt of these .rl.ur",ionr, ,;i"];:'::: 

*ust be done on rhe de-

:Ty::.ll- necessary. ro obtain ,;;;;;il;"j!ltfl'tend to become much
nipulation rures can be appried. Th";; ;;;::"";:.:'g:1. some Janguage ma_

"T":1[.?iG:i;i'::*::tJ.,"iji+;t,,',ru#ill:#ffi ;"":"f i{:i'il*lr.il the language. This means independenr of thiof which the terminits are-defined r" tii 
"i' it"r#:'Ti"jlt" 9f the components

able in applicative lan suan""-'";;'* 
*.i," 

:; :"utop?ut _o-perations are also avail-approach[9J. - ges such as FP [2s] rnJin HbL.;;;t;;;?.#r1,,
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rf

I

FOR i=l TO m DO
FOR j=2*(i-l) To n+2+m-l D0

IF i+l THEN COMM(C(i"i),C(i-Ij))
ELSE IFj>=2*(m-l) THEN COMM(C(i,i),C(m,i))

ELSE COMM(C(i"i),C(i div 2 +r j))
FI

FI
ROF

ROF

rl

,r
I I,J 11"

{(/

'-

->

Figure 6. Transformation step from carry-propagate to carry-save structure.

The primitive equivalence transformations defined in the preceding sections
can be viewed as language specific conversion rules, as defined in [it]. rney
preserve meaning with respect to the behavioral model depending on the semantici
of the c'mstants in the language.

Figure 5' Retiming equivalence transformation and .<remove,, 
equivalence transformation.
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5 TRANSFORMATIONAL 
DESIGN REVISITED

The concrete problem w
o. t ig n ,n. t h oio r.*n'Jr t"^ *1 l 

t t so I ve 
- 

w h e n we wa n

: gt."." a s rrucr ure ;::ff * 
"{;il:J#:?':o*!3Jn:' 

"' "'rorma tio na I

. gtven a transformatir. iotrutotr i;;'fi:' 
description

ro.-"a rt.u"iu'e"ructure 
description in Hilarics, which represents the trans-

_ 
In this section, we exro be solved. plain how this can be done

. The indices of comr.:""r" ": -^::-.."e 

qone and identifv the subproblems

formarion 0....r0i"", ii;i^t^l:t '"q nets in the paran
rndicares the staiic -*f.ii-1'-'p""i"'r,.rirr.i"i;ii,'ff'.11'iilil:il1::i,.Jil,;how a cerr i. ,;;;;;i.n"::: ?i., 

cett. rhe transro
srructure descriprion of ,n^t1 -u 

tu:tttot,r .q"i""i"itmatton 
description indicates

."..glne the strucrure a..j-,ii*' r*tt-".ilq"ri,i'ilt cell' This implies that the

scrrprron. Jn rhe method *:iltl:t tr m"..igl}'"atcnt c€ll can be calculated by

::#*":j*ffi ; jf.#;ffi ,*ilffi **fi j:?tr*, 
:ffi
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Before starting with a concrete example, we will discuss a few procedures that
will be rsed frequently in the remainder of the paper.

5.1 Representation of the Hilarics Description and a Geometrical Interpretation

As a sh-orthand notation of the structure description, we use a binary tree. The
translation from a Hilarics description to its trei representation is faiily straight_
forward. Note that this translation is not a transformation in the sense descriied
in section 4.2.2. The tree is just an alternative way-better suited for manipulation
by_a co:nputer program and more concise to rlason with-of t"p."r"nirng tt"
Hilarics description.

- .To obtain this tree representation, we first rewrite for-loops as a combination
of ilthen-else constructs. once this is done, the tree can be constructed very
easily: t-re nodes of the tree are the tests of the ilthen_else constructs, the left
branch of each node corresponds to the then case of the if_then_erse expression
and the rightbranch corresponds to the else case. The leaves of the tree are the
net definitions. we call this tree the structure tree. The translation of the tree
representation back to a Hilarics description is also straightforward. (To get a
feeling of what such a tree looks like, the reader can compari the Hilarics strulture
description of Section 4.1 with its equivalent tree representation depicted on the
left-hand side of Figure 12.)

corr-pletely analogous, we translate the transformation description into a binary
tree. The nodes and branches of the tree have the same meaning as in the previous
case, only now the leaves represent the primitive transformaiions that must be
applied. This tree is called the transformation tree.

Such a tree has the following geometrical interpretation. By following a path
from the root to a leaf, the tests that are passed delimit a polyttpe, i."., I r"gion
in the n * z-dimensional space of the n indices and the'rn paiamet..r. r'oi ult
points wrth integer coordinates inside this polytope, the net definition in the leaf
of the root{eaf path defining the polytope is valid. Here valid means rhar the nets
obtained by instantiating the net definition with the integer coordinates are present
in the structure. In the case of the transformation tree, the primitive transfor^mation
of the leaf must be executed for all integer points in the polytope.

So, the tests in the root{eaf paths define polytopes in whiitr there are items
(components, nets, primitive transformationr, it..) on a[ integer points inside the
polytope.

5.2 Merging of the Trees

If a.particular primitive transformation applies to some of the nets defined by a
particuiar net definition, then the two polytopes mentioned earlier will have an
intersection.

To determine whether a particular net definition in the structure tree must be
transformed by a particular transformation in the transformation tree, we merge
the trees: we take the comprete transformation tree and prace it in the structuie

ionptcrlesDStructureIlcaSchemat

IIahhFcTidr-l
0n1Descrip transformTcalatlemchS

ffiFffi"ffirtr]
ffi6'S.Ww.",:f

hlrsdd$
tsk$.*l

W lela,ffiimill

ttdescrl pion0rmatTransfandStructureMerged

Figure 7. Schematical representation of the merging of structure and transformation description.
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tree just in front of each leaf. In that way, we obtain a new tree, which we callthe merged rree. This mer .

ottr,.,t'.*ru,.,.;;:i#rr#?.JJ-,:x||l[ff :ilffi1'",i,;f 
"schematicar.".ging-. Now, when following a parh from the ,oJi to u'f"uf of the merged tree, thetrrst tests encountered, derimit_the region *rrere th; net definition is valid. Then

1T -':o 
delimiting the operation reglon of it 

" 
priliri"" transformation are en-countered. Finally, in the leaf itself, *J no* truu" ttie net aemition and the primitiveequivalence transformation. If there 

"*irt. un iri"tr".,i"" between the polytopesdelimited by the tests on a rootreaf path of tt. *".g"0 tree, the nets in thatintersection must be transformed-

5.3 Solving the Graph

In fact' this merged tree already describes more or less the transformed structure,be it in a rather complicated way. we 
"";;;; to mut. rhis description moreconcise by executing the primitive tr"^ro.a"rion. *h"r" na."rr"ry. Therefore, weneed a decision proceduie, which we *' oetibe, thar can te' us whether thepolytopes, defined bv the (in)equatities on in" .iJ,-i""rp"th, have an intersecrion.In other words' we nled a procedure that can ,., u. *rr",t., a set of (in)equarities,

i:3:9,:n" rwo polytopeJ, has a feasibte ,"t;;;;: To carculate the more conciseoescnption of the transformed structure, *" 
"*u*io" every rootJeaf path of themerged tree. We apply DECIDE to the iests in ii'ai.oot-t.af path. If they do nothave a feasibre sorution, then the r"t * ,rr" r# itiot t.rnrfo.*"d and it remainsas such in the descriotion oJ the final structure-.?ihe'tests have a feasibre solution,the nets in the reaf must be transform"a uv ti.'pri-itive transformation in theleaf, and after execution or.tnis transiorm"ii# *i'"u"in the ner definition thatappears in the final description.

when the tests on a root-leaf path have an intersection, it is possible that thisintersection can be described *itri *".n r"**',"Jo ,t u,, actuaty present in thepath. A number of tests yl_?":grld"1ri, ,""_""*e that rhey are always true oralways false given the previous. tests in the putfr. f3, example, in the sequence i> t, i < m. i = m + 1. the last equation'isl"i*or"i'ti;;# ;;;";;,;;"previous inequarities ir can be decided t. b; ;;;;.-;e. If we would reprace thelast inequality by i = m * 1, then it *.rrJ r,iri'L?r"ounaunt (always false). If wereplace it by i = m - i.*: coutd not *ur" u a*iJ".-il;;;;jij;'il#;.should be able to detect redundant 1irj"q""litiJJ""'"
After complete traversal of the mergJ-ir"", *" now have a tree that corre_sponds to the Hilarics description of tfre'transtormei structure.Two points still must be examined:
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6 ALGORITHMS FOR DECIDE

In this section, we discuss the decision procedure. First, we analyze the require-
ments for the DECIDE procedure, and then examine a possible solution.

From the previous sections, the following requirements for DECIDE can be de-
rived:

1. DECIDE should be able to decide whether a set of equaliries and inequalities
has an integer feasible solution. The feasible solution should be integer, b""arrse
the variables denote indices and parameters (see Section 5.1).

Z. DECIDE should be able to detect if an (in)equality is redundant.
3. To be able to describe arbitrary vLSI designs in a concise way, Hilarics allows

nonlinear expressions, such as i x j, div(i, j), mod(i,l), etc. These funcrions
are used, for example, in describing systolic arrays. This implies that DECIDE
should be able to handle nonlinear constraints.

4. DECIDE is at the heart of the calculation technique. It will be used intensively
and, thus, should be as/ast as reasonably possible.

A possib-e algorithm satisfying these requirements is discussed in the next section-

6-l Requirements for DECIDE

lF i - 2j + 3THEN IFt : 3l + 1 THENNET
IFj = 2i - 1 THEN IF 2i + 3j - 1 > 0 THEN TRANSFORM

then the validity of the folrowing presburger formula must be examined:

(i =2j + 3)n (, = 3l + 1) AA - a - 1)n (a + 3j - 1 > 0).

The elimination of redundant (in)equalities can also be formulated as a presburger
formula. If we want to know whether the last inequarity of the previous fo.mila
is redundant and always true, we must check whether the following presburger
fcrmula is true:

((i=2j+ 3) A (i -- 3j + 1) n 0 = zi - t))) (2i + 3i _ 1> 0).

6.2 Possible Algorithm for DECIDE

The inequalities we want to decide can be put in the form of presburger formulas
[26]. These are built up from integers, intiger variabres, addition, m'ultiplication
by constants, arithmetical relations, and first-order logical connectiues.'srrppose
w€ want to decide whether two polytopes defined by the following sequenie of
conditionals have an intersection,

1.

2.

Th,e execution of the specific primitive transformation and the checking of thecorresponding conditions. Since this is a-p"nJent-on the specific primitivetransformation applied, we postpone the discussion of this point until we treatthe example.
The decision procedure DECIDE. which w'l be discussed in the next section-
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If we want to know whether the last inequarity of the previous formula is redundant
and always false, we must check whether the following presburger formula is true:

((i =2j + 3)n (r : 3i + i) n 0 = 2i - 1)) + <2i +31 _ 1 > 0).
If both. of the preceding presburger formulas are false, then the last inequality is
not redundant.

- Presburger formulas have been shown to be decidable by presburger 
t261. Adecision procedure that can.decide about validity as well as invalidity of?r"Juuig".

formulas has been proposed by shostak [27]. This procedure consists of t*o stulZr.
First, the 

l-"_rT.utu 
to be proven is reduced to a set of integer linear p.ogru_rriing

q-9JT: (ILP), with the property that the formula is valid if and only if none of
the ILPs has a solution. In the second stage, each of the ILps is tested for solvabilitv.
In his paper, shostak describes a method that is an extension of the s"p-t"J iltnoa
[28] for dealing with this second stage. An alternative would be to use a more
classical ILP algorithm, such as Gomory's [29].

From the description of presburger formuias, it is clear that requirement 3 has
not been met as yet. However, shostak also proposed a decision procedure to dear
with an extension of Presburger arithmetic in which function ry-bot, I30] ;";;..This method consists of reducing a formula in which function symbols occur, to a
genuine Presburger formula. This genuine presburger formula cin then be decidea
by using the preceding two-stage approach.

TranslormationalDesign 25

are integer. The constraint matrix of such an ILp with integer edge points is
called totally unimodular (TUM). It is a property of ILps with a TUM matrix
that the optimal solution obtained after^solving the relaxed Lp problem wiii
be iateger. This is fairly logical, knowing that Simplex finds an optimal solution
by i:erating from edge point to edge point. Thus, with a TUM matrix, there
is no need for the cuuing plane iteration step of Gomory's algorithm, and we
will be able to make a decision after only the first step of the algorithm.

The algc,rithm described here is thus feasible because:

1. Presburger formulas generate ILPs that can be solved incrementally using Go-
mory's algorithm.

?. Because the ILPs originate from hardware descriptions, they often describe
polytopes with integer edge points. These result in ILPs with TUM matrices,
which can be solved by applying Simplex only once without the need to iterate
on th€ Gomory algorithm.

3. One of the phases in solving the graph (see Section 5.3) consists of simplifying
the resulting structure description by eliminating redundant (in)equalities. To
do this, we generate a number of Presburger formulas, where every consecutive
Presburger formula has one more (in)equality until a redundant one is detected.
All of these consecutive Presburger formulas can also be solved incrementally.

4. Finaliy, even the real lLPs, which need to be solved by repeatedly iterating
on the Gomory algorithm, are still easy to solve because of the small size of
the problems [only a small number of (in)equalities and variables].

7 BOOTH MULTIPLIER.ACCUMULATOR MODULE

6.3 Complexity Issues

In general, the decision algorithm for presburger arithmetic extended with function
:yr9"tl is NP-complete. Each presburger formura reads ro several ILps, and rhe
ILP is known to be an Np-complete problem [31, p. 350]. This wouldlimpiy tfr"t
the technique proposed herein is nor applicabie to hardware descriptions with a
lot of nested IF THEN ELSF constructi lnd many indices and parameters. How-
ever, when we use Gomory's cutting plane argoriihm [2g] to solve the ILps, this
technique is feasible. The reason for that is twofold:
. Gomory'! algorithm is bas_ed 91 ,first solving a relaxed linear programming

problem (LP). The relaxed,Lp is identical to the ILp but without ihe Ionstraint
for an integer solution. If there is a (noninteger) sblution for the relaxed Lp
then Gomory's algorithm starts iterating to an Integer sorution, if such a sorution
exists. To solve the reraxed Lp, the classical simplex algorithm is used, which
behaves well in all practical cases.

Presburger formulas with function symbols give rise to several ILps, but
thse ILPs are related to each other. If the algorithm that solves the ILp can
work incrementally, several of these new ILFs can be solved without much
additional effort. we decided in favor of the Simplex-based Gomory algorithm
because it can work incrementally.

o Experience has shown that the edge points of the intersection of the polytope
of the structure root-leaf path and the polytope of the transformrtio., ,ootl"rt
path are mostly integer. This gives rise to Ilpproblems in which alr edge points

The Boc'th multiplier module is one of the executional units used in the silicon
compilation system cathedral II {al. It is defined in a parameterued way in order
to be reusable for a large number of applications.

In the first part of this section, an overview will be given of the Booth module
and of the global tranformation of its naive implernentation into its final efficient
implementation. In the second part, one particular transformation step will be
investigated more profoundly.

7.1 Trarrtrormation of Booth Multiplier Module

The behavioral specification of the module is quite simple. The module has as
inputs the n-bit multiplicand x and the m-bit multiplier y. The (n + rz)-bit producr
is conditionally accumulated with the previous calculated product, depending on
the C_ACC flag. The highJevel specification, in the register-transfer language Log-
mos [32]. of the module is as follows:
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CELL Mult_acc
TERMTNALS x[0. .N-1] Y[0

END
M-11 EN CACC BUSIO. .N+M-1]

CELL Mult-acc
rN=x[0..N-1] Y[0..M-]l EN CAcc
REG:ACCREG[N+M-I..0]
SIGNAL:ACCOUT[N+M-T. . O] MULT-ACCOUTIN+M_ 1
TRI_OUT:BUSIN+M- I. . O]

BEGIN
IF CACC THEN ACC0UT:ACCREG

ELSE ACCOUT : #O-D[N +M] END
ACCREG<:MULT-ACCOUT
MULT--A,CC0UT:ADD(MPY(x, Y), ACC0UT )
fF EN THEN BUS:ACCREG END

END

BUS
Figure 8. Booth multiplier module.
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The operations ADD and MPY in the register-transfer-level (RTL) specifi_
cation are defined in terms of naive implementations. However, in view of speed,
area, and other trade-offs, these will not be used in the actual implementition.
For reasons of hardware efficiency, the Booth algorithm is chosen as the imple-
mentation of the MPY operation, and a straightforward implementation of this
algorithm results in the structure of Figure 8. The correctness of the Booth algorithm

Figure 9. Naive implementation ofadder matrix and accumulation structure.

Figure 10. Final refined implementation of the structure.

with respect to the straightforward shift-add implementation of Mpy is given in
[1e].

. .The naive implementation of the Booth algorithm, however, can still be op-
timized. The main improvements are situated in the organization of the adder
matrix and the accumulator structure, so this is what we will focus on. The naive
implementation of these two blocks is given in Figure 9 for an g x g instance. By
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using 15 lransformation descriptions, the initial parameterized description is trans-
formed into the final parameterized structure description, which cirresponds to
the actual implementation shown in Figure 10.

A pa:ameterized layout module generator for the multiplier accumulator, cor-
responding to the final parameterized structure in Figure 10, has been designed in.
the Module Generation Environment (MGE) environment [2]. Figure ll-shows
the layout of a multiplier instance of 6 x 6 bits.

7.2 Elaboration of a Transformation Step

The transiormation step we have chosen to work out in this section is the trans-
formation irom a naive carry-propagate structure for the adder matrix into a more
efficient carry-save structure. The transformation step is illustrated in Figure 6.
The upper part of the figure shows the result of the previous transformatio-n step.
The components with shadows are affected by the transformation description in
the middle of the figure. The lower part of the figure shows the resuli of the
transformation step.

As far as the structure description is concerned, we are interested only in the
part that describes the carry inputs and outputs. This part has already blen de-
scribed in Section 4.1. After translating this description into its equivalent tree
representation, we get the structure tree of Figure t2. ^the transformation tree,
corresponding to the transformation description of Figure 6, is also given in Figure
12.

The first operation is the merging of the two trees. we start with the leftmost
root-leaf Fath of the structure tree and insert the transformation graph before the
net definition in the leaf. Then we take the next path, and so on untifthe structure
tree has been traversed completely (see Figure 13).

The second operation is the solving of the graph. This operation can be per_
formed during the construction of the merged graph. For each root-leaf path, we
apply the DECIDE procedure. If DECIDE finds that there is an interseition, we
eliminate as many redundant tests as possible. After this operation has been com-
pleted for all the paths of the merged tree, we obtain the tree in Figure L4.

From here on the operations are specific for the comm transformation. To
start, the conditions for the validity of the comm operation must be checked.

2.

3.

The components must allow commutativity. This is obvious here: all compo-
nents mentioned in the transformation description are full adders
The terminals that are exchanged must have the same weight factor and delay
potential- As can be seen from the merged tree in Figure 14, the weight factors
of the exchanged terminals are indeed all the same (i.e.,,1). Also alithe delay
potentials are equal (i.e., to 0).
Finally, all terminals that are exchanged must occur once as the left-hand-side
argument and once as the right-hand-side argument of comm.If this is not the
case, there will be unconnected terminals after execution ofthe transformation.
This can be checked in the following way:
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Figure 12. Trees corresponding to the structure and transformation description.
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o Do the same for the right-hand-side argument of comm.r If the two regions defined by the resulting trees are the same, then the
condition is fulfi[ed.

This last condition could also be tested after completion of the transformation
step, because then all terminals should be connected if the transformation was
valid.

The next step is execution of the primitive transformation. Let us take the
leftmost path in the merged tree in Figure 14. we have to make a new net, of
which one terminal is c(1,7) and the other terminal is the terminal that is connected
to c(i - 1,7) in the original structure description. Hereby i andT are determined
by the tests along the path:

j> 1+ i= m + 1+.1>0*/< n + 2* m - l+ i

=m - \- j=Z. (i _ 1) -i<Z* i _ L+i * I.
Now we have to look for the new right-hand side of c(j, ), which is the right-

hand side of c(; - 1, i) in the original structure description. io find this termiial,
we merge the original structure description with the tree formed by the tests men-
tioned earlier, but with i substituted by I + 1 ro take into accountihe i - 1 index
of C(i - 1, j). This gives the tree in Figure 15. After solving this merged graph,
we obtain the new right-hand-side terminal ot C(i, j).
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Figure 15. Tree describing the C(j - 1,7) terminals.



This procedure is reneared for every leaf of the merged tree of Figure 14, inwhich the primitive eoui'uarence ,.un.#,n"JJn i''rr,"ntion"a. After traversal of
lf.''"#''."",'.T.;"il;.:"f J:"';;;;;;;:illliJi'otrtott"*.,v-*;;;;

After retransrating this tree into H'arics, the stucture description for thetransformed carry inputs is obtained.
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fori:1tom*7do
for,l = 6 to n + Z * m - l d,oifi< m - 1 then ifj>2* (i _ 1)thenif; * 1

fi
else nonet

etse if j: mthen if i>2* (; _ 1)then C(i, j)j: K(i _ t, j _ l)j
else nonet

fi
else ifj>0rhen C(i,j)j = K(i,j _ r)j

fi "L" 
C(i, i)i : O

fi
fi

rof
rof

This is the H'arics description.of the carry inputs and outputs of the structure
i: th.e"bol:om parr of Figure 6. This structur" a"r'..iption can rhen be used as rhelnput for the next transformation step, unt'rin"'y trr"toesired structure is obtained.
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i>1

nonet
i<m+1

nonet

i1n+2.m-t nonet

i<m-1 nonet

t>?-(i-1) i=m

i>j.(1-11 j'o

@
_c(i,i)i= c(i,j)i=g c(i,Dj= nonet C(i,j)j= nonet
K(r-],t-])J K(i-1,i-1)i K(i,j-1)j

Figure 16. Tree corresponding to the transformed structure description,

systolic implementation we are looking for: after rearranging the blocks (without
changine the structure), we get Figure 22.

Based on the technique described in Section 5, the structure description cor-
responding to Figure 22 can be calculated starting from the structure description
of Figure 17, which was, in turn, a straightforward implementation of the function
of the fiiter. The registers that must be moved are indicated by the tests in the
transformation descriptions. The net definitions that describe nets going into and
out of these registers can be identified in the structure description by looking for
the intersections of the polytope in which the net definition is valid and the polytope
in which the transformation definition is valid. The net definitions that must be
changec, because the registers are being moved into the nets defined by them, can
be identified in the same way.

9 CONCLUSIONS

In this paper, we have presented a synthesis and/or verification method that is built
on the crncept of correctness preserving transformations. The transformations are

thenC(i, j)j = K(i - 1. j_ t)j
else C(t, Di = 0

@

ffiw

@

j'o

iJl

@

8 SYSTOLIC FINITE IMPULSE RESPONSE FILTER

In this last section, we take. the opportunity to show a few steps of the transfor-mationar design of an FIR filter. we would firc to-a"rir" 
" 

,vrr"r'i" i*pi"#n-i'u",iooof this filter, starting from a straightforwarJ i*pr"r**"tion of its function.An FIR filter has an output tthat is on 
"u.f, 

ti_" point r equal to the sum of
lLt$ 

ottutou, input signals i; lt impremenis irt"'toi'ro*iry rrr"ril" 1l,r i, 
" i"**_

,' : f o*'-^

I strfehtforward implementation of this function is given in Figure 17 for a pa-rameter value of N : 9. A systolic implementarion oitr,i"r.in ilit".".rrrri, .i,processing elements in a matrix struc'ture. rn u"t*"en each processing elementthere is a register. To derive this.systotic impleme-niuiion f.o- the straighfforwardimplementation, a number of ret#ing,,iliJil;il. must be done. These rrans_formations are shown in Figures 1g-"21- i;is i;Ji'i-pl"*"ntution is, in fact, the
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y(r)

Figure 17. Straightforward implementation of the function of an FIR filter

y(t)

Figure 18.

x(t)

Figure 19. Shifting the input signals in time.

TransformationalDesign 37

0

0

0

0

o
0

0

0

0

v(r)

0

Shifting some registers over the coefficient blocks-
v{t)

Figure 20. Shifting some registers over the adder blocks.
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Figure 21. Rearranging the input registers.
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performed on parameterized structure descriptions in order to come from a spec-
ification up to an actual implementation. The transformations are formalized using
transformation descriptions, which, in turn, make use of primitive equivalence
transfo:mations. Algorithms have been presented that implement this meihod using
an exist:ng hardware description language (HDL), Hilarics. Note, however, that
the method could be applied to other HDLs as well, as long as the HDL is applic-
ative and allows IF THEN ELSE and FoR loop statements in the srructuie de-
scription.

The method has been applied for the design of a parameterized Booth mul_
tiplicatircn module and a parameterized systolic implementation of a finite impulse
response filter.

As proposed herein, the synthesis technique cannot be used for behavior syn-
thesis. Further research will concentrate on applying the same principles as outlined
herein:o include manipulations on register-transferlevel constructs and on high-
level system specifications in the Silage language. In the latter case, it will be very
useful for the guided synthesis of high-speed video-type signal processors. In ad-
dition, the formal proof of the correctness of the transformation descriptions will
be investigated-
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