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Abstract—This paper presents a new approach to the false path
problem in timing verifiers. This approach is based upon the modeling
of both the logic and timing behavior of a cireuit. Using the logic prop-
agation conditions associated with each delay, efficient algorithms have
been developed to find statically sensitizable paths. These algorithms
simultaneously perform a longest path search and a partial verification
of the sensitizability of the paths. The resulting paths undergo a final
and complete sensitization. The algorithms find the longest statically
sensitizable path, whose length is a lower bound to the critical path
length, and its associated sensitizing input vector, The algorithms can
be easily modified to provide an ordered list of all the statically sensi-
tizable paths above a given threshold. An initial analysis of the circuit
by the PERT algorithm guides the critical path search and allows prun-
ing of subgraphs that cannot lead to the solution. The results of our
experiments show that the presented techniques succeed in curbing the
combinatorial explosion associated with the longest statically sensitiz-
able path search.

I. INTRODUCTION

N THE last few years, increasing emphasis has been

placed on the need for fast verification of the timing
constraints of VLSI circuits. With the recent appearance
of many timing optimization tools, this need has been even
more strongly felt. While in the past only a rough estimate
of the longest propagation path in a circuit was sufficient.
the development of new applications with tighter timing
constraints has pushed the timing verification tools to their
limits.

Timing verifiers [6], [7], [11] have been available for
many years, and their wide use by the design community
is the best proof of the need for such tools. Their principal
advantage over simulators is that they find the longest
(critical) propagation path without requiring input exci-
tations. In the timing verification approach. the logic be-
havior of the circuit is disregarded and the timing behav-
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ior 1s approximated by simple delay models. As a result
of this abstraction, the problem of finding the longest
propagation path in a circuit is equivalent to finding the
longest path in a graph where the weights on the edges
represent the delays of the gates. This problem can be
easily solved in linear time O(|E |) by the PERT or the
DFS algorithms [5]. Because the logic behavior is not
taken into account, the critical path found by these algo-
rithms might not be logically meaningful, i.e, no input
vector will exercise the path. In this case, the path is said
to be a false path.

The problem of eliminating the false paths is well
known. Some of the previous approaches use case anal-
yses to explicity eliminate some of the false paths, while
others try to automatically recognize the direction of the
signal flow. More recently, the need to formally account
for the logic behavior of the circuit has been increasingly
recognized. The approach presented in this paper uses a
model of the logic behavior and verifies the static sensi-
tizability of the paths during the longest path search. By
definition, statically sensitizable paths are associated with
an input vector that activates them. The longest statically
sensitizable path is only a lower bound on the true critical
path, but it is guaranteed to exist. Several algorithms have
been recently developed to compute upper bounds to the
length of the true critical path that are tighter than a sim-
ple PERT estimate [2], [4], [9], [12]. To date, no algo-
rithm has appeared in the literature which is guaranteed
to find the true critical path over a circuit. Unless and until
such an algorithm appears and demonstrates reasonable
performance, the length of the longest statically sensitiz-
able path length can be used to calibrate the upper bounds.
Even if much tighter upper bounds were found, there is
still no guarantee of accuracy without the lower bound.
Moreover, if the longest statically sensitizable path is
equal to the upper bound, then the designer is ensured of
the accuracy of this result. Finally, the input vector ex-
ercising the path is generated as a by-product of the stat-
ically sensitizable path algorithms. This input vector can
be directly used in a simulator to verify the accuracy of
the timing verifier which only uses estimates of the de-
lays.

In the next section, we will describe the different as-
pects of the false path problem and we will show that the
false path problem is inherent to timing verifiers. In Sec-

0278-0070/90/1000-1073$01.00 © 1990 IEEE

R A e T T L Tl



1074

tion III, previous attempts to solve the problem are re-
viewed. In Section IV, we will elaborate on our approach
and on the relationship between statically and dynami-
cally sensitizable paths. In Section V, we will describe
the SLOCOP environment, which has served as a basis
for the development of our algorithms. Section VI deals
with the method used to verify the static sensitizability of
the paths. The issues related to the complexity of the
search for the longest path are discussed in Section VII,
while the algorithms are presented in Section VIII. In Sec-
tions IX and X, the results of extensive experiments are
shown and the performance of the algorithms is analyzed.

II. THE FALSE PATH PROBLEM

One of the principal reasons for the success of timing
verifiers is that they do not require the specification of
input stimuli in order to find the longest propagation path.
Before the development of this approach, designers had
to rely on their experience and intuition in order to deter-
mine the critical portions of their designs, and the verifi-
cation of the timing constraints was based upon extensive
simulation. This technique was not only expensive from
the computation viewpoint, but it also delegated to the
designer the difficult task of determining the combination
of input values that would result in the longest propaga-
tion time. As timing verifiers compute the latest arrival
time at each point in the circuit on the basis of the delays
of the gates (or the subcircuits) only, they indeed appear
to have removed the problem of finding input stimuli.
However, the transition from the simulation technique to
the value-independent approach has resulted in the ap-
pearance of the false path problem.

It is interesting to note that the false path problem is
only a reincarnation of the problem of finding the right
input stimuli. In the original problem, we look for the
input stimuli that exercise the path with the longest prop-
agation delay, whereas in the false path problem we have
a path that exhibits the longest propagation delay, but we
do not know if there exists a combination of input stimuli
that exercises this path. If the path that was found by the
timing verifier does not correspond to any input stimulus
combination, it cannot be exercised. Such a path is called
a false path.

Fortunately, most circuits do not cause the appearance
of false paths in timing verifiers, and it is possible to sort
the sources of false paths into five categories.

® Incompatible transitions: In this very simple case, a
false path results from the combination of incompatible
transitions. A typical example is the addition of the delays
associated with the 1 — O transitions in subsequent in-
verters instead of alternating the 1 — 0 and 0 — 1 tran-
sitions. This type of false path can easily be removed by
computing separately the latest arrival time forthe 1 - 0
and the O — 1 transitions for each node. In the upcoming
discussions, we will always assume that such a separate
analysis is performed.

® Incorrect signal flow: This type of false path appears
when using pass transistor logic or barrel shifters. In these
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cases, as a result of the propagation conditions of the
transmission gates, there is only a single conducting path
from the input to the output for each combination of input
values. However, many timing verifiers cannot take these
propagation conditions into account and generate false
paths.

® Synchronization: Whether the synchronization is
simply performed within the clocking scheme or in a more
complex way, it implies that signals are latched and have
to wait for the next synchronization point. When trans-
parent latches are used, depending on their arrival time,
signals might be allowed to continue to propagate. There-
fore, the propagation conditions of these latches may or
may not be compatible with those of the path that lead to
them. In the latter case, the ignorance of these conditions
will lead some timing verifiers to incorrectly view these
latches and the subsequent combinational logic as part of
the path.

e Explicit incompatibility: Although all false paths re-
sult from some incompatibility in the propagation condi-
tions, only the false paths in which this incompatibility is
explicit appear in this category. Especially when dealing
with multiplexers, explicit propagation conditions are set
up. Often, if more than one multiplexer is included in a
path, these propagation conditions are contradictory and
false paths are generated (see Fig. 1) [10].

e Implicit incompatibility: In the three previous cate-
gories, we have described different types of false paths
which can often be identified by the designers. In this last
category, we include the false paths that designers are
often unaware of. The reason for the existence of such
false paths resides in the introduction of paralielism in the
logic, usually in order to obtain a speedup (e.g., a CLA
adder).

The presence of false paths has many undesirable ef-
fects. The first and most obvious effect is the loss of ac-
curacy. There is no theoretical limit to the difference be-
tween the longest true path and the longest false path.
Therefore, the loss of accuracy can be large and results in
a loss of confidence in the timing verifier on the part of
the designer. A secondary effect appears from the per-
spective of optimization. Since the longest propagation
path determines the length of the clock period, a large
difference between the longest false path and the longest
true path will result in unnecessarily conservative de-
signs, or alternatively, in wasted power and silicon area.
As ! real lonoest paths are hidden behind the longer false
paths, they are not identified in the optimization. In Fig.
2, we see side by side a 12-b ALU using a carry propa-
gation chain and a 16-b ALU using the carry by-pass tech-
nique [13]. The longest false path lies in the carry by-pass
adder on the right, while the real longest path is in the
propagation ALU on the left. In this example, an opti-
mizing program will tend to increase the size of the tran-
sistors in the carry by-pass ALU and decrease the size of
the transistors in the carry propagation ALU. Thus the
‘“‘optimization’’ will decrease the circuit speed and in-
crease the power consumption and silicon area.
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Fig. I. Contradicting propagation conditions in two multiplexers.

delay = 10

delay = 20

delay = 10

delay = 20

Fig. 2. The LSP and the longest PERT path in a circuit composed of a
12-b ALU and a 16-b carry by-pass ALU.

At first glance, one might think that the problem of the
elimination of false paths is not so acute and that the few
false longest paths can be removed easily by the designer,
either manually or through case analyses (see Section III).
Unfortunately, since false paths are made of an incorrect
composition of separately true paths, they tend to be
among the longest in the circuit. In addition, if there is at
least one long false path in the circuit, it will be combined
with all of the possible true paths and will lead to the
creation of many other false paths. To understand the
complexity of the problem, it is important to stress the
following characteristics of false paths according to our
experiences (see Section IX).

1) When false paths exist, the longest paths are usually
false.

2) When false paths exist, they are numerous.

3) The number of false paths in a circuit cannot be pre-
dicted.

III. PREVIOUS APPROACHES

The false path problem has been known since the be-
ginning of the development of timing verifiers. At first,
false paths were considered harmless because they can
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only lead to conservative results; but rapidly, mostly be-
cause of the resulting lack of confidence displayed by de-
signers, remedies were sought.

In order to deal with incorrect signal flow control, two
main streams of techniques were developed: recognition
techniques and tagging techniques. Recognition tech-
niques [8] try to determine the direction of the signal flow
through all of the transistors. These techniques are based
upon rules that attempt to recognize common structures
such as buses, pass transistor logic, storage nodes, etc.
Many assumptions about the design style (e.g., ratioed
logic) must be made and some of the structures still re-
quire user input to be identified. In contrast to the recog-
nition techniques, tagging techniques rely directly on user
input [11]. In the environment in which these timing ver-
ifiers work, the designer is supposed to indicate with a tag
the signal flow through problematic transistors. This tech-
nique requires many runs in order to identify all of the
problematic transistors.

The problems of synchronization and incompatibility of
propagation conditions were dealt with in the general
framework of case analyses. A case analysis is performed
whenever the user determines that the logic state of a given
node has to be set to a predetermined value in order to
eliminate some of the false paths. For example, when
dealing with a two-phase clocking scheme, a separate case
analysis has to be performed for ¢, = 0, ¢, = 1 and for
¢, = 1, ¢, = 0. The same method can be used to avoid
incompatible propagation conditions in pass transistor
logic, multiplexers, etc. Of course, this technique implies
that the incompatibilities are located and removed, and,
as we have seen above, the implicit incompatibilities are
often not identified. It is also important to note that those
conditions are usually not propagated to the nodes that are
simply validated by clocks or whose value depends upon
the value of a set node. In addition, the number of case
analyses grows exponentially with the number of incom-
patible propagation conditions.

A completely different approach was developed by
Brand and Iyengar [2]. In their tool, the functional behav-
ior of the circuit is used to automatically eliminate some
of the false paths. The paths are traced from the outputs,
and the logic implications associated with the paths are
propagated through functional models. If an incompati-
bility between implications appears, the path is guaran-
teed to be false. Because the reverse statement is not al-
ways true, not all of the false paths are removed and the
result is an upper bound on the length of the critical path.
McGeer and Brayton [9] developed the concept of viable
paths. The longest viable path is also guaranteed to be
longer than the real critical path and has been proven to
be a tighter bound than the one found by Brand and Iyen-
gar. In the results reported by McGeer and Brayton, the
longest viable path is almost always equal to the longest
sensitizable path. If the results of both tools are equal, the
path is guaranteed to be the true critical path.

Finally, as part of the first version of the SLOCOP tim-
ing verifier [15], a more primitive algorithm had been de-
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veloped to eliminate false paths in a post-processing step.
The PERT algorithm was modified and allowed the tool
to compute the n longest paths in O(|E |n log n). Those
paths, sorted by decreasing length, were then tested for
static sensitizability using the D-algorithm [14] on the
logic model of the circuit. Since the number of false paths
to be eliminated before the first statically sensitizable path
was fairly large and could not be predicted, the choice of
n was difficult and required an impractical number of runs.
The results obtained at that time clearly showed the prob-
lems associated with the post-processing approach.

IV. THE NEw APPROACH

The approach proposed in this paper uses the logic in-
formation present in the circuit to find statically sensitiz-
able paths, which are guaranteed to be exercisable. In or-
der to reach this goal, it relies on both the logic behavior
and timing behavior of the circuit. In our implementation
the SLOCOP timing verifier provides such models, but
other representations can be easily accommodated. As in
earlier tools, the timing behavior is modeled by a directed
weighted graph. The edges of the graph represent the
propagation of a signal from one node in the circuit to
another. The weight of the edge is equal to the propaga-
tion delay through the circuitry between the two nodes.
Associated with each edge are a number of conditions for
the propagation of the signal through the circuit. During
the search for the longest statically sensitizable path, an
edge can only be added to a path if it does not affect the
sensitizability of the path. (i.e., its propagation condi-
tions are compatible with the propagation conditions of
all of the edges already in the path). Since this verification
is computationally expensive, our approach attempts to
divide it into two parts. During the search, the conditions
associated with a new edge are only propagated in their
neighborhood using simple rules. This propagation elim-
inates almost all of the nonstatically sensitizable paths.
When the search finally reaches the output and produces
a path, a final and complete verification of the sensitiz-
ability is performed. If the local propagation detects an
incompatibility, the edge cannot be added to the path.

The problem can thus be viewed as a search for the
longest path in a graph where some of the edges are in-
compatible, hence, the term conditional propagation
graph. Such a graph is shown in Fig. 3, where the dotted
lines represent an incompatibility between the propaga-
tion conditions of two edges.

Searching for the longest path in such a conditional
propagation graph is also a difficult problem. In the worst
case, the number of longest path searches is exponential
in the number of incompatibilities in the graph, yielding
an equivalent graph without incompatibilities counting
2"|E |, where | E | is the number of edges in the original
graph and n is the number of incompatible edges. It is thus
imperative to reduce the size of the search space as much
as possible. The algorithms that will be described in the
following attempt to curb the complexity of the search in
the average case by using simple heuristics to guide the

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN. VOL. 9. NO. 10, OCTOBER 1990

delay = 10

delay = 20

delay =17

Fig. 4. Contradicting propagation conditions with delays.
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Fig. 5. Critical path resulting from multiple input changes.
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search. When possible, bounds on the length of the long-
est statically sensitizable path in the graph are continu-
ously updated, which allow us to prune subgraphs that
cannot lead to the solution.

The underlying assumption that was made is that the
logic propagation conditions must be present at all the
nodes for all the time it takes for the signal to propagate
through the path. This implies that the path can be acti-
vated in isolation of all the other paths, with all its side-
inputs held at a constant value. Such a path is said to be
statically sensitizable, and differs from a dynamically sen-
sitizable path where at least one of the side-inputs must
be switched in order to allow the signal to propagate along
the path. A path can be dynamically sensitizable without
being statically sensitizable. In the case shown in Fig. 4,
the signal through the 20-ns delay can traverse the first
multiplexer because the logic value on the control line is
still 1. Then the signal can go through the second 20-ns
delay and traverse the second multiplexer since the logic
value on its control line has changed to 1 before the signal
arrives. Fig. 5 shows a circuit taken from [2] in which the
length of the longest statically sensitizable path is 2, even
though the simultaneous switching of A and B can result
in a path of length 3. .
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Our approach searches for the longest statically sensi-
tizable path and thus yields a lower bound on the true
critical path. It can be used in conjunction with the PERT
longest path and other upper bounds to estimate the length
of the true critical path. Dynamically sensitizable paths
can disappear if the delays of their side-inputs are
changed. In Fig. 4, if the delay before the inverter is
changed to 19 ns, the path will disappear. Although this
change will affect the longest PERT path, it implies that
a path which required optimization has been removed.
Because statically sensitizable paths do not rely on the
interaction between signals, they will vary in length only
and will not disappear.

V. THE SLOCOP ENVIRONMENT

The SLOCOP timing verifier is targeted towards digital
MOS circuits and is characterized by the modeling of both
logic and timing behaviors. In the first processing step,
the transistor network is partitioned into unidirectional
subcircuits. The partitioning is based upon pattern-match-
ing techniques which identify classes of subnetworks.
These classes of subnetworks are easily described through
the use of the LEXTOC language [3]. Using this lan-
guage, one can describe the possible transistor connectiv-
ity patterns of a design style (e.g., domino CMOS). The
resulting subcircuits are always unidirectional and are as-
sociated with a logic expression in terms of four opera-
tors: NOT, AND, OR, and seL. Using these operators, the
logic behavior of all of the subcircuits can be modeled.
Their formal definitions are the following.

® y = Not(x): the output is the Boolean negation of
the input.

® y = AND(Xx, xp * * °
AND of the inputs.

® y = OR(x| x; * * * xy): the output is the Boolean or
of the inputs.

® y=SEL(d, 5y d; s, * -+ dy sy): this operator models
an ideal level sensitive latch with N select and data
inputs. Its behavior is given by:

1) IF s; = O for all i THEN the output is unrelated to
the data inputs;

2) IFs; = 1 forany i THEN y = d;;

3) not more than one select signal can be high.

xy): the output is the Boolean

For a subcircuit with N inputs, N - 2" excitations exist
in which one input makes a transition between the two
logic levels (denoted as 0 — 1 or 1 = 0) and the rest of
the inputs are either 0 or 1. However, only a few of these
combinations cause the input transition to propagate to the
output. The logic expression of the subcircuit allows the
determination of these transitions and the corresponding
conditions on the values of the other inputs. Such a tran-
sition corresponds to an edge in the conditional propaga-
tion graph of the circuit, as depicted in Fig. 6. As a result
of this partitioning technique, all of the false paths re-
sulting from incorrect signal flow are eliminated.
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A< B c Q
e Tt/
B
—[ input: 1-> 0
C _[ output: 0->1

weight: 3.5ns
conditions: A=1, B=1

Fig, 6. SLOCOP logic and timing model (partial) for a NAND gate

After the logic model is obtained, the timing model
(i.e., the weight of the edge in Fig. 6) is extracted from
an analog simulation. The propagation conditions that
were just described also allow us to automatically gener-
ate the input excitations for this analog simulation. The
delay is defined as the interval between the time points
where the input and output cross the 2.5-V level. It has
been shown [1], [15], that such a model of the timing
behavior of entire subcircuits is much more accurate than
a stage-based model [11]. Comparison with a traditional
simulation of the critical path, in a number of circuits
made up of conventional complementary CMOS gates,
yielded errors on the order of 10% of the total propagation
delay.

Although other methods of obtaining the logic and tim-
ing models can be accommodated, the SLOCOP environ-
ment provides excellent accuracy in the timing modeling,
eliminates the local false paths resulting from incorrect
signal flow, and builds an equivalent model of the logic
behavior.

VI. VERIFICATION OF STATIC SENSITIZABILITY

As the longest path search is conducted, edges are added
to the partial path that is currently tracked. In order to
eliminate all of the false paths, it is necessary to check
that the addition of these new edges does not endanger the
static sensitizability of the path. The detection of the pos-
sible incompatibilities between the logic propagation con-
ditions associated with the delays is performed by an al-
gorithm that we have developed on the basis of the
D-algorithm [14] by removing its justification step. The
goal of this algorithm is to find all of the local logic im-
plications of the propagation conditions of the edges in-
cluded in the partial path. The required logic values are
recursively propagated throughout the network, on the ba-
sis of the logic model provided by the SLOCOP environ-
ment and using the following set of rules.

® y = NOT(x):
1) IF x is known, set y to X.
2) IF y is known, set x to .
® Yy = AND(X|, Xy, * ", XpN):
1) IFx; = 1forall i, setyto 1.
2) IFy = 1, setx; to 1 for all i.
3) IF x; = O for any i, set y to O.
4) IF x; is unknown and, x; = 1 for all i # j and, v
= 0, set x; to 0.
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® vy =OR(Xx],Xa, """, Xy):
1) IF x; = 0 for all /, set y to 0.
2) IFy = 0, setx; to 0 for all i.
3) IFx; = 1 forany i, setyto I.
4) IF x; is unknown and, x; = O forall i # j and, y
=1, setx;to 1.
® y = SEL(S,d|, $1,d5, * -
IF 5; = 1 for any i:
1) sets;to O forall j # i.
2) IF d; is known, set y to d,.
3) IF y is known, set d; to y.

s Sy, dy):

Using this method, logic values that are necessary for
the static sensitizability of the partial path can be deter-
mined. Logic incompatibilities between the propagation
conditions are detected when opposite logic values are re-
quired at the same node. In addition, this technique can
be implemented to allow incremental verification: all of
the assignments of values associated with the addition of
a new edge are recorded and can easily be removed in
case of incompatibility or in future backtracking.

When the search algorithms find a path that does not
contain any local incompatibility, the justification step of
the D-algorithm must be performed to ensure the static
sensitizability of the path. Fig. 7 shows an example of a
path that appears to be sensitizable after the local propa-
gation of the implications, but fails the final D-algorithm.
Our implementation is based upon a queue of gates re-
quiring justification, and a stack of all of the decisions
made so far. The following algorithm takes the network,
including the local implications of the logic propagation
conditions, and completes the D-algorithm.

Final D-algorithm

Notation:

Q: a queue of gates requiring justification.
S: a decision stack.

Let g be the “‘active gate.”’
The algorithm is initialized with: Q = all the gates in
the network which require justification; S = 0.

1. IF Q0 = 0 THEN path is statically sensitizable
2. ELSE
(a) let g be the first gate in Q
(b) let i be the first unexplored input of g
(c) set i to the required controlling value v
(d) push decision (g, i, v) onto S
(e) IF the implications of (g, {, v) do not result in
any incompatibility
THEN add new gates requiring justification to
@ and goto 1
(f) ELSE
i. pop top decision (g, i, v) and associated
implications from §
ii. IF there are still unexplored inputs in g
THEN goto 2.b
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Fig. 7. The need for the final D-algorithm.

iii. ELSE
A. IF S = 0 THEN path fails
B. ELSE goto 2.f.i.

VII. GUIDING THE SEARCH

When searching for the longest path in a graph without
incompatibilities, it is possible to rely on greedy algo-
rithms to find the solution. The reason is simply that the
result is dependent only upon the weight of the edges. If
the longest paths to all of the nodes that are connected to
a certain node are known, one can immediately compute
the longest path to that node. Therefore, the weights on
the edges can be considered as local constraints. The
compatibility constraints, on the other hand, can be
viewed as global constraints. Indeed, as shown in Fig. 8,
the longest path to a given node can no longer be com-
puted on the sole basis of the longest paths to the preced-
ing nodes. In this figure, we see that the length of the
longest path from A to B is larger than the distance from
A to B along the longest statically sensitizable path in the
graph (ACBD). These global constraints thus forbid the
use of greedy algorithms, and one would have to resort to
exhaustive search or path enumeration techniques in order
to guarantee a solution. Since exhaustive search is an un-
realistic solution, we have developed algorithms that guide
the search in the most promising directions computed on
the basis of local constraints, and backtrack whenever
global constraints cannot be met.

Since it is impossible to find the direction that will lead
directly to the optimal solution in a reasonable time, one
would like to gather some information regarding the
‘‘good’’ search directions. At this point, a compromise
has to be made between the time spent gathering this in-
formation and the quality of the information. As the num-
ber of incompatible edges is relatively small, we have as-
sumed that the direction of the longest path, even if it is
false, it still constitutes a good indication as to where long
statically sensitizable paths lie. In addition, this heuristic
has several important advantages.

® Low computation cost: The length of the longest path
from each node to any output can be computed by the
PERT algorithm in O(|E |).

® Path invariance: The longest path from each node
to the output is constant, regardless of the partial path that
lead to the node. Therefore, it must be computed only
once.

® Conservative estimate: Since the PERT algorithm
computes the longest path regardless of the logic incom-
patibilities, it is always longer than the longest statically
sensitizable path.

The low computation cost and the invariance of the re-
sult make the PERT algorithm an excellent candidate for
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Fig. 8. Global versus local constraints in a conditional propagation graph.

inexpensive heuristics. As we will see in the next sec-
tions, the third property is even more important in reduc-
ing the complexity of the search. In the remainder of this
paper, we will use the term PERT path to refer to a path
that has been computed with the PERT algorithm and
which is, therefore, not necessarily statically sensitizable.

Since the length of the longest PERT path is always an
overestimate of the length of the longest statically sensi-
tizable path, it can serve as an upper bound. As the search
proceeds, partial paths are built. We will refer to the
length of the longest statically sensitizable path that can
still be found with a given partial path as its esperance.
The esperance of a partial path will be computed as the
sum of its length and the length of the longest PERT path
from its last node to the output. In addition, the algo-
rithms keep track of the length of the longest statically
sensitizable path that was found so far. Obviously, this
value constitutes a lower bound to the length of the long-
est statically sensitizable path in the graph.

Using information already gathered about the graph, we
try to eliminate the need to search large parts of the graph.
Before the search enters any new subgraph, the length of
the longest path found so far is compared with the esper-
ance of the subgraph. This esperance constitutes an upper
bound on the length of all of the possible statically sen-
sitizable paths that we could find in the subgraph. There-
fore, if the esperance is found to be lower than the length
of a known statically sensitizable path, it is sure that the
solution does not lie in that subgraph and this search di-
rection may be pruned. This method allows drastic reduc-
tion of the complexity of the search in the average case,

VIII. THE ALGORITHMS

According to the principles described in the previous
section, we have developed two new algorithms. The first
algorithm is a modified version of the depth-first search
(DFS) algorithm [5]. This algorithm performs a depth-
first search using the esperance of the subgraphs to choose
the order in which they will be visited. It backtracks to
the last explored node whenever an incompatibility is en-
countered and modifies the esperance of the partial path
accordingly. In addition, only subgraphs whose esperance
is larger than the length of the longest known statically
sensitizable path are searched. The algorithm also contin-
uously updates an upper bound and a lower bound on the
length of the longest statically sensitizable path in the
graph. The lower bound is the length of the longest known
statically sensitizable path and the upper bound is the es-
perance of the root.'

'The root is a special node which is connected to all of the inputs of the
circuit.

1079

The Modified DFS with Pruning
Notation:

o(i):  The length of the longest PERT path from node

i to the output.

[(X): The length of the path X.
E(X): The esperance of the path X.
L: The length of the longest known statically sen-

sitizable path.

Let n be the *‘active node,’” and P the ‘‘active path™
from the root to n.

The algorithm is initialized with n = roor, P = {root},
L=1I({roor}) = 0.

1. Among all of the unexplored nodes connected to n,
find the node i whose o(/) is maximum and whose
addition to P does not cause any local incompati-
bility. Mark all the nodes that caused a violation,
and mark i as having been explored. Add node ;i to
P to form a new path Pi and compute E(Pi) = [(Pi)
+ o(i).

2. IFEPi) > L

THEN (forward)

(a) mark n as father of i

(b) if I(Pi) > L and i is an output, then if Pi suc-
cessfully passes the final D-algorithm then L =

I(Pi)
(¢c) P=Pi
dn=i

ELSE (backward)
(a) if n = root then exit
(b) letj be the father of n
(c) erase exploration marks to all the sons of n
(d) remove n from P
(e) n =j.

Tables I and II show the result of the PERT analysis
and the application of the modified DFS algorithm to the
graph appearing in Fig. 3. Notice that neither the {4, B,
H } nor the {F, E } subgraphs are searched. This algo-
rithm can be modified to search for all the paths above a
given threshold L’ by replacing L with L’ in 2(b) and
printing the path instead of assigning /(Pi ) to L.

The principal advantage of the modified DFS algorithm
lies in its low memory requirements which are propor-
tional *0 [ E | as well as the availability of a lower bound.
It is important to understand the local nature of this al-
gorithm which, when an incompatibility is encountered,
backtracks only to the previously explored node. Our sec-
ond algorithm, on the contrary, has a more global view
of the graph, but involves exponential memory require-
ments. In the same way as the A* algorithm [16] on which
it is based, it keeps track of all of the esperances of the
alternative partial paths. Therefore, as soon as the esper-
ance of the current partial path decreases because of an
incompatibility, it can switch to a more promising partial
path. The A* algorithm was primarily intended to search
for the shortest path in the presence of underestimates.
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TABLE 1
RESULTS OF THE PERT ANALYSIS

G H! J K L M
5 2 8 11 10 14 15

i [ABCDEFTF
0 0 0 0 0 1

TABLE 11
APPLICATION OF THE MODIFIED DFS WITH PRUNING ALGORITHM

n | I(P) | L | max E(Pi) | next move
M| 0 0 15 forward
L 1 1 15 forward
J 4 4 15 forward
| 7 7 15 forward
G| 10 |10 13 forward
D| 13 |13 13 backward
G| 10 |13 12 backward
| 7 |13 11 backward
J 4 |13 4 backward
L 1 13 14 forward
K 4 113 14 forward
| 6 |13 14 forward
G| 9 |13 14 forward
C| 14 |14 14 backward
G 9 |14 12 backward
| 6 |14 10 backward
K 4 |14 4 backward
L 1 |14 1 backward
M 0 |14 0 exit

We have modified it to search for the longest path using
the length of the longest PERT path as an overestimate.
No lower bound is available since the algorithm com-
pletes when an output is reached. An upper bound on the
length of the longest statically sensitizable path in the
graph is continuously updated. Since this algorithm knows
about all of the alternative partial paths, it uses the largest
of their esperances as an upper bound. While the esper-
ance of the root in the modified DFS requires that the al-
gorithm backtracks to the root to be updated, this upper-
bound is tighter as it is modified each time an incompat-
ibility is encountered.

The Modified A*
Notation:

o(i): The length of the longest PERT path from node
i to the output.
The length of the path X.

The esperance of the path X.

I(X):
E(X):

Let Q be an ordered queue of the current paths and their
esperances (S, E(S)). The queue is sorted by decreasing
esperance. The esperance E(S ) of a path S is computed
as E(S) = 1(S) + o(i), i being the last node in S.

The algorithm is initialized with Q = { (root, E(root) }.

1. Take the head of the queue (P, E(P)) and delete it
from the queue.

2. If P reaches a primary output, then if P successfully
passes the final D-algorithm, exit.

3. For each node j connected to i (the last node of P)
which does not cause any local incompatibility with
any of the edges already in P:
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TABLE 11
APPLICATION OF THE MODIFIED A% ALGORITHM
Q
(M.15)
(ML,15)

(MLJ,15),(MLK,14)

(MLJI15),(MLK,14)

(MLUIG,15),(MLK,14),(MLJIH,11)

(MLK,14),(MLJIGD,13),(MLJIGF,12),(MLJIH,11)

(MLKI,14),(MLJIGD,13),(MLJIGF,12),(MLJIH,11)

(MLKIG,14), (MLJIGD,13),(MLJIGF,12),(MLJIH,11),(MLKIH,10)

(MLKIGC,14) (MLJIGD,13),(MLJIGF,12),(MLKIGD,12),(MLJIH,11),
(MLKIGF,11) (MLKIH,10)

EXIT

(a) form the new path P; and compute its esperance
E(P;) =1(P;) + o()).
(b) add the new path in the ordered queue.

Table III shows the application of this algorithm to the
graph appearing in Fig. 3. Notice that here again neither
the {4, B, H } nor the {F, E } subgraphs are searched.

The above algorithm searches only for the longest stat-
ically sensitizable path. It can be easily modified in two
ways to produce a different result.

* If 2 is modified to print the path instead of exiting,
this algorithm yields an ordered list of all of the stat-
ically sensitizable paths in the network. The algo-
rithm completes when the queue is emptied.

® The same modification can also allow one to search
all the paths above a given threshold value T. In this
case, the algorithm completes when the esperance of
the head of the queue is smaller than 7.

IX. IMPLEMENTATION AND RESULTS

The algorithms presented above have been imple-
mented in C under UNIX and have been linked to the
existing SLOCOP environmént. The CPU times in the
following tables are for a VAXstation 3200. The results
of experiments conducted on several practical test cases
appear in Table [V. In Fig. 9, we have plotted the longest
statically sensitizable path (LSP) and the longest PERT
path in ALU’s with different wordlengths. It should be
noted that the PERT analysis is performed on a graph set-
up by SLOCOP which already eliminates the false paths
due to incorrect signal flow and opposite transitions. Fig.
10 shows the LSP in a circuit with explicit mcompatlblllty
similiar to the one in Fig. 1.

The following observations can be made.

¢ For carefully optimized circuits, such as the ALU’s
which contain carry by-pass circuitry, the difference
between the longest path found by the PERT algo-
rithm and the longest statically sensitizable path can
be fairly large. In contrast, we included a multiplier
implemented as a simple array of full adders. In this
case, the lack of optimization results in the presence
of many paths of similar length.

© With the exception of the third example in Table IV,
the final D-algorithm did not cause the elimination of
the path found to be ‘‘locally’’ sensitizable, and the
difference in computation cost for the algorithms with
and without this step is small (< 10%). In the third
example, the LSP without the final D-algorithm was
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Fig. 9. LSP and longest PERT path versus wordlength in ALU’s.

TABLE 1V
COMPARISON BETWEEN THE PERT CRITICAL PATH AND THE LSP
circuit transistors | PERT LSP | Mod-DFS | Mod-A«
combinaterial logic 46| 24.1ns | 19.6ns 0.4s 1.0s
8 bit comparator 173 | 19.3ns | 18.7ns 0.7s 1.9s
10 bit counter 260 | 29.4ns| 1l.4ns 5.65 22.2s
7 bit carry-sel add 210 | 29.8ns| 29.8ns 0.1s 0.2s
8x8 multiplier 1840 | 226.1ns | 223.6ns 54.3s 217.2s
12 bit by-pass ALY 720 | 34.1ns| 28.6ns 8.1s 29.2s
12+16 bit ALU (Fig. 3) 1760 | 108.3ns | 77.4ns 30.2s 57.5s
selectors (Fig. 10) 2430 | 129.8ns | 104.9ns | 1379.3s NA
4 bit by-pass 280 | 32.4ns| 32.4ns 0.1s 0.9s
14 bit by-pass 910 | 75.4ns| 51.9ns 723,53 | 2123.7s
18 bit by-pass 1170 | 92.8ns | 54.5ns 1620.0s NA
24 bit by-pass 1680 | 118.5ns | 57.8ns 4012.4s NA

28.7 ns, and the CPU times for the modified DFS
and modified A* were 0.9 and 1.3 s, respectively.
To obtain the correct result, a total of 269 paths were
discarded, 43 in the final D-algorithm.

® The fact that the difference between the LSP and the
PERT critical path can be large shows that a lower
bound can be useful. Whenever the difference be-
tween the LSP and the PERT critical path is large,
the user knows that both results should be taken care-
fully, but at least he is able to bound the length of
the critical path. On the other hand, when the differ-
ence is small or nonexistent, the user knows that he
can trust the result.

® The search time is strongly related to the gain in ac-
curacy that is obtained. If the difference between the
PERT critical path and the longest statically sensitiz-
able path is small, the search terminates quickly.

¢ The modified DFS algorithm consistently outper-
forms the modified A* algorithm. This unexpected
result is analyzed in detail in the next section,

To carefully analyze these results and to gain some in-
sight into the distribution of the paths as well as into the
respective contributions of the local propagation of im-
plications and of the final D-algorithm, we have imple-
mented a special version of the modified A algorithm. In
this version, the local propagation is not performed during
the search. Only when a path reaches the primary output
is the local propagation performed, followed immediately
by the final D-algorithm. As Table V shows and as was
also found by [4], the ratio of regular false paths (RFP’s),
i.e., paths that are found to be nonsensitizable by the local
propagation, to statically sensitizable paths (SSP’s) is
large. We also found that the number of paths that fail the
final D-algorithm (DFP's) is small. More importantly, the
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TABLE V
PATH DISTRIBUTIONS

circuit total # | # of RFPs | # of 55Ps | # of DFPs
of paths | before LSP

combinatorial logic 158 84 24 2

selectars (Fig, 10) 112 56 32 0

example in Fig. 5 10 4 6 0

number of RFP’s to be eliminated before the first SSP is
found is significant. These data explain the sma!l differ-
ence in CPU requirements between the algorithms with
and without the final D-algorithm.

X. PERFORMANCE ANALYSIS

In our presentation of the two algorithms in Section
VIII, we stressed the advantage of the more global view
that characterizes the modified A* algorithm. When we
developed those algorithms, our expectations were that
the modified A* would easily outperform the modified
DFS, except for circuits where the large memory require-
ments of the modified A* would slow it down or even
prevent completion. The modified DFS is actually faster
in all of the examples that were tried. The example ap-
pearing in Fig. 2 was definitely the most surprising as we
expected the modified DFS to wander in the by-pass ALU
for a long time while the modified A* would switch to the
carry propagation ALU earlier. Although part of this re-
sult is due to a longer initialization phase in the modified
A algorithm, the larger examples point to more basic ad-
vantages of the modified DFS algorithm.

The first major difference between the two algorithms
is again a matter of global versus local view. Since the
modified DFS backtracks only to the previously explored
node, it is possible to save in a stack all of the logic im-
plications that resulted from this exploration. When back-
tracking, all of the implications are simply popped from
the stack and the previous situation is restored. Usually,
very few nodes are affected and this operation does not
require much CPU time. The modified A* algorithm does
not backtrack to a close node but switches to a completely
different path. This change implies that all of the logic
implications related to the previous path must be re-
moved, and all of the logic implications related to the new
partial path must be installed. It appears that this opera-
tion takes about 40% of the total CPU time.

The second difference between the algorithms is more
subtle. The modified A* algorithm switches to another
path each time an incompatibility causes the esperance of
the current path to fall below the esperance of any alter-
native partial path. Our experiments have proven that the
density of the path lengths is high, which implies that such
a switch occurs almost every time an incompatibility is
encountered. The modified DFS, on the contrary, tries to
find a long path in the region of the graph currently
searched before switching to a different part of the graph.
The result is that the lower bound increases rapidly and
allows pruning of large portions of the graph as soon as
an incompatibility is encountered. In Fig. 11, which

e R R . TR T e TS
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Fig. 10. LSP in presence of an explicit incompatibility.
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Fig. 11. Convergence of the bounds in the modified DFS with pruning and
modified A* algorithms.

shows the comparison between the progression of the
lower and upper bounds of the two algorithms, it can
clearly be seen that the modified A* upper bound de-
creases in small steps while the modified DFS lower bound
quickly rises and then causes the upper bound to drop
much faster.

As already mentioned previously, the time spent
searching for the longest statically sensitizable path is in
direct relation to the difference between the length of this
path and the length of the longest PERT path. The reason
for this is quite obvious since the PERT analysis guides

our algorithms. If there is no false path, neither of the
algorithms needs to backtrack and the search is trivial. In
more difficult cases, we can look at the time spent back-
tracking as related to the quality of the information ob-
tained from the PERT analysis. The larger the difference
between the statically sensitizable and the nonsensitizable
longest path, the more times the information given by the
esperance will be misleading and the longer the search
will wander. This relationship is unfortunately not con-
stant. We have observed a large difference between the
CPU time spent on the 12-b ALU with by-pass circuitry
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TABLE VI
THE PRUNING TECHNIQUE GAIN
circuit # of nodes | CPU | # of nodes CPU | false
w/pruning w/o pruning
4 bit by-pass ALU 14 0.1s 176177 2723.4s| no
8 bit comparator 25 0.5s 1756 21.73 | yes
8 bit counter 26 0.3s 1147 19.1s | yes
7 bit carry-sel add 14 0.1s 3018 26.8s| no
combinatorial logic 73 0.4s 132 0.8s | yes
12 bit by-pass ALY 1144 6.9s 42351 741.3s | yes

starting at the LSB and a 14-b ALU in which the by-pass
circuitry was introduced after the 4th bit. The reason for
this difference lies in the effectiveness of the pruning tech-
nique. In the 12-b ALU, after a long path has been found,
the remaining false paths can be discarded as soon as the
incompatibility located in the first by-pass circuitry is dis-
covered. In the 14-b ALU, however, the algorithm has to
reach the 4th bit before false paths can be discarded. Not
only is the search going deeper but the number of paths
in the first 4 bits is already large and requires many back-
trackings.

The final D-algorithm step also demonstrates this gain
versus the CPU relationship. If the first path passes the
final D-algorithm, little time is spent. In the third example
of Table IV, the final D-algorithm must eliminate several
paths, which results in a much larger difference in com-
putation time. In both Tables IV and V, it is important to
note that the local propagation of the implications elimi-
nates almost all of the paths which are not statically sen-
sitizable. This suggests that the dissociation of the two
parts of the D-algorithm provides a better result in terms
of computation cost than if a full D-algorithm was per-
formed during the search.

Finally, in order to evaluate the effectiveness of our
pruning technique, we suppressed pruning and compared
the results with the original algorithm. Table VI shows
the CPU time and the number of nodes visited by the two
versions while the last column indicates whether there was
a false path in the circuit. In the absence of false paths,
the advantage can be expected to be large, but we see that
even when a relatively long search is required, the prun-
ing technique still provides a tremendous gain,

XI. ConcLusioN

The importance of the false path problem in timing ver-
ifiers cannot be neglected. The large errors that have been
proven to occur in previous timing verifiers prevent their
application in optimization, where an accurate estimate of
timing constraints is required. However, the need to
search for the input stimuli is inherent to the problem of
finding the critical path, and the cost of solving the false
path problem is intrinsically high. In order to alleviate
this situation, we have proposed a new approach that takes
into account the logic behavior of the circuit and finds
paths which are guaranteed to be sensitizable. Using sim-
ple logic models, we have developed new algorithms to
search for statically sensitizable paths. We have con-
verted the problem of searching for statically sensitizable
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paths into a simple longest path search associated with a
local propagation of the logic implications, followed by a
complete D-algorithm. The algorithms that we have de-
veloped reduce the computation cost associated with this
task. By continuously updating bounds on the length of
the longest path and progressively refining the search
space, the new algorithms manage to curb the combina-
torial explosion of the search. The search itself is guided
by a preanalysis based upon the PERT algorithm, which
allows pruning of subgraphs that cannot improve the
bounds. In addition, the bounds provide the user with
feedback on the progress of the search and permit him to
interrupt the search when a satisfactory estimate is
reached.

Because of the difficulty of finding the true critical path
of a circuit, designers have traditionally been skeptical of
the results produced by timing verifiers. By using the
lower bound provided by the longest statically sensitiza-
ble path and the upper bound given by the longest PERT
path or other algorithms, a much higher confidence can
now be placed in timing verification.
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