
t
€Lsv '71

Symbolic Multi-Level Verification of Refinement

Stefan Hendricx Luc Claesen

IMEC vzwlKatholieke Universiteit Leuven
Kapeldreef 75, 8-3001 Heverlee, Belgium

e-mail: Stefan.Hendricx @ imec.be

Abstract

VLSl-system design can, in general, be characterized in
terms of the step-wise refinement of intermediate solutions.
Despite the fact that such refinements usually do not pre-
serve time-scales, current formal verification approaches

mostly start from the assumption that both specification and
implementation utilize the same scales of time. Realizing
the importance of being able to cope with dffirences in tim-
ing granularity, this preliminary paper proposes a symboLic

methodology to verify that a low-level finite state machine
is a refinement of a high-levelfinite state machine. To illus-
trate our approach, the step-wise refinement - and verifi-
cation - of a simple microprocessor is presented.

l.Introduction

Independent of the application domain - ranging from
mechanics to microelectronics - system design can, in
general, be charccterized in terms of a step-wise refinement
of intermediate solutions. In the design of VlSl-systems,
in particular, well-defined (and well-automated) refinement
steps - such as partitioning, control- and data-path synthe-
sis, logic optimization, etc. - progressively compile high-
level specifications into physical implementations.

The ability to guarantee the correctness of such refine-
ment steps plays a crucial - and self-evident- role in pro-
ducing qualitative designs. Not surpisingly, formal verifica-
tion has become one of the focal points in electronic hard-
ware design [1]. The majority of the formal approaches that
have been examined so far, however, mostly restrict them-
selves to proving the correctness of the precise input-output
behaviour of an implementation with respect to a given
specification. More speciflcally, it is assumed that both
specification and implementation employ the same scales

of time.
Whereas the previous assumption is valid for applica-

tions such as equivalency checking and finite-state-machine

comparison - both well-established areas of research -it is not always applicable. Most often than not, refinement
does not preserve time-scales during the design-process. On
the contrary, timing-granularity usually tends to increase.
At the algorithmic level, for instance, instruction execution
may be described in terms of a single (algorithmic) clock-
cycle. In the final implementation of the microprocessor,
the same instruction may be executed during several physi-
cal clock-cycli - the number of which is not necessarily a

constant parameler of the instruction set.

Realizing the importance of dealing with these differ-
ences in time-scales, researchers are starting to look into
this matter. In [3], Hoskote et aL report on verifying con-
tainment of finite state machines. Basically, the goal of
their approach is to demonstrate that an implementing FSM
can perform all the behaviours defined by the specifying
FSM. Or, in other words, that the specification is contained
ln - instead of merely equivalent to - the implementa-
tion. In [2], Genoe et al, presentthe SFG-Tracing method-
ology, a symbolic technique to formally check the weak-
observable input-output behaviour of low-level implemen-
tations with respect to algorithmic Signal-Flow-Graphs.
Key elements to this approach are user-defined relationships
between well-chosen signals in the specification and spa-
tial/temporal signals in the low-level implementation.

Armed with the practical experience gained from the
SFG-Tracing methodology, we recently started to investi-
gate the formal verification of finite-state-machine refine-
ment. In this preliminary research paper, we propose a

symbolic methodology to verify that a low-level FSM is a
refinement of a high-level FSM. Underlying this symbolic
approach is again the concept ofuser-defined relationships,
this time between low-level and high-level states.

2 Our Methodology

Underlying our methodology is the intuitive notion that
when a finite state machine M, is supposed to be a refine-
ment of another finite state machine M , therc should exist a

close relationship between a (non-empty) subset of states of
M, and the state-set of M . To better understand the nature

of such a relationship, the various ways in which FSMs can

be refined, must be considered first.

2.1 Finite-State-MachineRefinement

Suppose that s1, s2, .. ., s' are states of M and that sr1,

sr2, ..., srn are states of Mr. We can then distinguish be-

tween the following refinements:

o A single high-level transition sr I sz can be refined
_t

into a sequence of low-level transitions ss 1 sr2
IIT2 Tn.

---? ... ---) $rn.

In this case, there exists a direct relationship between

the high-level states sl (sz) and the low-level states

srr (srr). Typically, this type of refinement can be

associated with implementing the execution of a single

instruction inside a microprocessor.

o A high-level transition-sequence ",
ii s2 4 ,3 can

be refined into a set of low-level transition sequences
-I -t ,l ,t-

s.r -5 srz -1 srn, srL I sn 1 trn, ..., srr
,1,-, ,'-1 s,@_1) 1 srr.Here, there exists a direct rela-

tionship between s71 41ld s1, between srn and 53, aod

between the low-level states srz, 5r3, ,,., sr1r"-1; and

s2. In addition, the transition relations should satisfy

(1)

,f:,!+r!+...*rt*-,.. (2)

Typically, this type of refinement is encountered when

defining the instruction-set of a processor - i.e. in the

generic Fetch-Decode-Execute-cycle, the high-level
Execute-state is refined into multiple low-level states.

r A single high-level state can also be refined into a low-
level sub-FSM. This type of refinement reflects the

well-known principle of hierarchical finite state ma-

chine construction. In this case, each low-level state

can be related to the single high-level state.

Starting from the principle that a relationship does exists

between certain low-level states and the high-level states,

the concept of a mapping function is introduced.

2.2 The Mapping function U-""()

Let S rrnn and ,Sr"- denote the high-level and low-level
state-spaces respectively. In addition, assume that ,S^"-- C

Sr"- is the (non-empty) subset of all low-level states that
can be related to the high-level states.

The mapping function V ,."() is a function that maps

- or relates - states in ,S-.o to states in ,Sftnn . V..o()
should satisfies the following properties:

. V-"o () maps each state in S * ", to one state in,Sronn .

. V-"o () may map multiple states in S *"o to the same

high-level state

, V..o() preserves the high-level outputs.

A fundamental problem is to determine possible candi-
dates for V-.r(). Obviously, between a given low-level
and high-level finite state machine, many functions can be

defined that satisfy the above properties. Here, we assume

that the user supplies the necessary mapping information, in
a fashion similar to the user-defined mappings employed in
the SFG-Tracing methodology.

Starting from the user-supplied relationships between

S*o, and Srnnn, the different low-level paths or trajecto-
ries between states in S -., can be examined.

2.3 State-Set-Bounded Tbajectories

Definition l: Atrajectory A"o*r. of afinite state ma-

chine M is a single path ss 3
"r

:+ ..."5 sn through
M, starting in state ss and ending in state sn.

It should be obvious that such trajectories can be of infinite
length. As such, the concept of trajectories is too general

to be ofreal practical use. Therefore, we restrict ourselves

to trajectories in which the source-state s6 and the target-
state sn occur only at the beginning or ending of the path,
but nowhere in between. We say that such a trajectory is
bounded by the states se and sr.

Definition 2: A trajectory L"o-"- of a finite state mq-
chine is bounded by states ss and sn, if ss and sn appear
only at the beginning or ending of the trajectory.

In other words, a trajectory so j5 sr j5 ... "5 s,
is bounded by s6 and sr, if s1, s2t...tsn-L f ss and
sLtsz,,..,sn-r * sr". It is important to note that ss may
be equal to sn - e.g. a single transition from a state s0 to
se is a trajectory bounded by s6,

Definition 3: Assume S is a subset of states of a finite
state machine M. A State-Set-Bounded trajectory or SSB-
trajectory Afo*". of M is a trajectory A"o*"- bounded
by states,ss, s1 € S and containing no other states of S

To prove that a low-level FSM is indeed a refinement of a

high-level FSM, we need to demonstrate that each low-level
SSB-trajectory associated with the user-defined mappings,
implies the existence of a high-level transition.

_h__Lt2 -
tn

2.4 Definition of Refinement

Given a FSM M, with state-space S
""-,

a FSM M with
state-space Sr,rn, and a mapping function \[-"o, which
maps states in 5.", C Sr.* to states in ^9ronn, such that
for all states s Lout, s Lo-z € S *.o there exist states s Hish,
sHighz € S"rn* for which

V ..o(tt o.r) : sr,;ghr

v ..o(tt'o-") : sHi'ghz

M, is called a refinement of M, if for each state-set-

bounded trajectory L?HTr-"r.-, between states s1,o.,
and s7o-r, a high-level transition TparTi exists between

sHisht and sginTr, such that

Eual(Li{"",},-+sLou2) * Tnonn (3)

With Eval(), state-set-bounded trajectories are (symbol-

ically) evaluated with respect to the stability conditions im-
plied by the high-level FSM - i.e. during a state-transition,

input-signals are assumed to be stable.

2.5 Symbolic expressions for nvat(As,{"i1,-,
""*,)

Using symbolic manipulation techniques and fixed-point
calculations, it is possible to automatically derive Boolean

.e
expressions for Eval(Ll{"fi-"""*"). In this subsection, a

concise overview is given of how these symbolic expres-
sions can be obtained.

For simplicity, the discussion below restricts itself to fi-
nite state machines with only 3 state-variables. As such,

each state s is represented by s : (ro,rr,rz) @o, n1 and

:r2 are Boolean variables). A finite state machine M canbe
defined by its next-state function - i.e. the next state is
expressed in terms of the current state:

(*t" *t, rT" *t, r\,"*t) - (Fs (n s, n r, r z), Fr (r o, :E r j n 2) I

Fz(ro,4,rz))

In addition, M can be defined by a transition-relation
61.o,,,,.r.,(ao,yt,yz), which states the Boolean conditions

to reach (A o, y r, Az) in a single transition from (rs, 11, z2).

The Adapted Finite-State-Machine M*

In order to evaluate the S^lB-trajectories of a finite state ma-
chine M, an adapted version M* must be constructed first.
This adapted finite state machine M* differs only in one as-

pect from M - each state-transitionin M starting in a state

s € S*"o is replaced in M* by a transition to s itself. All
other transitions (and states) of M are preserved in M*.

The z-steps transition-relation dfr,,
r, * rr

(A o, lJ r, a z)

Starting from the adapted finite-state-machine M*, we
generalize the concept of the transition-relation. The n-
steps transition-relation 5[!",,r,.rr(yr, yr,yz) denotes the

Boolean condition to reach state (gre, At,Az) starting from
state (es, rL, r2),in a sequence of n or less state-transitions
(assuming stability of inputs).

The generalized transition-relation 5[!",. r,."r(yo, at, yz)
can be defined recursively. First, the l-steps transition-
relations are well-known:

d,t,o,,r,,r, (yo, ar, az) = lao = rt"*tf
A [yt = ,T""] Alyz: rT"*tl

5i.)

",,,., ",
(ao, y r, y z) : ly o = ntn"'t)

A [gt : *1""*'l AlAr: ,;n""]

Next, we can express the 2-steps transition-relation in
terms of the 1-step transition-relations:

5i3
".,,,,,,(a

o, Y t, a) = 6!,
o,.,,,,1(ao, a t, a z) Y

f",,}, -,
dl'o'

"' "'
(qo' q'' q')

^
6i""'

"'' ""
{' o'

"' ")]
For n) 2, the n-steps transition-relation is defined by:

6i.!",,,,.,, (a o, a t, y r) : 6[!",,',,,
"1

(a o, a L, y 2) v

t 6[!":),,"r(qo, qr, qr) n 5[k,",,"".,(ao,ur,az)
Y(qo,qr,qz)

Fixe d- p o int Calculation

For a given finite state machine M (and state-set S*"),the
above recursive definition knows a fixed-point solution -i.e. there exists a certain value n y , such that

6[!"t,
",, ",

(a o, a r, a r) = 6[ff
, ",,,,,

(a r, u t, l] z)

forallm>. ny.
This fixed-point solution enables us to further elaborate

EvalO, the function responsible for the symbolic evaluation
of SSB-trajectories. Using 5[.i",,,r,,"r(Ao,At,gz), a single
expression can be derivedfor all SSB-trajectories associated
with ,9-"o. For that purpose, we simply have to impose that
(ro,rt,12) and (Ao,At,y2) both belong to ,S-"o. When

Xr.,,() denotes lhe characteristic function of ^9^"--, we
finall;jr obtain:

q

E u al (Al s."",r., 2 1 - r,s 6. y 1,s 21)
: 6[!0t,,

r,. r,
(a o, n, a r)

Axsv.o(*o,rt,rz) AXr*.o(Yo,Yt,ar) @)

2.6 SymbolicVerification

Using expression 4, the verification problem at hand can

be re-formulated. To verify that M, is a refinement of M

- under the user-supplied mapping V -.o() - *" need to

prove the following implication.

6[:,:]i:,,(yo,yr,az) AX,*.o(rs,11,n2) A (s)

X r..o (a o, u, a z) * 6ff ')".",
",,,,

* rr.,
(rl, * "o

(u o, y t, y z))

Since all the components of expression 5 are symbolic,
any symbolic manipulation package can, in principle, be

used to check the validity of this implication.

3 Application Example

Our approach has been successfully applied to formally
verify the step-wise refinement of a simple microprocessor,

one which closely resembles Joyce's Tamarack [4].
At the highest level, our microprocessor can be described

in terms of a finite state machine with only 2 states - i.e.

Idle and Run. In IdIe, the processor is awaiting user-input,

whereas in Run, the instructions in the program-memory of
the processor are executed (see figure 1).

mapplng
y*,([000]*J = [0],,",
v*,([looJ"J = [1],."'

Figure 1. FSM2 is a refinement of FSM1

The ldle-Idle-transition of FSM1 can be further refined,

by specifying the different input-modes of the processor

- e.g. enter program-counter (Pc), enter data-word (Acc),

store data (Store) or Wait. To verify that the resulting finite
state machine FSM2 is a refinement of FSM1, we first de-

fine a mapping between low-level and high-level states (see

,h-",O in figure 1). Based on this mapping-information,
expression 5 can be constructed. Once constructed, we can

positively verify that the refinement implication is satisfied.

In a similar fashion, we can establish that FSM3 -
the result of replacing the Run-Run-transition of FSM2 by
a generic Fe t c h[I0 Il - D e c o d e[I l0]- Exe cut ell I ll sequence

- is actually a refinement of FSM2 (see figure 2).
In total, 10 different finite state machines - a sequence

of gradually more detailed models - were derived for
the controller of our microprocessor. Using our symbolic
methodology, we were able to establish the correctness of
each of these step-wise refinements.

-dPc SG.wdr

mapping
y"*([000].,*) : [000]..rc
y,o([100]u,",) : [00]0.",
y"*([001],,*) : [001]FsM

\r,*([010J".",) = [0] O]psM,

ry""o([01 l]rr*) : [0] l]Fsw

Figure 2. FSM3 is a refinement of FSM2

4 Conclusions

This paper introduced a methodology to symbolically
verify the step-wise refinement of finite state machines. We
have explained how symbolic manipulation techniques and

fixed-point calculations can be used for that purpose. Key to
our approach are user-defined relationships - the so-called
mapping-functions - between the states of the state ma-
chines involved. To illustrate our approach, the step-wise
refinement of a simple microprocessor was considered.

wdr -

-ored+-oredc
?c-o-'6I+Eq&,

Ae - 0D6d$O!6dq
SbE - 0rr6d%Orcd.r

5 Acknowledgment

The research presented in this paper was supported by a
scholarship from the Flemish Institute for the promotion of
Scientifi c-Technological Research in Industry (IWT).

References

[1] P. Camurati and P. Prinetto. Formal Verification of Hardware
Correctness; Introduction and Survey of Current Research.
I E EE C omputer, 2l(7) :8-19, July I 988.

[2] M. Genoe, L. Claesen, F. Proesmans, E. Verlind, and
H. De Man. Illustration of the SFG-Tracing Multi-Level Be-
havioural Verification Methodology by the Correctness Proof
of a High Level Synthesis Application in CATHEDRAL-II.
ln Proc. International Conf. Computer Design (ICCD): VLSI
in Computers and Processors, Cambridge, MA, 1991. IEEE
Computer Society Press.

t3l Y. V. Hoskote, J. A. Abraham, D. S. Russel, and J. Moon-
danos. Automatic Verification of Implementations of Large
Circuits Against HDL Specifications. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems,

16(3):217-227 , Mar. 1997 .

t4l J. J. Joyce. Formal Verification and Implementation of a Mi-
croprocessor. In G. Birtwistle and P. A. Subrahmanyam, ed-
itors, VISI Specification, Verification, and Synthesis, pages
129-157. Kluwer Academic Publishers, 1988.

F'SM3

FSM2

F'SM1 FSM2

