Static Timing Analysis of Dynamically Sensitizable Paths *

S. Perremans, L. Claesen, H. De Man !

IMEC, Interuniversity Micro Electronics Center,
VSDM division, Kapeldreef 75, 3030 Leuven, Belgium

Abstract

This paper describes a new method for solving the false
path problem in static timing analysis of acyclic, combi-
national circuits. The conditions under which a path is
false are accurately defined. The fact that these condi-
tions explicitly take into account the dynamic behaviour
of the circuit, constitutes the main contribution of the pa-
per. An algorithm for computing the longest dynamically
sensitizable paths in an acyclic, combinational circuit is
presented.

1 Introduction

Static timing analysis has become a widely used technique
for the verification of digital MOS VLSI circuits. Its abil-
ity to locate critical paths, without requiring input excita-
tions, offers a distinct advantage over simulation, Static
timing verifiers examine the circuit for a single clock cy-
cle, making an abstraction of the large number of possi-
ble states in a sequential machine. By considering only
one state, corresponding to the worst case working con-
ditions, all timing constraints can be checked in a single
run. Thus, the value-independent approach provides the
advantage of complete coverage and fast execution times.
In order to determine the worst case behaviour of the
circuit within one clock cycle, the timing properties of the
circuit are modelled - explicitly or implicitly - by a di-
rected graph. The vertices in the graph represent events.
An edge is placed between two events when one could
cause the occurrence of the other. The delay between the
two events is represented by a weight on the edge. Find-
ing the latest time of occurrence of all events can then
be viewed as a longest path problem in a directed graph.
Most existing timing analysis tools have taken either a
path enumeration or a block oriented approach for find-
ing the longest paths. In the path enumeration technique,
all paths in the graph are traced. Block oriented methods
find only the slowest path to any point in the circuit.

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.

*This research was sponsored by the Belgian IWONL and

MIETEC,
tProfessor at Katholieke Universiteit Leuven.

1 ns. ins
1o ns 10 ns.
a [}
1 y
1 ' 1
20ns. 20ns
b % h
1ns.

Figure 1: Example of a false path.

Both of these techniques ignore the functional relation-
ships between signals. Thus, they may report critical
paths that can never be activated in practice. For in-
stance, in Figure 1, the maximum delay from a to y is
calculated to be 42 ns. In practice, both multiplexers can-
not select the 1-input at the same time. Consequently, if
a and b stabilize at 0 ns., the true worst case arrival time
of y is 32 ns.

The presence of false paths results in a loss of accuracy
and undermines the user’s confidence in the timing anal-
ysis tool. Moreover, the false paths hide the real problem
areas. Thus, eventual optimisation efforts will be spent
on the false paths instead of on the true critical paths, re-
sulting in a waste of silicon area and power consumption.

Two main sources of false paths have been identified:
incorrect signal flow and logic dependency between sig-
nals. Timing verifiers that operate at the switch level
encounter the problem of incorrect signal flow. Due to
the bidirectional nature of MOS transistors, the intended
signal flow in structures such as barrel shifters and other
pass transistor arrays is not always obvious. The second
source of false paths, logic dependency. plagues static tim-
ing analysis both at the switch and the logic-block level.
In most timing verifiers, the possibility of case analysis is
included to alleviate this problem. For example, in order
to prevent the path a-d-i-f-y in Figure 1 from being re-
ported, a separate analysis is required for the case that b
= 1 and b = 0. Case analysis requires that the user pro-
vides the specific information needed to eliminate false
paths. This can be extremely cumbersome if many cases
have to be considered.

This paper describes techniques that automatically ac-
count for the logic dependency between signals. In the
next section, existing methods are reviewed. It is shown
that these methods find the longest statically sensitizable

26th ACM/IEEE Design Automation Conference®

Paper 35.3
568

© 1989 ACM 0-89791-310-8/89/0006/0568 $1.50

D e S

—

Figure 2: Example of a logic circuit.

path. Because a statically nonsensitizable path still can
be dynamically sensitizable, the existing methods are not
guaranteed to find an upper bound to the true critical
path. Section 3 introduces the notation and the model
that we use to represent a circuit description. In section
4, conditions for dynamic sensitizability are defined. We
present an algorithm for finding the longest dynamically
sensitizable paths in an acyclic circuit. Section 5 deals
with performance issues. Section 6 summarizes the pa-

per.

2 Previous Approaches

Techniques for false path elimination, using the func-
tional relationships between signals, have been described
in [3][1][2]. Basically, these methods are based on tracing
a number of paths from an input towards a number of
outputs, or vice versa, collecting conditions under which
a path is not blocked. If an inconsistent condition is ob-
tained, then the path is always blocked and contribution
to the output’s arrival time can be ignored. The path is
said to be false, nonfunctional, or nonsensitizable.

For example, assume that we are computing the longest
path in Figure 2. Suppose that each gate has unit de-
lay. We start at input a and try to proceed through gate
OR1. In order to sensitize OR1 to the transition at node
a, we must set b = 0. The condition "b = 07 is called the
propagation condition of the OR gate with respect to a
transition at its input a. Indeed, if the propagation con-
dition ”b = 0” is not met, a transition at input a cannot
propagate to the output of the gate. From ¢ we proceed
through gate AND1, for which we must set the propaga-
tion condition "a = 1”. In trying to go from d to e, we
must set b = 1, which is inconsistent with our previous
requirements. The path a-c-d-e can therefore be classified
as nonsensitizable. An analogous reasoning leads to the
rejection of path b-c-d-e.

In a previous version of the SLOCOP timing verifier
[3], false path elimination was done in a post-processing
step. The n longest paths were computed and sorted
by decreasing length. Then, those paths were tested one
after the other using test pattern generation methods,
until a sensitizable path was found, Ifall n paths proved
false, a new run with a larger value of n had to be made.

The niethod described in [2] eliminates the false paths
as part of the longest path search. During the search.
whenever a gate is added to a partial path its propa-
gation conditions are checked for compatibility with the
propagation conditions of all gates already in the path. If
an incompatibility arises, the gate is not added and the
search switches to other alternatives.

Signals
Time a?b|c|d|e
-1 jJoto|lo|0O]O0
0 |1/'0]|0]0]0O
1 [T 1[1]0]0
2 tir1f1|{1]60
3 11111

Figure 3: Dynamic behaviour of the circuit shown in Fig-
ure 2.

The false path algorithms that we have mentioned
above, introduce a number of useful concepts. However,
the propagation conditions that they rely on, are largely
based on intuitive and implicit assumptions. For instance,
the path a-c-d-e in Figure 2 is considered to be nonsensi-
tizable. It is argued that any signal starting from input
a, will get blocked either at gate ORI or at gate AND2Z,
because node b cannot take a high and a low logic value
at the same time. The underlying assumption is that the
value of b remains constant, during the time it takes for
the signal to propagate from a to e. In general however,
this condition is not satisfied, because b is free to change
value. Figure 3 illustrates such a situation. Node b is 0 at
the moment when the signal passes through gate ORI,
but switches to 1 by the time the signal reaches AND2.
Hence, the path a-c-d-e is activated. If each gate has a
unit delay, the arrival time at the output y is 3 umts. For
the same situation, the methods of [2] [3] [1] predict a
worst case arrival time of 2, an underestimate of 1 unit.
Notice that this difference can be made arbitrarily large
by introducing additional delay elements at the output of
OR1.

The existing false path algorithms find the longest stat-
ically sensitizable path, because they consider the prop-
agation conditions along a path as static values. A node
that is set by a propagation condition is treated in exactly
the same way as if that node was forced permanently to
the Vdd or ground. Detecting an inconsistency between
propagation conditions can then be viewed as searching
for a short circuit situation. In reality however, the prop-
agation condition of a gate must only be satisfied when
a signal is moving through the gate. Therefore it is still
possible that a statically nonsensitizable path can be dy-
namaically sensitized, as shown in the previous example.
C'onsequently, the previous methods are not guaranteed
to find an upper bound to the {rue critical path. In fact.
they may underestimate an arrival time by an arbitrarily
large amount. In this paper, a new method for finding
the longest dynamically sensitizable path is introduced.

3 The event graph

This section introduces the notation and the model that
are nsed to represent a circuit description. The circun
model includes a logic view and a timing view. Awu in-
teresting leature cousists of the fact that both views are
inteatated into one single graph representation.

A citcuit will be represented by a directed graph, calleq

Paper 35.3
569

an event graph. The vertices in the graph represent
events. For each circuit node a, two events are defined:
a0 and al. These events are designated by the name of
the circuit node and a logic level. The logic level takes ei-
ther a low (0) or a high (1) value, and refers to the steady
state value of the node. The vertex a0, for example, cor-
responds to the event: ” circuit node a reaches logic level
0 in steady state ”. The two vertices a0 and al, that
represent one circuit node a are called partner vertices.
This will be denoted as a0 = P(al) and al = P(a0).
An edge (v, w) is placed between events v and w, if v can
cause the occurrence of w. We say v is a predecessor of
w, and w is a successor of v. The delay d(v, w) between
the two events is represented as a weight on the edge.

An event can take two values: TRUE or FALSE, ac-
cording to the assumption that the event will or will not
occur. For instance, if the event a0 takes value FALSE,
we assume that the steady state logic value of circuit node
a is not 0.

The vertices can be partitioned into two categories:
AN D-vertices and OR-vertices. The AND- or OR-
operator define how the value of a vertex w logically de-
pends upon the value of its predecessors vy, vz, ..., V.
For example, if w = AN D(vq, vz) then:

AND
v
| FALSE | TRUE (1)
FALSE | FALSE | FALSE
v, TRUE | FALSE | TRUE
If w = OR(v1, vz) then:
OR
vy
| FALSE | TRUE | (2)
FALSE | FALSE | TRUE
vz TRUE | TRUE lTRUE |

Also, partner vertices have complementary values. If w =
P(v):
p
v
FALSE | TRUE
TRUE | FALSE

(3)

Figure 4 shows the event graph for a NAND gate. If
both inputs a and b are 1, the output switches to a 0. A
low logic level at one of the inputs is sufficient to drive
the output to 1. The delays between two events can be
gathered from a circuit simulation that demonstrates the
causal relation between those events. For instance, to
obtain the delay del! in Figure 4, a rising input transition
has to be applied to the input a, while the input b is kept
stable at a high logic value.

In order to model a combinational MOS circuit as a
system of AN D- and OR- vertices, we use a technique
described in [5]. The logic behavior of a circuit element,
which realizes the combinational function y, can be con-
cisely represented by the prime implicants of y and 3.
Consider the CMOS gate, shown in Figure 5a. The prime
implicants of ¥ are ab and bc, and the prime implicants of

Paper 35.3
570

Figure h: Fvent graph for a CMOS gate.

y are @ ¢ and b. The output y is driven to 0 if one of the
prime implicants of ¥ is activated. This occurs when a =
1and b =1, or when ¢ = 1 and b — 1. Consequently, the
event y0 can be modelled as shown in Figure 5b. Note
that the AN D-vertices p and g do not correspond to ac-
tual circuit nodes, but represent the prime implicants ab
and be. The delay del? can be determined by consider-
ing all situations in which a rising transition on input b
triggers the prime implicant ab, namely:

=landc=0
=landc=1.

- a rising transition on node b, while a

- a rising transition on node b, while a

For our longest path analysis, only the situation with the
largest delay is of interest. In this case, the first situation
will probably yield the maximum value for del2.

4 Path delay analysis

Once an event graph has heen constructed, it can be used
to determine the maximum delay between a primary in-
put and any node in the circuit that it affects. We propose
a new longest path algorithm that provides the ability
to eliminate false paths, while still obtaining an npper
bound to the true critical paths. Before we discuss this
technicue, we need a few definitions.

4.1 Definitions

A worst case arrival time T(v) of a vertex v is defined as
an upper bound to the latest point of time when the ver-
tex can take the value TRUE. For example, the statement

"T(al) = 5ns.” means that if the circuit node a reaches
a high logic value in steady state, this event cannot occur
after 5 ns. A primary input to the design will be called
a start vertez. Let vy be a start vertex. A sequence of
vertices (v1, v2,...,v) is a path from vertex v; to vertex
vk. Only paths that start from a start vertex will be con-
sidered. The delay D(P) of a path P is the sum of the
delays of its edges and of the worst case arrival time of
its start vertex.

4.2 Sensitizability of a path

The worst case arrival time T(w) of a vertex w can be
computed as the maximum delay along a sensitizable path
that ends in w.

Definition A path is sensitizable if the propagation con-
dition of each vertex along the path is satisfied.
Definition The propagation condition of a vertex w is de-
fined by the following expressions.

Assume that we are following a path P; that ends in ver-
tex v;. Suppose that we want to add an edge (v;, w)
to Pj, such that a path P = P; @ (v;,w) is obtained.!
Let vy, v2,...,0j,...,v be the predecessors of w. If
w = AND(vy,vs,...,v), then the propagation condi-
tion of w with respect to its predecessor v; is defined by
the cube:?

Vp w
TRUE TRUE

, @
If w = OR(v1, vz,...,v), then the propagation condition
of w with respect to its predecessor v; is defined by the
cube:

151

TRUE TRUE

V2 e e vj

TRUE

(8]

- T .
O Ci . €, .. G| TRUE
Where C; is given by:
¢; = TRUE, if i=j
= FALSE, if (i# j)A(T(v:)+ d(vi,w) < D(P))

otherwise

X (unspecified),

Theorem The application of the propagation conditions
yields a valid value for the worst case arrival

Proof. T(w) is defined as an upper bound on the lat-
est point of time when w can become TRUE. Thus only
the paths that drive w to TRUE need to he considered.
Therefore the entrty (w = TRUE) is added to the propa-
gation condition in cube (4) and (5).

Furthermore, if w is an AN D-vertex, its predecessor u;
can only drive it to TRUE if all the predecessors of w are
TRUE, as stated in (1). This explains why the conditions

!The symbol @ denotes the "append” operator on a path.
2A "cube" consists of a sequence of vertex values in positional
notation.

Delta(T(y))
Tip)=0

Figure 6: Comparison between existing false path algo-
rithms.

(vi = TRUE) for 1 < i < k are incorporated in cube (4).
Now consider the case that w is an OR-vertex. Let the
vertices v; and v; be two different predecessors of w. Sup-
pose that the path P passes throngh v; and ends in w. It
follows from (2) that the predecessor v; cannot set w to
TRUE unless the vertex v; itself is TRUE.

Suppose now that the predecessor v; is also TRUE, and
that T(v;) + d(v;, w) < D(P). Then path P cannot drive
w to TRUE at time D(P), because w was already TRUE
since T'(v;) +d(vi, w), according to (2). The path P is by-
passed by a faster path. Any signal that is propagating
along P will get blocked at w. Consequently, the entry
(v; = FALSE) must be included in the propagation con-
dition of vertex w, if T(v;) + d(vi, w) < D(P).

Notice that the propagation condition (5) of an OR-
vertex explicitly depends upon the arrival times of its
predecessors. Because we take the dynamic behaviour of
the circuit into account, our propagation conditions are
safe, unlike those proposed in [2] [3] [1]. If a path can be
activated in practice, it is never ignored. Therefore, we
always obtain an upper bound to the true critical path.
Figure 6 illustrates the difference between the new ap-
proach and the previous methods of [2] [3] [1], for the
circuit of Figure 2. Delta(T(y)) is the deviation from the
true worst case arrival time of y for the circuit of Figure 2.
Standard longest path algorithms , such as PERT, yield
an overestimate. Previous false path algorithms under-
estimate the delay, as indicated by the LSP-curve. With
our method, the exact solution is obtained (same curve
as the X-axis).

4.3 The algorithm

An algorithm for computing the longest dynamically sen-
sitizable paths in an event graph is presented below.

First. a special vertex, called the roof. is connected to
the primary inputs of the circuit. The events are ordered
by the number of "logic levels™ that separate them from
the root. The level of an event is equal to the maximum
of the levels of its predecessors plus one. The level of the
root is zero. We assume that the event graph contains no
cycles.

Paper 35.3
571

Figure 8: Minmax propagation.

Secondly, events are evaluated in a breadth-first man-
ner from the lowest to the highest level. The evaluation of
the worst case arrival time of each event consists of three
steps: back iracing, minmax propagation and sensitizable
path analysis. The first two steps constitute a preprocess-
ing phase, that is used to speed up the last step. Let goal
be the event under evaluation.

The back trace procedure consists of a depth-first

search from the event goal until arriving at the root. It
isolates the part of the circuit that can affect the arrival
time of goal. The partial circuit that is reached during
the trace is called the cone of influence of goal. Figure 7
shows an example. The following steps in the algorithm
are restricted to the cone of influence.
Furthermore, the back trace procedure computes for each
vertex v in the cone of influence the maximum delay O(v)
that separates v from goal. During the trace, it is as-
sumed that all paths are sensitizable. Hence, the value
O(v) constitutes an upper bound on the true delay from
v to goal.

Minmax propagation is used to propagate information
about previously found false paths. Consider the situ-
ation in Figure 8. Let P be the path under investi-
gation, and v its last node. Suppose that each path
(vy...,2,...,g0al) from v to goal passes through a ver-
tex a # goal, and that D(P & (v,...,a)) > T(x). In this
case, any path P& (v,..., @) is clearly false. Since vertex
r is on a lower level than goal, its arrival time has already
been evaluated. Consequently, any path to r that yields
a larger delay than 7'(x) must be false. The above rule
will be referred to as rule 3. In order to apply rule /3, we
define a value minmaa(v) for each vertex v in the cone
of influence of goal. Let G denote the set of paths from
root to goal.

Paper 35.3
572

o Let:
Peg
v be a vertex on the path P
Define: M (v, P):
if v = goal: M(goal, P) = oc.
if v # goal: M(v, P) =
min{T(v), M(w, P) — d(v, w)},
where w is the successor of v along P.
e Define minmaz(v): minmaz(v) = maz{M (v, P) |
P € G A P passes through v}

It can be shown that each path P to vertex v, that has
a delay larger than minmawz(v) is false. The minmax
procedure consists of a straightforward depth-first search,
starting from goal towards the root, and generates the
minmaa(v) value for each v in the cone of influence.

Finally the longest sensitizable path procedure
dsp(root, goal) is called. The dsp-procedure performs a
depth-first search in the cone of influence of goal, starting
from the root. Each time that the search reaches goal,
the worst case arrival time T'(goal) is updated. During
the search, T(goal) represents the delay of the longest
known sensitizable path to goal.

An edge is added to a partial path only if the result-
ing path remains sensitizable. In order to decide whether
a path is sensitizable, the consistency of its propagation
conditions must be checked. The consistency operation
is based on the D-algorithm [4][5]. The logic implications
of the propagation conditions are propagated through the
graph, using (1) (2) (3). An inconsistency arises when a
vertex is forced to TRUE and FALSE at the same time.
The algorithm does not branch into cases. For example,
if and AN D-node v is set to FALSE, while the value of
its predecessors wy, wa, ..., wg is still unknown, no value
gets propagated towards the inputs. We do not consider
each separate case "v; = FALSE” for 1 < i < k. Consider-
ing all the possible cases would make our algorithm totally
unpractical. Furthermore, it would probably not result in
a large reduction of the arrival times, since the incompat-
ibilities that cause important false paths are mostly local.

In order to speed up the dsp-procedure, several prun-
ing rules have been incorporated in the algorithm. The
efficiency of rule a has already been pointed out by the
authors of [2]. It computes the esperance of a partial path
as the sum of its delay and the maximum delay O() from
its last vertex to the goal. If the esperance of a partial
path is not higher than T(goal), the path can be ignored.
The maximum delay O() is also used to indicate the most
promising search directions. Rule /7 has been described
above. Rule 4 ends the search if no further increase in
T(goal) is possible, Rule & and rule € are not incorporated
in the dsp-procedure, but are executed before entering it.
Rule & determines which nodes are forced permanently to
Vdd or ground, and sets their arrival tinte to —x. Fi-
nally, the arrival time of a I-input vertex is determined
directly from the arrival time of its predecessor (rule).
More details can be found below.

circuit # cells wo w
24 bit bypass adder 71 | 91 ns. | 52 ns.
8 X 8 RBA multiplier 1050 | 95 ns. | 92 ns,

Table 1: Comparison of the average arrival of the outputs
with (w) and without (wo) false path elimination

PROCEDURE dsp(root, goal)
BEGIN
% Let g1,92,...,g1 be the predecessors of goal %
upperbound := maz{T(g:;) + d(gi,goal) | 1 < i < I};
T(goal) := —o0;
% Let P denote the "active” path,
and v the "active” vertex %
v = root;
P := (root);
1. Among all the successors w; of v,
that satisfy the following requirements:
(a) w; is unexplored
(b) w; belongs to the cone of influence of goal
(c) P @ (v, w:) is a sensitive path
(d) D(P & (v, wi)) < minmaz(w;) % ruled %
select the one with the largest O(w;) and call it u.
If none of the successors satisfies (a)(b)(c)(d),
u is undefined;
2. IF (u # undefined) AND
(D(P & (v,u)) + O(u) > T(goal))
THEN % forward %
mark v as father of u;

% rule a %

mark u as being explored;

erase the explor. marks on all the successors of u;

P:=P&®(v,u);

vi=

IF (v = goal) AND (D(P) > T(v))
THEN T(v) := D(p);

IF T(goal) > upperbound
THEN return; % rule v %

ELSE % backward %

IF (v = root) THEN return;

% let f be the father of v %

remove v from P;

vi=f;

3. GOTO 1.
END

5 Results

The above algorithm has been implemented in C on a
VAX 8650 running under VMS. The program has been
used to verify several standard cell designs. The results
for a 8 X 8 reduced bittary adder multiplier and a 24 bit
carry bypass adder are presented below. Table 1 shows
the average arrival time of the outputs, with and with-
out false path elimination. For the case of the adder,
that contains redundant carry bypass circuitry, false path
elimination results in a large increase in accuracy. On
the multiplier, no significant reduction of arrival time has
been obtained with our algorithm.

R S —————

circuit { exhaustive ' + n_lle ali+ rule v | + rule §,¢ | + rule B___

24 bit bypass adder 12268 s. 84763, 2907s. 1927 5. | 1364 s,
31% ! 66 % 34% 29%
"B X # RBA multiplier . 90063 s, 78375 3917s. 1234s. | 1192s.
91% 50% 68% 3.4%

9. : : run time in CPU seconds

KEY: y % : pruning gain with respect

to the entry at the left.

Table 2: Run time statistics.

The processing time statistics in Table 2 show the effi-
ciency of the pruning rules. Each row represents the evo-
lution of the running time, as consecutive pruning tech-
niques are added to the program. The heuristic of rule
a works especially well for circuits with few false paths,
as can be expected. If no false paths are present, then
the back trace procedure is in fact sufficient to find the
longest path. Rule 8 on the other hand, proves useful
in the presence of many nonsensitizable paths. The final
CPU times in the left column, indicate that the program
is fast enough to be of practical use.

6 Summary and Conclusions

Most existing timing verifiers require user input in or-
der to exclude false paths from consideration. Previous
attempts to eliminate false paths automatically, yielded
unreliable results, because the dynamic behaviour of the
circuit was not considered. We have developed accurate
conditions for the sensitizability of a path. These condi-
tions explicitly take into account the arrival times of the
circuit nodes. An algorithm for computing the longest
dynamically sensitizable paths in an acyclic, combina-
tional logic network has been presented. The computa-
tion costs are much higher than for standard longest path
algorithms, but do not exclude the method from practical
use.

References

(1] D. Brand, V. S. Iyengar, " Timing Analysis using Func-
tional Relationships,” Proc. International Conference on
Computer-Aided Design, 1986, pp. 126-129.

(2] J. Benkoski, E. Vanden Meersch, L. Claesen, H. De Man,
"Efficient Algorithms for Solving the False Path Problem
in Timing Verification," Proc, International Conference
on Computer-Aided Design, 1987, pp. 44-47.

[3] E. Vanden Meersch, L. Claesen, H. De Man, “SLO-
C'OP, A Timing Verification Tool for Synchronous C'MOS
Logic,” Proc. ESSCIRC, 1986, pp. 205-207.

[4] 1. P. Roth, "Diagnosis of Automata Failutes: A Caleulus
and a Method,” IBJ J. Res. Develop., July 1966, pp.
278-291.

[5] M. A. Breuer, A. D. Friedman, “Diagnosis and Reli-
able Design of Digital Systems,” Computer Science Press,
1976, pp. 36-51.

Paper 35.3
573

