
Static Timing Analysis of Dynamically Sensitizable Paths
S. Perremans, L. Claesen, H. De Man t

- _I_MEQ, Interuniversity Micro Electronics Center,
VSDM division, Kapeldreef 75, 3030 Leuven, Belgium

Abstract

This paper describes a new method for solving the false
path problem in static tinring analysis of acyclic, combi-
national circuits. The conditions under which a path is
false are accurately defined. The fact that these condi-
tions explicitly take into account the dynamic behaviour
ofthe circuit, constitutes the main contribution ofthe pa-
per. An algorithrn for cornputing the longest dynamically
sensitizable paths in an acyclic, conrbinational circuit is
presented.

L fntroduction
Static tinring analysis has beconre a widely used techniclue
for the verification of digital MOS VLSI circuits. Its abil-
ity to locate critical paths, without requiring input excita-
tions, ofers a distinct advantage over siruulation, Static
timing verifiers examine the circuit for a single clock cy-
cle, making an abstraction of the large number of possi-
ble states in a sequential machine. By considering only
one state, corresponding to the worst case working con-
ditions, all timing constraints can be checked in a single
run. Thus, the value-independent approach provides the
advantage of complete coverage and fast execution times.

In order to deterruine the worst case behaviour of the
circuit within one clock cycle, the timing properties of the
circuit are modelled - explicitly or irnplicitly - by a di-
rected graph. The vertices in the graph represent events.
An edge is placed between two events when one could
cause the occurrence of the other. The delay between the
two events is represented by a weight on the edge. Find-
ing the latest tirne of occurrence of all events can then
be viewed as a longest path problem in a directed graph.
Most existing timing analysis tools have taken either a
path enwnerati.on ot a block oriented approach for find-
ing the longest paths. In the path enumeration technirpre,
all paths in the graph are tracecl. Block oriented methods
find only the slowest path to any point in the circuit.

Permission to mpy without fee all or part of this marerial is granted provided
that the copies are not made or distributed for direct cornmercial advantage,
the ACM copyright notice and the title of the pubtcation and its date app€ar,
and notice is given that copying is by permission of the Associarion for
Computing Machinery. To copy orherwise, or to republish, requires a fee
and/or specific permission.

*This research was sponsored by the Belgian IWONL and
N,IIETEC

lProfessor at Iiathol.ieke Universiteit Leuven,

26th ACM/IEEE Design Automation Conference@
Paper 35.3

568

I n8- IrE

t

1m-

Figure 1: Exarnple of a false path.

Both ofthese techniques ignore the functional relation-
ships between signals. Thus, they nray report critical
paths that can never be activated in practice. For in-
stance, in Figure L, the maximunr delay fronr a to y is
calculated to be 42 ns. In practice, both multiplexers can-
not select the l-input at the sarne time. Consequently, if
o and 6 stabilize at 0 ns., the true worst case arrival tirue
of y is 32 ns.

The presence of false paths results in a loss of accuracy
and undermines the user's confidence in the timing anal-
ysis tool, Moreover, the false paths hide the real problem
areas. Thus, eventual optimisation eflorts will be spent
on the false paths instead ofon the true critical paths, re-
sulting in a waste of silicon area and power consumption.

Two nrain sources of false paths have been identified:
incorrect signal flou and logic dependencg between sig-
nals. Timing verifiers that operate at the switch level
encounter the problern of incorrect signal flow, Due to
the bidirectional nature of MOS transistors, the intended
signal flow in structures such as barrel shifters and other
pabs transistor arrays is not always obvious. The second
source offalse paths, logic dependencv. plagues static tint-
ing analysis both at the srvitch ancl the logic-block level.
In rnost timing verifiers, the possibilitv of cose arrulusr.q is
included to alleviate this problem. For example, in order
to pre'r'ent the paih a-d-i-f-y in Figure 1 fronr being re-

;lorted, a sepalate anal]'si.c is recprirerl for ihe case ihat I
= l aucl 6 - 0. C'ase anah-sis re(lnires that the user pro-
vides the specific inforrnation neeclecl to eliminate false
paths. This can be extrenrelv cumbersonre if nranl cases
have to be considered.

This paper descibes techniclues that autoruatically ac-
count for the logic dependenc.y between signals. In the
next section, existing methods are reviewed. It is shown
tlrat tlrese methods find the longest statically sensitizable

1(l na-

G

d

2On - 2On -

E

o 1989 ACM 0-89791-310-8/89/0006/0568 $1.s0

e

Figure 2: Example of a logic circuit

path. Because a statically nonsensitizable path still can
be dynarnically sensitizable, the existing urethods are not
guaranteed to find an upper bound to the true critical
paih. Section 3 introduces the notation and the model
that we use to represent a circuit description. In section
4, conditions for dynamic sensitizability are defined. We
present an algorithm for finding the longest dynamically
sensitizable paths in an acyclic circuit. Section 5 cleals
with perfonnence issues. Section 6 sununarizes the pa-

Per'

2 Previous Approaches
Techniques for false path eliurination, using the func-
tional relationships between signals, have been describcrl
in [l] [t][Z]. Basically, these methods are based on tra.cing
a number of paths frorn an inpnt towards a nunrber of
outputs, or vice versa, collecting conditions under which
a path is not blocked. If an inconsistent condition is ob-
tained, then the path is always blocked and contribution
to the output's arrival tirne can be ignored. The path is
said to be /alse, nonfunctional, or nonsensitizable.

For examplet assullle that we are conrputing the longest
path in Figure 2. Suppose that each gate has unit de-
Iay. We start at input o and try to proceed through gate
OR1. hr order to sensitize ORi to the transition at node
a, we rnnst set b = 0. The condition "6 - 0" is called the
propagation condition of the OR gate with respect to a
transition at its input o. Indeed, if the propagation con-
dition "b = 0" is not met, a transition at input o caunot
propagate to the output of the gate, From c we proceetl
tlrrough gate AND1, for which we must set the ptopaga-
tion condition "a = l-". In trying to go from d to e, lve
rnust set b = 1, which is inconsistent with our previous
requirernents. The path o-c-d-e can therefore be classificd
as nonsensitizable. An analogous reasoning leads to the
rejection of path b-c-d-e.

In a previous version of the SLOC:OP tirning verifier

[3] , false path elirnination was done in a post-processittg
step. The n longest paths were courputed aucl sortetl
by decreasing length. Then, those paths rvere tested ottt:
after the other using test pattern geueratiou metirods.
un{il a seusitizable p&th wff fc'und, If nll rr patlta ptcrrr:ql

false, a ne\rr rrur with a larger valrte of n had to be tuade.
'Ihe nrethocl described in 12] elinrinates the false paths

as part of the longest path search. During tlte sear,:h.
,,1'henever a gate is added to a partial path its ptopa-
gation conditions are cheeked for compatibility with the
propagation conclitions ofall gates already in the path. If
an incompatibility arises, the gate is not addetl and thr'
search switches to other alternatives.

Figure 3: Dynarr.ric behaviour of the circuit shown in Fi13-

ure 2.

The false path algorithnrs that we have mentioned
above, introduce a ttunrber of useful concepts. However,
the propagation conditions that they rely on, are largely
based on intuitive and implicit assuurptions. For instauce,
tlre path a-c-d-e in Figure 2 is considerecl to be nonsensi-
tizable. It is argued that any sigual startiug frour input
a, will get blocked either at gate OR1 or at gate AND2,
because node b canuot take a high and a low logic value
at the sarne time. The underlying assunrption is that the
value of 6 reruains constant, during the tinre it takes for
the signal to propagate from o to e. Iu general ltorvever,
this conditiou is not satisfied, because b is free to chauge
value. Figure 3 illustrates such a situation. Node b is 0 at
tlre rnornent when the signal passes through gate OR1,
brrt switches to 1by the time the signal reaches AND2.
Hence, the path a-c-d-e is activated. If each gate has a
unit delay, the arrival tinre at the output y is 3 units, For
the saure situation, the methods of [Z] [a] [1] predict a
worst case arrival time of 2, an underestimate of 1 urrit.
Notice that this dilference can be nrade arbitrarily large
by introducing additional delay elenrents at the output of
oR[.

The existing false path algorithms fiud the longest slol-
icolly sensitizable path, because they consider the prop-
agation conditions along a path as static values, A node
that is set by a propagation condition is treated in exactly
the same way as if that node was forced pertnanently to
the Vdd or ground. Detecting an inconsistency between
propagation conditious can then be viewed as searchiug
for a short circuit situation. In reality however, the prop-
agation condition of a gate must only be satisfied when
a signal is moving through the gate. Therefore it is still
possible that a statically uousensitizable path can be dy-
n.atntcally seusitized, as shown in the previous exanrple.
Clonseclreutly, the previous rnetltods are ttot grtarartteed
to finrl an upper bound to the trtre critical path. In f:rct.
thev may nnderestimate an arrival tirne bv an arbitrarilv
large amouut. In tlris paper, a uerv trtethcrcl for fincling
the longest clynamicallv sensitizable path is introcltrcecl.

:] The event graph
'Tlris rection intror-luces the notatiou and the tnc,c[t'l tltat
ale rrs.'cl to represetrt a circuit descriptiou. Ihe cir,:rrir
rnodel inclucles a logic vierv aud a tinring vierv. Atr in-
tt'restirg letrture cousists <.rf the fact that both viervs are
intr'lrrirtcd irtto one single graph representatiou.

-,1 r:itcuit will be representecl t,y a directecl graph, caLlec.

da

b

Time

-1 0r0 0 0 0

0 1 0 0 0 0

1 1 1 1 0 0

2 1tl 1 1 0

r) 1il 1 1 1

Paper 35.3

569

Signa
alb c d e

arr euent graph. The vertices in the graph represent
euents. For each circuit node o, two events are defined:
o0 and a.l . These events are designated by the rtame of
the circuit node and a logic level. The logic level takes ei-
ther a Iow (0) or a high (t) value, and refers to the steady
state value of the node. The vertex a0, for exanrple, cor-
responds to the event: " circuit node a reaches logic level
0 in steady state ". The two vertices o0 and o/, that
represent one circuit node o are called partner vertices.
This will be denoted as a0 = P(a/)and al = P(a01.
An edge (u, ut) is placed between events u and tu, if u can
cause the occurrence of ur, We say tt is a predecessor of
1r, ard ur is a succeEsor of r'. The delay d(r,, to) between
the two events is represented as a weight on the edge.

An event can take two values: TRUE or FALSE, ac-
cording to the assumption that the event will or will not
occur. For instance, if the event o0 takes value FALSE,
we assunle that the steady state logic value ofcircuit node
o. is not 0.

The vertices can be partitioned into two categoties:
AlfD-vertices and OR-vertices. The ,4-l[D- or OR-
operator define how the value of a vertex tl logically de-
pends npon the value of its predecessots lrt, uz, ..,, IJk,

For exanrple, if u' - AN D(r1, t'z) then:

AND

dc4

Figure 4: Event graph for a NAND gate

d.ll

c b

a

a
b

Figure 5

y arc a c and b. The output y is driven to 0 if one of the
prirne implicants of f is activated. This occttrs rvhen o =
I and 6 = 1, or when c = 1 and b = 1. Consecluently, the
event y0 can be rnodelled as shown in Figure 5b' Note
that the .AND-vertices p and q do not correspond to ac-
tual circuit nodes, but represent the 1>ritne implicants ab

and bc. The delay del2 can be deterruined by consider-
ing all situations in which a rising transition on input 6

triggers the prime irnplicant ob, namely:

- a rising transition on node b, while o = L and c = 0

- a rising transition on node b, while o - 1 and c = 1-,

For our longest path analysis, only the situation with the
largest delay is of interest. In this case, the first situation
will probably yield the maximum value for del2.

4 Path delay analysis

Once au event graph has beett constrrtctecl, it catr he usetl
to deteruriue the uraxirnunr delay betrreett a prinrarv iu-
put and any node in the circuit that it aft'ects. \Ye propose
a nerv longest path algorithm that provides the abilitr'
to elinrinate false patlrs, wlrile still obtaining an upPel
bound to the ttue critical paths. Before rve discttss this
technicpre. we neecl a ferv definitions.

4.L Definitions
A uolsl case arriual time T(v) of a vertex l is defiued as

an upper bound to the latest point of time when the ver-
tex can take the value TRUE. For exanrple, the stateurent

delt

dee

d.Kl

v
OR

d.lt,

c
Y

Event graph for a CMOS gate,

b p-
)c-

^ro

ol

FALSE
SE FATSE

1,1

TRUE
FALSE

(1)

(2)

r,z TRUE

If w = OR(t'1, r,2) then:

OR

FALSE
Ut

TRUE
LSE FALSD

TRTIEaz TRUE TRIIE

AIso, partner vertices have conrplementary values. If u, =
P(u):

P
a

(3)
FATSE TRITE

Figure 4 shows the event graph for a NAND gate' If
both inputs o and 6 are 1, the output switches to a 0. A
low logic level at one of the inputs is sufrcient to drive
the output to 1.. The delays between two events can be

gathered from a circuit sirnulation that deuronstrates the
causal relation between those events. For instance, to
obtain the delay delI in Figure 4, a rising input transition
Itas ts be applied to the input n, while the inprrt b is kept
stable at a high logic value.

In order to model a conbinational MOS circnit as a
system of AN D- and O.R- vertices, \rre ttse a techtlicge
described in [5]. The logic behavior of a circuit eleureut,
which realizes the combinational function y, can be con-
cisely represented by lhe prime irnpli.cants of y and 9.
Consider the CMOS gate, shown in Figure 5a. The prime
implicants of y are ob and bc, and the prime implicants of

Paper 35.3

s70

d.l:l

TRUE

"T(a1) = 5ns." me&ns that if the circuit node a reaches
a high logic value in steady state, this event cannot occur
after 5 ns. A primary iuput to the design will be called
a start oertea. Let or be a start vertex, A sequence of
vertices (.,r,,'r,..., ot) is a palh from vertex 'u1 to vertex
1,0. Only paths that start frour a start vertex will be con-
sidered. The d,elay D(P) of a path P is the sum of the
delays of its edges and of the worst case arrival tinre of
its start vertex.

4.2 Sensitizability of a path
The worst case arrival tinre ?(ro) of a vertex tu can be
conrputed as the nraximurn delay along a sensitizable path
that ends in u.
Definition A path is sensitizable if the propagation con-
dition ofeach vertex along the path is satisfied.
Deffnition The propagation condition of a vertex u., is de-
fined by the following expressions.
Assunre that we are following a path P; that ends in ver-
tex uj. Suppose that we want to add an edge (oi, ur)

to Pir such that a path P = Pi O (ai,w) is obtained.l
Let lur ,1,2,.,.,tj,.,., ttk be the predecessors of ur. If
u, = AN D(vlr'u2,.. ., r'&), then the propagation condi-
tion of ur with respect to its predecessot tj is defined by
the cube:2

ttl 1,2 ltj ,UK ul

TRTIE TRTiE TRUE TRUE TRT]E
(4)

If u' = OR(a1,1'2, , , ,t 1'p), then the propagation condition
of u' with respect to its predecessor ?j is defined by the
cube:

Figure 6: Cornparison between existing false path algo-

rithms.

odbfi(y))

tr

tl"

-t -t I

T(b) - o

T(s)

Where C; is given by:

Ca = TRUE, if i=J
= FALSE, if (i,+ il n ("(o;) * d(o;,u) < D(P))

= X (unspecified), otherwise

Iheqrenr The application of the propagation conditions
(4) and (5) yields a valid value for the worst case arrival
tine T(u,).

Proo.f. ?(u.,) is defined as an upper bound on the lat-
est point of time when 'u, can beconre TRIIE. Thus only
the paths that drive u' to TRUD need to be considered'
Therefore the entry (u' * TRUE) is added to the propa-
gation condition in cube (a) and (5).
Furthermore, if u, is an AND-vertex, its predecessor t'y

can only drive it to TRfrE if all the predecessors of u'are
TRUE, as stated in (1). This explains why the conditions

lThe symbol @ denotes the "append" operator on e path.
2A "cube" consists of a sequence of vertcx values in positional

notation.

(u; = TRUE) for 1- < i (& are incorporated in cube (4).
Now consider the case that ur is an OP-vertex. Let the
vertices ?ri a.nd ui be two diferent predecessors of u'. Sup-
pose that the path P passes throrrgh rri and ends in u', It
follows from (2) that the predecessor rri cannot set u' to
TRUE unless the vertex oi itself is TRUE'
Suppose now that the predecessor ui is also TRLIE, and
that ?(r';)+ d(ut, u') < D(P). Then path P cannot drive
u' to TRfiE at time D(P), because rl' was already TRTIE
since T(o;) *d,(aa,to), according to (2). The path P is by-
passed by a faster path. Any signal that is propagating
along P will get blocked at ur. Consequently' the entry
(u1 = FALSE) must be included in the propagation con-
dition of vertex w , if T(ai) * d(ui , u) < D(P).

Notice that the propagation condition (5) of an OR-
vertex explicitly depends upon the arrival times of its
predecessors. Because we take the dynarnic behaviour of
the circuit into account, our ptopagation conditions are

safe, unlike those proposed in [2] [3] I1]. If a path can be

activated in practice, it is never ignored' Therefore, we

always obtain an upper bound to the true critical path.
Figure 6 illustrates the difference between the new ap-
proach and the previous methods of [2] [a] [1], for the
circuit of Figure 2. Delta(T(y)) is the deviation from the
true worst case arrival time of y for the circuit of Figure 2.

Standard Iongest path algorithrns , such as PERT, yield
an overestimate. Previous false path algorithnrs undet-
estimate the delay, as indicated by the LSP-curve. With
our method, the exaet solution is obtained (satlre cttrve
as the X-axis).

4.3 The algorithm
An algorithm for computittg the longest d1'namicalh'seu'
sitizable paths in an evettt graph is presented belor'.

First. a special vertex, callecl the rool, is couuectecl to
the primarv inputs of the circuit. The events are ortlere':l

bl' the ttumbet of "logic levels" that separate thenr frotn
lhe root. The leuel of au event is equal to the rnaxinrunr
of the Ievels of its predecessors plus one' The level of the
roolis zero. We assume that the event graph contains no
cycles.

u1 P2

;Ct Cz

7' !h w

C1 Cp TRTT
(5)

Paper 35.3

571

rfll

Figure 7: The cone of influence of the goal vette:c,

Figure 8: Minmax propagation.

Secondly, eveuts are evaluated in a breadth-first man-
ner from the lowest to the highest level. The evaluation of
the worst case arrival tirne of each event consists of three
steps: boci: lracing, rninm.ax propagation and sensitizable
path analysis. The first two steps constitute a preprocess-
ing phase, that is used to speed up the last step. Let goal
be the event under evaluation.

The back trace procedure consists of a depth-first
search frorn the event goal until arriving at the root. lt
isolates the part of the circuit that can afect the arrival
tinre of goal. The partial circuit that is reached during
the trace is called lhe cone of influence of goal. Figure 7

shows an exanrple. The following steps in the algorithm
are restricted to the cone of influence.
Furthermore, the back trace procedure computes for each
vertex u in the cone of influence the maximumdelay O(o)
that separates 'r, frorn gool. During the trace, it is as-
sunred that all paths are sensitizable. Hence, the value
O(rr) constitutes an npper bound on the true delay from
u to goal.

Minnrax propagation is used to propagate inforuration
about previously found false paths. Consider the situ-
ation in Figure 8. Let P be the path under investi-
gation, and t' its last node. Suppose that each path
(r',,.., t,...,goal) ftom r, 1o goal passes through a ver-
tex e t' goal, and that D(P O (r',..., a,)) > 7(r). In this
case, any path PO(u,..., a)is clearly false. Since vertex
;r is on a lower level than goal, its arrival tinre has already
been evalnetecl. Cjonsecluently, any path to a that yields
a larger delay than 7(r) must be false. The above rule
will be referrecl to as rule /3. In order to apply mle 13. rve

define a value rrrtlnnrn.a(t') for each vertex t' iu the coue
of infltrence of goal Let I denote the set of paths from
root to goa.L

Paper 35.3

572

r Let:
P e q
u be a vertex on the path P

Define: M (v, P):
if u = goal; M(goal, P) = oo.

if p f goal: M(u, P) =
min{T(a), M(w, P\ - cl(r', u)},
where 'ur is the successor of u along P.

o Define tninntax(r): ntinmat(t') = nrax{fuf (t, P) |

P eg A P passes through u)

It can be shown that each path P to vertex t,, that has
a delay larger than rninmax(o\ is false. The nrinmax
procedure consists of a straightforward depth-first search,
starting fronr gool towards the rool, aud generates the
ntinntar.(u) value for each t' in the cone ofinfluence.

Finally the longest sensitizable path procedure
d.sp(root,goal) is called. The dspprocedure performs a
depth-first search in the cone ofinfluence of. goal, starting
from the root. Each tinre that the search reaches goal,
the worst case arrival time T(goal) is updated. During
tlre search, T(goal) represents the delay of the longest
known sensitizable path to gool.

An edge is added to a partial path only if the result-
ing path remains sensitizable. In order to decide whether
a path is sensitizable, the consistency of its propagation
conditions nrust be checked. The eonsistency operation
is based on the D-algorithm [+][s]. The logic inrplications
ofthe propagation conditions are propageted through the
graph, using (1) (2) (3). An incousistency arises rvlten a

vertex is forced to TRTIE and FALSE at the sarne time.
The algorithrn does not branch into cases. For example,
if and . i[D-node o is set to FALSE, while the value of
its predecessors u1, ,"t,2t ..,, ra;, is still unknown, uo value
gets propagated towards the inputs. We do not consider
each separate case "o; = FALSE" for L (i (k. C:onsider-
ing all the possible cases would make our algorithm totally
unpractical. Furthertnore, it would probably not result in
a large reduction of the arrival times, since the incotnpat-
ibilities that cause important false paths are mostly local,

In order to speed up the dspprocedute, several pmn-
ing rules have been incorporated in the algorithm. The
effieiency of rule a has already been pointed out bv the
autlrors of [2]. It computes lhe esperance of a partial path
as the sum of its delay and the maxirnum delay O0 fronr
its last vertex lo the goal If the esperance of a partial
path is not higher than ?(goal), the path can be ignored.
'Ihe nraxiurunr delav O0 is also used to indicate the most
prourising search directions. Rule i-i has been <lesclibecl

above. Rule 1 encls the search if no firrther iucrease in
T(gottl) is possible. Rule 6 and trtle e are not incorporated
in the dspprocednre, but are executecl before entering it.
Rule 6 cleternrilles which nodes are forced perrttanetttll to

Vdd or grouudr ancl sets their arrival tittte to - x. Fi-
nallr.., t.he arrival tinre of a I-input vertex is deternlirlecl
clirectit' fionr the arrival tinre ofits preclecessor (nrie ..).

Xlore details cau be forrnd l>elow.

Jt J'
f

circuit

Z+ Uil lyp"r. adder
8X8RBAmultiplier

f cells

7L

1 050

wo w circuit i exhaurtiver+tuled i +rulc'J + ru.lc 6, e * rulc P
1927 3.

34%
1364 s.

297
1234 s.

6E%

I 192 r.
3.47o

KEYr
r s. I : ru timc ia CPU scconds

! % : ptmirg gain with rcsPcct

to th. .ntty 6t thc left.

24 r. 6476 s

3.

3r% t

2907 s.

66%
?83? 3.

s7% 50%

g.

91 ns.
95 ns.

52 ns.

92 ns.

Table L: Comparison of the average arrival of the outputs
with (w) and without (wo) false path elirnination

PROCEDUkE dsp(r oot, goal)
BEGIN

Vo Let 91 t g2, . . ,, gr be the predecessors of. goal Vo

upperbou,nd := max{T(g;) * d(g;,goal) | I < i < l};
T(goal) :: -oo;
% Let P denote the "active" path,

and u the "active" vertex %
7t i= rooti
P := {root)i
1. Anrong all the successors uri of tr,

that satisfy the following requirenrents:
(a) u,; is unexplored
(b) tr; belongs to the cone ofinfluence of. gool
(c) P e (o, uri) is a sensitive path
(d) D(P @ (u, u';)) I rninntar(w;) 7o ruleB Yo

select the one with the largest O(u,;)and cell it u.
If none of the success<.rrs satisfies (a)(b)(c)(d),
u is undefinedl

2. IF (u I undefined) AND
(D(P @ (u, u)) * O(") > T(soal)) Yo n:lre a 7o

THEN 7o forward To

mark u as father of tl;
mark z as being explored;
erase the explor. marks on all the successors of rrl
P:= P @(u,u);
r' :: rr;
IF (r' : eoal) AND (D(P) > T(a))

THEN T(t') := D(p);
IF T(goal)) upperbound

THEN returnl 7o nl].e 1 7o

ELSE % backward %
IF (t, : root) THEN return;
% let f be the father of p 7o

rernove 'r' from P;
tt :: ,f;

3. GOTO 1.
END

5 Results
The above algorithm has been iruplemented in C: on a
VAX 8650 running under VMS. The program has been
used to verify several standard cell designs. The results
for a 8 X 8 redueed binary adder multiplier and a 21 bit
carry bypass adder are presented below. Table L shorvs
the average arrival time of the outputs, rvith ancl rvith-
out false path elimination. For the case of the adcler,
that contains redundant carry bypass circuitry, false path
elimination results in a large increase in accuracy. On
the multiplier, no significant reduction of arrival time has
been obtained with our algorithm.

Table 2: Run time statistics.

The processing time statistics in Table 2 show the effi-
ciency of the pnrning rules, Each row represents the evo-
lutiou of the running time, as consecutive pruning tech-
niques are added to the prograrn. The heuristic of rule
a works especially well for circuits with few false paths,
as c&n be expected. If no false paths are present, then
the back trace procedure is in fact suflicieut to find the
longest path. Rule B on the other hand, proves useful
in the presence of ruany nonsensitizable paths. The final
CiPU times in the left colunln, indicate that the progranr
is fast enough to be of practical use.

6 Summary and Conclusions
Most existing timing verifiers require user input in or-
der to exclude false paths from consideration. Previous
atternpts to eliminate false paths automatically, yielded
unreliable results, because the dynarnic behaviour of the
circuit was not considered. We have developed accurate
conditions for the sensitizability of a path. These condi-
tions explicitly take into account the arrival times of the
circuit nodes. An algorithrn for cornputing the longest
dynanrically sensitizable paths in an acyclic, cornbina-
tional logic network has been presented. The conrputa-
tion costs ere nruch higher than for standard longest path
algorithrns, but do not exclude the rnethod fronr practical
use.

References

[t] D. Brand, V. S. Iyengar, "Timing Analysis using Func-
tional Relationships,t' Proc. International Conference on
Cornputer-Aid,ed, Detign, 1986, pp. 126-129.

[2] J. Benkoski, E. Vanden Meersch, L, Claesen, H. De Man,
"Efficient Algorithnrs for Solving the False Path Problem
in Tirrring Verification," Proc, International Conferert.ce
on Contputer-Ai.ded Design,1987, pp. 4.I-47.

[3] E. Vanden l\{eersch, L. (jlaesen, H. De IUan, "SLO-
CIOP, A Timing \/erification Tool for Synchronous ('l\IOS
Logic," Proc. ESSCIRC, l98fj, pp, 205-207.

[4] J. P, Roth, "Diagnosis of Automata Failures; A ('alculus
arrd a illethod,* IBnl J. Res. Detelop., Julv 196ri. pp.
?78-?91.

15] II. A. Breuer, A. D. Friedman, "Diagnosis and Reli-
able Design of Digital Systems," (iom.puter Science Press,
1976, pp.36-51.

Paper 35.3

573

